
Drove: Tracking Execution Results of Workflows on Large
Data
Sadeem Alsudais

Supervised by Chen Li
Department of Computer Science, UC Irvine, CA 92697, USA

Abstract
Data analytics using workflows is an iterative process, in which an analyst makes many iterations of changes, such as
additions, deletions, and alterations of operators and their links. In many cases, the analyst wants to compare these workflow
versions and their execution results to help in deciding the next iterations of changes. Moreover, the analyst needs to know
which versions produced undesired results to avoid refining the workflow in those versions. To enable the analyst to get an
overview of the workflow versions and their results, we introduce Drove, a framework that manages the end-to-end lifecycle
of constructing, refining, and executing workflows on large data sets and provides a dashboard to monitor these execution
results. In many cases, the result of an execution is the same as the result of a prior execution. Identifying such equivalence
between the execution results of different workflow versions is important for two reasons. First, it can help us reduce the
storage cost of the results by storing equivalent results only once. Second, stored results of early executions can be reused for
future executions with the same results. Existing tools that track such executions are geared towards small-scale data and
lack the means to reuse existing results in future executions. In Drove, we reason the semantic equivalence of the workflow
versions to reduce the storage space and reuse the materialized results.

Keywords
workflow version control, workflow reproduciblity, semantic workflow equivalence verification

1. Introduction
Data-processing workflows are extensively used by
analysts to extract and analyze data over large volumes.
Texera is an open source system we have been
developing in the past years that provides a GUI-based
interface for users to construct a workflow as a DAG of
operators, refine and fine-tune the workflow, execute
it, and examine the final results [1]. The users may
perform multiple iterations of refinement, execution,
and examination before producing the final version
of the workflow [2, 3]. A refinement of the workflow
creates a new version. Tracking different versions of a
workflow and its produced results is a growing area of
interest [4, 5, 6, 7, 8, 9]. Due to the iterative process in
data analytics, one would be interested in looking at the
past execution results to get answers for the following
questions.

Q1. Which workflow versions generated these
results?
Q2. How did the differences between two versions
affect their results?

Motivation. Figure 1 illustrates an example of an anal-
ysis workflow that evolved into three versions. In the

Proceedings of the VLDB 2022 PhD Workshop, September 5, 2022.
Sydney, Australia.
Envelope-Open salsudai@uci.edu (S. Alsudais)
Orcid 0000-0003-3928-690X (S. Alsudais)

© 2022 Copyright (C) 2022 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

regex:"climate"scan:tweet

label:relative?

wordcloud
scan:state

join:location

filter:label=1

filter:label=0unnest:coordinate

aggregate:state choropleth

scatterplot

(a) Version a: initial construction.

regex:"climate"scan:tweet

label:relative?

wordcloud
scan:state

join:location

filter:label=1

filter:label=0
filter:state=CA

unnest:coordinate

aggregate:state choropleth

scatterplot

Version ChangeDuplicate Result

(b) Version b: after adding a filter operator (highlighted
in green). The operator highlighted in blue has the
same results of the corresponding operator in version
a.

regex:"climate"scan:tweet

label:relative?

wordcloud
scan:state

join:location filter:label=1

filter:label=0filter:state=CA unnest:coordinate

aggregate:state choropleth

scatterplot

Duplicate Result Version Change

(c) Version c: after deleting the filter operator and adding
it after the join operator. The two operators high-
lighted in blue have the same results of the corre-
sponding operators in version a and version b.

Figure 1: Multiple versions of a workflow for tweet analysis
and their duplicate results of different executions.

example, a data analyst is interested in the tweets whose

mailto:salsudai@uci.edu
https://orcid.org/0000-0003-3928-690X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

