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Abstract

In many real-world events that would require additional regulation, the causal chain leading to the event
can be hard to determine. This is partly due to the distribution of knowledge across multiple agents, the
a-priori unknown number an competence of such agents and their heterogeneous expertise. In this case,
coordination is key to the understanding of the phenomenon. In this paper, we informally describe a
novel approach to analyze complex sequences. This method originates from the study of smart homes,
where collaboration between heterogeneous components is required, too. Our proposal is named D-CAS,
which stands for Decentralized Conflict-Abduction-Negation. It is a high-level process that coordinates
components’ expertise to generate an explanatory reasoning in smart homes. We transfer our smart
home solution to socio-technical systems in general. We illustrate the general concept via two fictional
example cases: i) an autonomous car crash and ii) a crime perpetrated after social media fake news.
In both cases, we examine how D-CAN could manage the communications and be used as a general
framework to formalize interactions between experts and organize the discussion, helping to unravel
a multi-domain causal chain. Using D-CAN helps identifying causes and responsible and can thus be
helpful in a broader perspective of policy-making, e.g. to audit the potential flaws of current legislation.

Keywords

Reasoning, Multi-agent system, Explanation

1. Introduction

1.1. Problem presentation

Policy makers often have to update regulation after tragic events occur. In such events, the
causality chain and the responsibility of the different parties involved can be hard to identify, as
knowledge of complex situations is scattered across experts with distinct domains. This can
compromise the identification of efficient and fair regulation. To help the process, we propose
to design a general solution to facilitate communication between experts and therefore the
understanding of complex causal chains. We illustrate this via two fictional, yet realistic events.
As they serve only as examples, we do not blame nor judge any involved party and do not draw
any conclusion regarding the responsibility.
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In a first situation, suppose that an autonomous car, from manufacturer M has just crashed
while its driver D was not using the wheel. This crash occurred at an intersection in a city that
is supervised by some local authority L. The car manufacturer has two main branches in its
production chain, the software team Mg and the car engineering team Mg. Considering the
situation of the accident, precise knowledge about all elements of this crash can be considered
to be split between these actors. The distinction is clear, meaning that no domain knowledge is
sub-domain of another domain. In this situation, which is represented by Figure 1a, how can
one understand the causal chain leading to the event of the crash? Should a new regulation
introduce tighter control for the manufacturer, better road infrastructure or limitation to the
driver’s use of automated driving?

A similar example can be observed when considering a fictional crime. The police discovers
that the main suspect had previously read and shared fake news on a social media platform,
in a private group. Here, expertise from psychiatrists, the social media group, other members
of the private group or the suspect him/herself can help understanding the process that led
to the crime. Unfolding the chain of events is key to prove whether the suspect is guilty or
innocent and to understand how policy changes can be performed to avoid similar situations in
the future.

Both these cases highlight the important role played by causal understanding in policy-
making. However this knowledge can be hard to acquire in situation where different actors hold
part of the information. Furthermore, the number and domains of the different experts vary
on a case-by-case basis. Here, coordinated communication is key to the success of the causal
unraveling. Our contribution is to use an existing algorithm used for smart home explanations,
named D-CAN, where different heterogeneous devices contribute to a system-wide explanation.
D-CAN is based on an previously established cognitive process, CAN.
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Figure 1: (a) The case of the car crash, where knowledge is distributed across multiple experts. (b) The
architecture of a smart home enabling our D-CAN algorithm: each device and controller is associated
with a Local Explanatory Component (LEC). In both cases, entities in blue are considered domain expert
agents.



1.2. Related works

The investigation of complex causal chains is not new: different methods already exist to account
for the investigation of past cases. For instance, the Why-Because Analysis (WBA) which is
often used in reports following aircraft crashes [8]. However, to the best of our knowledge, they
are more often used to explore and validate an investigation after its completion rather than
being used as a driving mechanism for the reasoning.

The notion of causality is the basis of WBA explanation. Recent advances in the study of this
phenomenon show the importance of “contrastive explanation” [6, 5] where the object of the
explanation is the difference between an expected state of affairs and the actual observation.
From this basis, we can draw a parallel between explanation and spontaneous argumentative
reasoning [1] each sentence is relevant because it tries to solve an existing conflict.

In a broader perspective, STAMP (System Theoretic Accident Model)[3] proposes an accident
model that is based on systems and control theories. It incorporates an event-based causal
modeling at the level of the process itself, but incorporates it in a larger model, encompassing
system development and system operations, that are modeled as multi-layered control loops.
This approach can model real-life accidents, such as airplane failures [4], but it requires expert
knowledge from the investigator, spanning the generation, the process itself and its monitoring.

A similar issue may arise when considering the standard theory of Argumentation which is
mainly due to Dung’s formalism [7]. In this framework, a binary relation of attack is defined
over a set of arguments, which allows to define which arguments are acceptable to defend
which proposition. While this theory models formal argumentative debates such as law or
medicine, it fails to encompass the runtime changes of beliefs or arguments that exist in mundane
argumentation. In addition, knowing all arguments and attack relations requires a high level of
expertise, which may be impossible to maintain for topics covering several areas.

