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Abstract
We present VMT-LIB, a language for the representation of verification problems of invariant
and linear-time temporal properties on infinite-state symbolic transition systems. VMT-LIB
is developed with the goal of facilitating the interoperability and exchange of benchmark
problems among different verification tools. The VMT-LIB language an extension of the
standard SMT-LIB language for SMT solvers, from which it inherits the clean semantics and
the many available resources. In this paper we describe the syntax and semantics of VMT-LIB,
and present a set of open-source tools to work with the language.
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1. Introduction
We call Verification Modulo Theories the problem of verifying invariant and linear-time
temporal properties on infinite-state symbolic transition systems described with first-
order formulas. The VMT problem has received a lot of attention in recent years, also
thanks to the enormous growth and success of Satisfiability Modulo Theories. In fact, the
availability of strong SMT solvers paved the way to a number of approaches, e.g. Bounded
Model Checking and k-induction for infinite-state systems [1, 2, 3], model checking using
first-order interpolation [4, 5, 6], predicate abstraction and refinement [7, 8, 9], implicit
predicate abstraction [10], various extensions of IC3 [11, 12, 13, 14, 15, 16], and approaches
focused on Constrained Horn Clauses [17] or on parametrized systems [18]. In turn, these
VMT approaches led the way to the solution of more extended problems, for example
considering continuous time dynamic [19, 20, 21, 22] or temporal logic satisfiability
modulo theory [23, 24, 25].

It is increasingly important to have a common language that allows the sharing of
benchmarks and the comparison between verification tools. In this paper we describe
VMT-LIB, a language for the representation of verification problems of invariant and
linear-time temporal properties on infinite-state symbolic transition systems. VMT-
LIB was designed with the main goals of having a clear semantics and being simple to
use (i.e. to parse and generate) for verification tools, with the aim of facilitating the
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interoperability among different tools and the collection of verification benchmarks for
infinite-state systems.

VMT-LIB was developed as an extension of the standard SMT-LIB [26] language
for SMT solvers, by exploiting the capability of SMT-LIB of attaching metadata to
terms and formulas via annotations. In particular, a valid VMT-LIB file is also a valid
SMT-LIB file, and the elements of the problem (e.g. the initial condition, the transition
relation) are represented as SMT-LIB formulae. By building on top of SMT-LIB, we
inherit a clean and general formal framework, together with a number of theories of
interest. Furthermore, this choice allows us to reuse all the libraries for manipulating
SMT-LIB formulas that are available for various languages (e.g. [27, 28, 29]). Besides
these generic libraries, we have also developed a set of tools to work with the language,
including converters to and from other formats and formalisms (including Aiger, BTOR
and Constrained Horn Clauses). All the tools are open source and available at the
VMT-LIB webpage [30], together with a collection of benchmarks for various theories.
VMT-LIB is supported by several tools, e.g. nuXmv [31], Euforia [16], AVR [32], and
it has been used as a benchmark format in several publications over the last few years
(e.g. [33, 34, 32, 35, 36]).

Related work. Compared to other similar approaches, VMT finds its main advantage in
being built on top of SMT-LIB, offering to specify the formulas describing the verification
problem directly in SMT.

VMT-LIB is similar in spirit to the Aiger [37] language for finite-state systems, and
to the BTOR [38] language for word-level systems with arrays. Both were created with
the same purpose, i.e. simple language, easy to parse and generate, a precise and simple
semantics. However, BTOR is based on a generalization of Aiger, focused on word-level
representation of finite-state transition systems. While BTOR appears to be less suitable
to be extended to general support for first-order theories, VMT-LIB supports arbitrary
background SMT theories, including e.g. linear and nonlinear arithmetic, uninterpreted
functions, and quantifiers.

Compared to the SMV language1 or the intermediate language for model checking
of [39], currently under development, VMT-LIB is a lower-level language, focusing on
simplicity and interoperability of tools, and hence sacrificing readability and the richer
structure of the higher-level languages. For exammple, in contrast to SMV, which features
reusable modules, VMT-LIB only considers flat transition systems. On the positive side,
while in the SMV language the theories are “hardcoded”, in VMT-LIB it is possible to
directly reuse the theories available in SMT-LIB (and hence its future extensions).

