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ABSTRACT
The Medico task in MediaEval 2021 explores the challenge of build-
ing accurate and high-performance algorithms to detect all types of
polyps in endoscopic images. This paper introduces our approach
for the automatic segmentation of polyp images. We employ a
ResNeXt as an encoder backbone with a UNet decoder. Further, the
addition of PointRend and Attention Fusion Refinement on the net-
work improves our segmentation performance. The experimental
results show the efficiency of the proposed method, which achieves
a Jaccard index of 0.7572, an accuracy of 0.9634, and a dice score of
0.8326.

1 INTRODUCTION
Medico: Transparency in Medical Image Segmentation 2021[6] task
aims to develop automatic segmentation systems for segmenting
polyps in images taken from endoscopies that are transparent and
explainable, and reduce the chance that diagnosticians overlook a
polyp during a colonoscopy. A modified version of the segmenta-
tion part of HyperKvasir [2] is given with more than 1000 training
polyp images with their corresponding masks labeled by medical
experts and 200 testing polyp images to challenge the participants
for the robust, transparent, and efficient algorithms for polyp seg-
mentation.

In recent years, the task of automatic polyp segmentation using
deep learning-based [1, 3, 4] methods has gained a lot of achieve-
ments. Especially, the appearance of attention strategies [3] effec-
tively improves polyp detection and segmentation performance.
However, it still has some challenges, including the varieties of
polyp’s appearance (size, texture, and color). The boundary be-
tween a polyp and its neighbor regions is usually blurred and hard
to be segmented.

In this paper, we propose an accurate and real-time framework
PointRend with Attention Fusion Refinement (PRAFNet) for the
polyp segmentation. Fig. 1 shows the overview of our proposed
framework. PRAFNet utilizes the Attention Fusion Refinement
to decode an effective high-level semantic segmentation, and the
PointRend [8] module to generate high-quality polyp segmentation
from the colonoscopy images. The following section will introduce
our approach and elaborate details about our network.
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2 APPROACH
2.1 Attention Fusion Refinement
Current popular medical image segmentation networks usually rely
on a U-Net architecture (e.g., U-Net [9], U-Net++ [13], ResUNet [7],
etc). These models are essentially encoder-decoder frameworks,
which aggregate all multi-level features extracted with a simple
decoder, which does not effectively leverage these features. Woo
et al. introduce a Convolutional Block Attention Module (CBAM)
[11], which applies attention-based feature refinement with two
distinctive modules, channel and spatial, to learn what and where to
emphasize or suppress and refines intermediate features effectively.

We propose an Attention Fusion Refinement(AFR) module to
better aggregate high-level features and focus on important regions,
combining high-level features with upsampled features by CBAM
as a core module. More specifically, for an input image, five levels
of features {𝑓𝑖 , 𝑖 = 1, .., 5} can be extracted from a ResNeXt [5, 12]
backbone network. We introduce a new decoder component, AFR,
to aggregate the high-level features with upsampled features. As
shown in Fig. 1, An AFR module inputs a high-level feature 𝑓𝑖 with
the previous upsampled feature 𝑑𝑖+1 and we obtain the upsampled
feature 𝑑𝑖 .

2.2 PointRend
The U-Net [9, 13] model gives decent accuracy. However, it still has
some drawbacks like predicting classes with very near distinguish-
able features, not being able to predict precise boundaries, etc. We
have used the PointRend [8] module to address these drawbacks.

PointRend constructs point-wise features at selected points by
concatenating two features, fine-grained to render fine segmenta-
tion details and coarse prediction features to gain more contextual
and semantic information.We use the features 𝑓2 as our fine-grained
features and select top 𝐾 = 3136 uncertain points in each subdi-
vision step. In general, the uncertain points are located near the
boundary of classes, so it can help refine the polyp’s boundary
effectively. As shown in Fig. 1, we use two subdivision steps of
PointRend to obtain the final segmentation, which is the same size
as the input image. We plot the uncertain points used in PointRend
as blue dots in the coarse predictions𝑚2,𝑚1.

2.3 Training strategy
We apply the Bootstrapped Cross Entropy loss to prevent the mod-
els from overfitting on simple pixels and force them to focus on
more challenging cases. With the Bootstrapped Cross Entropy, we
calculate the loss for the top 𝐾 percent pixels with the largest losses
at each step in the training process. We would also add a "warm-up"
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Figure 1: Overview of our proposed method PRAFNet, which consists of three attention fusion refinement (AFR) modules with
two adaptive subdividion steps of PointRend module. Please refer to section 2 for more details.

Method Acc Jaccard Dice F1 R P
2 0.9580 0.7252 0.8059 0.8059 0.7942 0.8871
3 0.9595 0.7283 0.8093 0.8093 0.7941 0.8831
4 0.9608 0.7441 0.8188 0.8188 0.8110 0.8741
5 0.9613 0.7497 0.8290 0.8290 0.8352 0.8639
6 0.9634 0.7572 0.8326 0.8326 0.8153 0.8956

Table 1: Medico polyp segmentation task 1’s result. Acc de-
notes the accuracy, R and P denote the recall and precision,
respectively.

Method FPS Accuracy Jaccard Dice F1
1 76.38 0.9580 0.7210 0.8054 0.8054
4 47.86 0.9608 0.7441 0.8188 0.8188

Table 2: Medico polyp segmentation task 2’s result.

period to the loss with 𝐾 = 100 such that the network can learn to
adapt to the easy regions first. Then transit to the harder areas by
gradually decaying K to 15 in a polynomial manner.

3 RESULTS AND ANALYSIS
We performed experiments on six different settings for two tasks:
Method 1 uses the UNet with ResNeXt50 [12] backbone as a baseline
model. Method 2 extends Method 1 with the PointRend. Method 3
extends Method 2 with the Attention Fusion Refinement. Method 4
uses ResNeXt101 as a backbone with the same settings as Method
3. Method 5 uses EfficientNetB6 [10] as as backbone with the same
setting as Method 3. Method 6 ensembles the results of Method 3,
Method 4, and Method 5 together.

For task 1, we submit five runs from Method 2 to Method 6. For
task 2, we submit two runs. In the first run, we use Method 4. And
the second run is Method 1 for the lightweight architecture.

Table 1 and 2 shows our results on task 1 and task 2, respectively.
Method 2 is slightly better than method 1 in all metrics, which
shows that PointRend helps improve the results. In method 3, we
use AFR, and the results also improve compared to method 2. With
a stronger backbone (ResNeXt101 instead of ResNeXt50) in method
4, the results are improved with a Jaccard index of 0.7441. Method 5
with an EfficientNetB6 backbone is better than method 4 in several
metrics except for precision. In method 6, we ensemble our methods
3, 4, 5 to achieve our best result in this task with the Jaccard index
of 0.7572.

In task 2, although our method 1 is 1.5 faster than method 2,
method 2 has higher accuracy with a real-time efficiency (48 FPS)

4 CONCLUSION
This paper presents a fast and accurate method for automatic polyps
segmentation. The proposed methods use an encoder-decoder ar-
chitecture. ResNeXt is used as an encoder backbone with the UNet
decoder. Further, PointRend and Attention Fusion Refinement are
applied to improve the segmentation result. PointRend helps refine
the uncertainty points, especially with the boundary regions. The
Attention Fusion Refinement enhances the fusion between high-
level features and upsampled features in the decoder. In the future,
we plan to apply better architecture such as ResUnet++ or PraNet
for our work and further improve the results.
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