2. Decentralized Conflict-Abduction-Negation

2.1. Principles of CAN

The Conflict-Abduction-Negation (CAN) process was first designed as a generic cognitive model
to account for argumentative reasoning[1].

At the core of CAN lies the notion of conflict[1]: a conflict occurs when an observation is
in contradiction with a prior belief or desire of the agent. To formalize the notion of conflict,
we represent the agent’s perception of the world as a set of Boolean predicates P. In addition,
an agent can associate a necessity v(P) to each predicate P. This necessity v(P) is a number
conveying information about the strength and nature of the agent’s prior opinion regarding P’s
value. A positive necessity means that the agent wishes or expects P to be true, while v(P) < 0
means that the agent wishes or expects it to be false. The internal state of the agent’s perception
of the world and its opinions can be modeled by a set of predicates and necessities. Note that a
necessity set to 0 means that the agent has no opinion regarding a predicate.

A conflict occurs when the predicate’s value contradicts the sign of the associated necessity.
For instance, P can be true while its associated necessities v(P) is negative. The couple (P, N =
v(P)) models the conflict, whose intensity is given by the absolute value |N|. Similarly, a conflict



can occur if a predicate P is observed to be false while its associated necessity is positive. It is
also important to note that if (P, N) is a conflict, then its negation (=P, —N) also constitutes a
conflict of the same intensity.

CAN relies on the identification of conflicts (P, N) which can then be propagated to either
their causes, consequences or negations. i) Abduction denotes the process of inferring a causal
hypothesis to an observed phenomenon. In CAN, this means that, if C is found to be the cause
of P, then the conflicts (P, N) is propagated onto (C, N); ii) Negation allows to consider potential
actions and alternative scenarios by considering the opposite of a conflict.

CAN can be considered an alternative to the classic Argumentation Theory [1, 7]. It provides
a minimalist model, where conflicts and their relevance is evaluated at runtime rather than
in a formal attack/defend classification. It is, however, compatible: the output of CAN can be
represented as a set of formal arguments and attacks, following the inference knowledge shown
by the procedure.

2.2. Decentralization

D-CAN extends this process by observing that knowledge, i.e. predicates values and their
associated necessities, can be only locally defined and therefore a inter-agent process is possible
without relying on an omniscient knowledge base. A coordinator is necessary to maintain
coherence between calls and provide a unique interface with the user, but it can be kept minimal
and generic, in the sense that it simply routes requests to the relevant expert component. This
means that in the smart home for instance, when requested to give an explanation for a low
temperature, the coordinator component will route the request to the temperature controller
component, which will inquire the conflict by observing its measures and trying to identify a
possible cause thanks to its local knowledge. The request is then sent back to the coordinator,
which will once again route it to the next component.

The detailed process is shown in Algorithm 1. The coordinator identifies the expert responsi-
ble for the conflict proposition P, then asks it to inspect the problem with its local knowledge
(line 6) and waits for its answer. This latter can be either a causes inferred via inference,
a consideration of the negation of the current conflict, or the abandon of the conflict. The
coordinator updates its knowledge accordingly: this eventually propagates the conflict onto
the inferred cause, the negation or another conflict occurring elsewhere in the system. The
algorithm terminates once all conflicts have been examined and handled, solved or discarded.

Figure 1b illustrates a possible Smart Home architecture to enable D-CAN: a central coordi-
nator is connected to Local Explanatory Components located on several low-power computers,
each acting as a local expert in the knowledge domain covered by its associated device. This
allows the process to be decentralized, in the sense that the knowledge of the system is dis-
tributed among various experts. Note that contrary to our previous work[2], we use D-CAN
instead of D-CAS (where Simulation replaces Negation). The motivation for this change is that
cyber-physical systems can not simply deny an observation but instead can run a simulation.
Since we are considering a generalization to other domains here, this modification is irrelevant,
hence the use of D-CAN.



Algorithm 1: The D-CAN algorithm
Input: A request (P, N)
Result: A conflict-solving process
1 responsible < locateResponsible(P);
2 while responsible # self do

3 if responsible = null then
4 Backtrack() ;
5 end
6 answer = responsible.investigate((P,N)) ;
7 switch Answer do
8 case ABDUCTION do
9 (P,N) < Answer.Hypothesis ;
10 responsible « locate(P) ;
11 end
12 case GIVE UP do
13 ‘ Backtrack();
14 end
15 case NEGATION do
16 assessTrue(Answer.Action) ;
17 Conflict < findConsequences() ;
18 end
19 end
20 end

3. Application to the examples

To illustrate how D-CAN can fare in real-life situation, we consider its application to the two
examples presented in the introduction of this paper.