Also the Numerical Transition Systems (NTS) format and the related NTS-LIB library
[40, 41] are quite related to VMT-LIB. An NTS is an extended state machine representing
a control-flow graph, where edges are annotated with arithmetic formulas. As for SMV,
compared to VMT-LIB, the first-order theories are limited and hardcoded, while the
NTS-LIB format provides a native support for the control-flow graph structure (which
must be instead encoded in VMT-LIB).

1Or, more properly, the extension of the SMV language processed by the nuXmv model checker.
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Constrained Horn Clauses have also been used to model verification modulo the-
ory problems, with a direct encoding in quantified first-order logic modulo theories.
In contrast, VMT-LIB allows to separately represent the model and possibly several
properties.

Structure of the paper. The rest of the report is structured as follows. After providing
the necessary theoretical background in §2, we describe the core VMT-LIB syntax in
§3, and its semantics in §4. In §5 we describe an extension to deal with LTL properties.
In §6 we describe a set of open-source tools that we have developed to work with the
language. Finally, we conclude in §7.

2. Theoretical Background and Definitions
Our setting is many-sorted first order logic. We use the standard notions of theory,
satisfiability, validity, and logical consequence. We refer to the SMT-LIB specifications [26]
for more details. We denote generic theories as 𝒯 . We write 𝜙 |=𝒯 𝜓 to denote that the
formula 𝜓 is a logical consequence of 𝜙 in the theory 𝒯 ; when clear from context, we
omit 𝒯 and simply write 𝜙 |= 𝜓.

We refer to 0-arity predicates as Boolean variables, and to 0-arity uninterpreted
functions as (theory) variables.

Given a set of variables 𝑋, a signature Σ, a domain 𝑀 , an interpretation function ℐ of
the symbols in Σ on the domain 𝑀 , an assignment 𝜎 to the variables in 𝑋 on the domain
𝑀 , and a Σ-formula 𝜑(𝑋) with free variables in 𝑋, the satisfaction relation ⟨𝑀, ℐ⟩ |= 𝜑
is defined in the usual way.

For each variable 𝑥, we assume that there exists a corresponding variable 𝑥′, called the
primed version of 𝑥. If 𝑋 is a set of variables, 𝑋 ′ is the set obtained by replacing each
element 𝑥 with its primed version (𝑋 ′ = {𝑥′ | 𝑥 ∈ 𝑋}). 𝜙′ is the formula obtained by
replacing each occurrence variable in 𝜙 with the corresponding primed.

In the following, the signature Σ and the theory 𝒯 are implicitly given. A transition
system (TS) 𝑆 is a tuple ⟨𝑋, 𝐼(𝑋), 𝑇 (𝑌,𝑋,𝑋 ′)⟩ where 𝑋 is a set of state variables, 𝐼(𝑋)
is a formula representing the initial states, and 𝑇 (𝑌,𝑋,𝑋 ′) is a formula representing the
transitions, where 𝑌 is a set of input variables.

3. Syntax
VMT-LIB exploits the capability offered by the SMT-LIB language of attaching metadata
to terms and formulas in order to specify the components of the transition system and
the properties to verify. More specifically, we use the following SMT-LIB annotations:

:next name is used to represent state variables. For each variable 𝑥 in the model, the
VMT-LIB file contains a pair of variables, 𝑥𝑐 and 𝑥𝑛, representing respectively the
current and next version of 𝑥. The two variables are linked by annotating 𝑥𝑐 with
the attribute :next 𝑥𝑛. All the variables that are not in relation with another by
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means of a :next attribute are considered inputs. Note that :next must define an
injective function (i.e. it is an error if there are two variables with the same :next
value), and that the names of the variables are not important.

:init is used to specify the formula for the initial states of the model. This formula
should contain neither next-state variables nor input variables. Multiple formulas
annotated with :init are implicitly conjoined. As a convenience, the annotation
can also use a “dummy” value true.

:trans is used to specify the formula for the transition relation. As in the case for
:init, multiple :trans formulas are conjoined together, and also in this case the
annotation can be written as :trans true.

:invar-property idx is used to specify invariant properties, i.e. formulas of the form
G𝑝, where 𝑝 is the formula annotated with :invar-property. The non-negative
integer idx is a unique identifier for the property.

:live-property idx is used to specify an LTL property of the form FG𝑝, where 𝑝 is
the formula annotated with :live-property. The non-negative integer idx is a
unique identifier for the property.

In a VMT-LIB file, only annotated terms and their sub-terms are meaningful. Any
other term is ignored. Moreover, only the following commands are allowed to occur in
VMT-LIB files: set-logic, set-option, declare-sort, define-sort, declare-fun,
define-fun.(For convenience, an additional (assert true) command is allowed to
appear at the end of the file.)
The following example shows a simple model in the syntax of nuXmv [31] on the left,
and its corresponding VMT-LIB translation on the right.

nuXmv VMT

MODULE main
-- declaring the state
-- variable x
VAR x : integer;
IVAR b : boolean;
INIT x = 1;
TRANS
next(x) = b ? x + 1 : x;
INVARSPEC x > 0;
LTLSPEC FG x > 10;

; declaring the state variable x
(declare-const x Int)
(declare-const x.next Int)
(define-fun sv.x () Int (! x :next x.next))

(declare-const b Bool)
(define-fun init () Bool

(! (= x 1) :init))
(define-fun trans () Bool

(! (= x.next (ite b (+ x 1) x)) :trans))
(define-fun p1 () Bool

(! (> x 0) :invar-property 1))
(define-fun p2 () Bool

(! (> x 10) :live-property 2))

Since the SMT-LIB format (and thus also the VMT-LIB one that inherits from SMT-
LIB) does not allow to annotate the declaration of variables, it is a good practice to
insert immediately after the declaration of the variables a set of defines to specify the
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relations among variables. See for instance the define sv.x in the example above that
introduces the relation between x and x.next.

4. Semantics
In this section we provide the semantics for the language.

States and Paths

Given a transition system 𝑆 =̇ ⟨𝑋, 𝐼(𝑋), 𝑇 (𝑌,𝑋,𝑋 ′)⟩ over a background theory 𝑇 with
a signature Σ and an interpretation ℐ, a state 𝑠 of 𝑆 is an interpretation of the state
variables 𝑋. A (finite) path of 𝑆 is a finite sequence 𝜋 =̇ 𝑠0, 𝑠1, . . . , 𝑠𝑘 of states, with the
same domain and interpretation of symbols in the signature Σ, such that ℐ, 𝑠0 |= 𝐼(𝑋)
and for all 𝑖, 0 ≤ 𝑖 < 𝑘, ℐ, 𝑠𝑖, 𝑠

′
𝑖+1 |= ∃𝑌.𝑇 (𝑌,𝑋,𝑋 ′). We say that a state 𝑠 is reachable

in 𝑆 iff there exists a path of 𝑆 ending in 𝑠. Note that, since the interpretation ℐ is
unique, uninterpreted function and predicate symbols are rigid, i.e. they are not allowed
to change across states.

Invariant Properties

An invariant property 𝑝 is a symbolic representation of a set of states that must be a
superset of the reachable states of 𝑆. In other words, 𝑆 |= 𝑝 iff ∀𝑠.𝑠 is reachable in 𝑆,
𝑠 |= 𝑝. Consequently, a counterexample for 𝑝 is a finite path 𝑠0, . . . , 𝑠𝑘 of 𝑆 such that
𝑠𝑘 |= ¬𝑝.

Live Properties

A live property 𝑝 represents a set of states that is eventually invariant. In LTL syntax,
it would be denoted with FG𝑝. More formally, 𝑆 |= 𝑝 iff for all paths 𝑠0, . . . , 𝑠𝑖, . . .,
∃𝑖.∀𝑗 > 𝑖.𝑠𝑗 |= 𝑝. (Note that finite paths 𝑠0, . . . , 𝑠𝑘 vacuously satisfy a live property,
because we can always take 𝑖 = 𝑘 to satisfy the previous definition.) Consequently, a
counterexample for 𝑝 is an infinite path 𝑠0, . . . , 𝑠𝑖, . . . of 𝑆 such that ∀𝑖.∃𝑗 > 𝑖.𝑠𝑗 |= ¬𝑝.