3.1. Playing the examples

For the car crash example, a possibility of a mental D-CAN unraveling is presented in Table 1:
the successive calls between agents are represented, as well as the content of these calls, i.e. a
conflict-like object. In this example, the trace shows the following discussion: the driver first
thinks that the car failed to stop correctly, which might indicate a problem with the manufacturer
M. The latter conducts internal examination but rules out the possibility of a mechanical or a
software failure. The driver is then asked for more details about the situation, to find another
cause for the crash. She thus indicates that the area was not correctly lit, which triggers an
inquiry with the local authorities L. Note that the intensity of conflicts proposed by abductive
reasoning is lower than that of the incoming conflict. This gap translates the uncertainty
regarding the outcome of abduction. In addition, it prevents from ending up considering causal
chains that are too long: after a number of abductive hypotheses, a low intensity prevent the



Sender Target Content Comments

External Coordinator  (crash, -50) Initial request
Coordinator D (crash, -50) Routing

D Coordinator  (car_no_stop, -45) Abductive reasoning
Coordinator M (car_no_stop, -45) Routing

M M (software_issue, -40) Abductive reasoning

M M (-software_issue, -40) No problem found

M Mg (mechanical_issue, -40) Other Abductive hypothesis
Mg M (-mechanical_issue, -40) No problem found

M Coordinator ~ (-car_no_stop, -45) No problem found
Coordinator D (crash, -50) Asking again

D Coordinator ~ (-light, 40) Second hypothesis
Coordinator L (-light, 40) Inquiring Local authorities

Table 1
Successive calls in the example of the car crash

conflict to get propagated. In case he/she wants more information, the coordinator can ask
again with more intensity, which will propagate the conflict further.

Sender Target Content Comments

External Coordinator (crime, -50) Initial request
Coordinator Suspect (crime, -50) Routing

Suspect Coordinator (fake_news, -45) Abductive Reasoning
Coordinator Social Media Company (fake_news, -45) Routing

Social Media Company  Coordinator (- fake_news, -45) Giving up

End of the first try. Trying again, with more intensity...

External Coordinator (crime, -80) Initial request
Coordinator Suspect (crime, -80) Routing

Suspect Coordinator (fake_news, -75) Abductive Reasoning
Coordinator Social Media Company (fake_news, -75) Routing

Social Media Company  Coordinator (hate_group, -70) Abduction
Coordinator Police (hate_group, -70) Routing

Table 2
Successive calls in the example of the fake-news crime

The second example, the fake-news-related crime, illustrates another possibility of D-CAN.
As necessities encode the intensity of a conflict and the underlying request, it is possible that
this intensity is not high enough to trigger some possibilities: think, for instance, of a test that
would require a considerable amount of work, or an information one of the agents is not keen
on disclosing. If the problem to solve appears minor, it might be better not to consider doing
this test or revealing sensible information, as it would not be worth the trouble. In this case, the
reasoning explores other branches of the reasoning first. This is what happens in the rationale
exposed in Table 2: as it is costly for the social network company to investigate and disclose
personal information, at first it does not answer the request for more information about the fake



news. However, as no other branch is found in the rationale, the process can be re-launched,
this time with a higher intensity, which will be sufficient to provoke a reaction from the social
media company. Then, the reasoning can go on and, for instance, the police may be called
to acquire more information about the original posters of the hate group on the social media
platform.

3.2. A tree representation of reasoning

The main advantage of using D-CAN in deliberative discussions is normalization: all inquiries
and relations are represented using the same grammar of predicates and necessities, as do agents’
beliefs and reasoning. Therefore, it is possible to transcribe the reasoning and represent every
step by a tree graph, whose nodes represents call. Figure 2 illustrates this by showing the tree
representing the rationale of the car crash example detailed in Table 1. The tree visualization
reads from left to right, and top to bottom. It shows each request to a different expert agent,
the different examined conflicts and the outcomes of the calls. This visualization tool offers an
option to display an interpretable description and keep a track of the different calls and conflicts,
retracing the entire reasoning.
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Figure 2: The tree representation of the D-CAN process for the example of the car crash.

4. Perspectives and conclusions

We propose a new approach on multi-agent exploration of causal chains for policy-making
based on an existing process for smart-home systems, D-CAN. We use two basic but realistic
examples to illustrate the ability of D-CAN to coordinate requests and formalize interactions,
which allows to generate visualization of the reasoning.

This work can be considered as preliminary, as it is still in very early stage and many issues
have not been addressed yet. For instance, we modeled agents in a simple manner to keep
the minimal aspect of D-CAS. Thus, we represent requests as simple conflict-like objects and



agent’s knowledge as a collection of instantiated predicates and necessities. While powerful and
efficient in the case of smart home devices, this representation can prove insufficient for human
agents, where other variables can be taken into consideration: deception, genuine mistakes
and misunderstanding are part of any human organization. While D-CAN helps tackling the
third of these issues, understanding how to support handling the former two remains for future
development
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