5. LTL Properties, Invariant Constraints and Fairness
Conditions

Since one of the main goals of VMT-LIB is that of simplicity, the language as presented
above, which we call the core VMT-LIB language, does not provide any direct support
for high-level constructs such as specifications written in full LTL, invariant constraints
or fairness conditions. However, this is not a limitation in terms of expressiveness, as all
such constructs can be easily encoded in VMT-LIB:

LTL properties can be compiled into invariant and/or live properties using standard
algorithms from the literature (e.g. [42, 43, 44]);
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invariant constraints can be straightforwardly embedded into init and trans formulas;

fairness conditions can be embedded into live properties using a symbolic version of
standard degeneralization procedures for Büchi automata (e.g. [45]).

An alternative to the above encodings is that of specifying some extensions to the
core language, by defining specific annotations to represent LTL properties, invariant
constraints and fairness conditions. In particular, we define the following extensions to
the core annotations:

:invar to specify explicit invariant constraints;

:live-property idx can be used to specify more general liveness properties with fairness
conditions in the form FG𝜑1 ∨ . . . ∨ FG𝜑𝑛 (or, equivalently, (GF¬𝜑1 ∧ . . . ∧
GF¬𝜑𝑛−1) → FG𝜑𝑛) by annotating 𝜑1, . . . , 𝜑𝑛 with the same index idx;

:ltl-property idx can be used to specify LTL properties. In order to avoid the
introduction of special syntax for the temporal operators, we model them by
predefining a set of functions from Booleans to Booleans of the form ltl.OP, where
OP is one of the standard temporal operators (i.e. F, G, U, or X). For example, the
formula

G(𝜑 → F(𝜓U𝜉))

can be written as

(! (ltl.G (=> 𝜑 (ltl.F (ltl.U 𝜓 𝜉)))) :ltl-property 1).

We refer to the augmented set of annotations as the extended VMT-LIB language.
From the semantic point of view, these extensions are considered simply as “syntactic
sugar”. This keeps the definitions of §4 simple and concise. From the practical point
of view, however, extensions might still be useful to provide higher-level information
to solvers which might be able to exploit it (e.g. for solvers with built-in support for
LTL specifications it might be more efficient to their native encoding of LTL rather than
rewriting the property upfront). Such considerations are however beyond the scope of
the present document.

6. VMT-LIB Tools
VMT-LIB support in verification tools. The VMT-LIB language is fully supported by
nuXmv [31], a state-of-the-art symbolic model checker for finite- and infinite-state systems.
Recently, the language has been adopted also by the AVR [32] model checker. VMT-LIB is
also the native language of ic3ia [46], an efficient open-source model checker for invariant
and LTL properties, as well as its recent extensions ProphIC3 [34] (for discovering
universally quantified invariants over arrays) and Lambda [35] (for the verification of
parametric systems).
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Tools for working with VMT-LIB. We provide a set of tools (mainly written in the
Python programming language) to work with the VMT-LIB language. They are all
available from the VMT-LIB webpage [30]. Currently, the following tools are provided:

vmt.py: parsing and printing of transition systems in VMT-LIB.

vmt2btor.py: converter from VMT-LIB to the BTOR format.

btor2vmt.py: converter from BTOR to VMT-LIB.

vmt2horn.py: converter from VMT-LIB to Constrained Horn Clauses.

vmt2nuxmv.py: converter from VMT-LIB to the SMV dialect of nuXmv.

vmtext2core.py: a tool to convert an extended VMT-LIB file to a core VMT-LIB file,
by performing the rewritings described at the end of §3.

Moreover, further converters to VMT-LIB are available through nuXmv and ic3ia. In
particular, ic3ia provides a horn2vmt tool for converting Constrained Horn Clauses to
VMT-LIB, whereas nuXmv can be used to convert from VMT-LIB to Aiger and vice
versa.

7. Conclusions and Future Work
We have presented VMT-LIB, a language and a set of tools for the specification of verifi-
cation problems over infinite-state transition systems. VMT-LIB is aimed at simplicity
and interoperability, and is built on top of SMT-LIB, from which it inherits the formal
foundations, the syntax and the semantics. It has been adopted by several verification
engines, and comes with a library of benchmark and a set of scripts for conversion between
several other formats.

Differently from the SMT-LIB language, VMT-LIB does not support instructions to
the solvers. A python-based programmatic framework, called pyVMT [47], in the style of
pySMT [27], is being developed to overcome this limitation. In the future, we plan to
extend the format to support the representation of counterexample traces for violated
properties (which is a non-trivial task in the case of infinite-state systems), and possibly
also proof certificates for verified properties.
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