content contains the keyword climate. In the first ver-
sion shown in Figure 1a, she wants to look at the most
discussed topics in a “wordcloud” visualization. She also
uses an operator to further label the tweets as related to
climate or not, using labels “related” and ”unrelated”. She
wants to visualize the “related” tweets as a choropleth
map that aggregates the tweet count by each state. She
wants to visualize those “unrelated” tweets as a scatter-
plot by their location. After running this version, she
notices that the most associated topic is wildfire from
the wordcloud operator. Since wildfires are common
in California, she decides to look at the spatial distribu-
tion of the tweets in this state. Hence, she refines the
workflow to version b by adding a filter in the California
region, as shown in Figure 1b. After she runs this version,
she notices that adding the region filter caused the choro-
pleth map to highlight only California. So she decides to
do the filter for the scatterplot result only, and generates
version c in Figure 1c. Now, she wants to compare the
scatterplots of version a and version c to examine the
density of “unrelated” tweets in California versus the
entire US.
This example shows the importance of providing a

dashboard for managing the different workflow versions
and their execution results. In this work, we seek to
provide such a dashboard to guide the analytics tasks.
Our solution. Oneway is to store eachworkflow version
and its execution results [2, 3]. Its main limitation is that
there can be many versions and executions of a workflow,
and these results can be large. Thus this approach can
consume a lot of storage space [10]. For example, in
one deployment of Texera, it recorded 2,039 executions
from 91 different workflows in 75 days. Storing all these
execution results required a lot of space.
To address this challenge, we want to develop a solu-

tion that leverages the fact many of these results can be
equivalent due to the iterative analytic process [3, 6], as
illustrated in Figure 1. We assume the input relations
between the workflow versions to be the same and de-
terminism of the operators. We present Drove, a holistic
approach to managing the end-to-end lifecycle of orches-
trating, refining, and executingworkflows and examining
their corresponding results. It is developed in Texera to
provide the means for the user to conduct the analytics
and efficiently store and reuse the versions and results.
Related work. Existing solutions for workflows [11, 10]
rely on identifying the exact match of the entire DAG
or a sub-DAG of a workflow to reuse materialized re-
sults. These solutions cannot solve the case where two
workflows are semantically equivalent but have differ-
ent structures. The solution in [12] verifies the semantic
equivalence of two Spark workflow jobs, and it supports
a limited number of operators such as aggregation. It
cannot verify the equivalence of the workflows in Fig-

ure 1. Another large body of work is about checking
the semantic equivalence of two SQL queries, such as
UDP [13], Equitas [14], and Spes [15]. One may want
to solve our problem by treating a workflow as a SQL
query, possibly with UDF functions, then using these
solutions. Unfortunately, these solutions have certain
restrictions on the type of supported operators, such as
relational operators and a restrictive class of user-defined
function (UDF) operators. They cannot support those op-
erators that are common in workflows, such as labeling
and unnest in the running example.

Our goal is to develop Drove to overcome these limita-
tions. In particular, it should find semantic equivalence of
workflows even if they have different structures, and sup-
port a variety of operators including relational operators
and other types such as UDFs.

Version Control
Manager

edits

submit job
previous
versions

?

execute

ve
rs

io
ns

m
et

ad
at

a

Find
Segments

Verify
Equivalence

?

conditions
Analyzer Execution

Manager

Execution

Engine (Amber)
CatalogDB

re
su

lts

Figure 2: Drove’s Tracking Executions Modules.

2. Drove Overview
Figure 2 depicts an overview of Drove. A user formulates
a data-processing workflow through the UI of Texera.
A workflow is a directed-acyclic graph (DAG) 𝐺 = (𝑉 , 𝐸),
where vertices are operators and edges represent the di-
rection of the data flow. A workflow can have multiple
sink operators, each of which produces its own results.
For each sink operator, we can view the sub-DAG consist-
ing of its ancestors as a query that produces the results in
this sink. Figure 3 shows the three sub-DAGs correspond-
ing to the three sink operators in the running example
(version a).

Sub-DAG2

Sub-DAG1

Sub-DAG3

Figure 3: Sink operators and their corresponding sub-DAGs.

Drove uses a catalog to store the following informa-
tion: (1) workflows; (2) their versions and the differences
between two adjacent versions; (3) metadata about work-
flow executions, such as version, the start and end times,
states, etc. We also store the sink-operator results of each
execution in a database. To reduce the storage space, the
system allows users to delete the results of some of the ex-
ecutions. The Version Control Manager is in charge
of the workflow versions and their creation, storage, and
retrieval. When a workflow with a version 𝑣𝑛 is modified,
a new version is created that includes those changes, i.e.,
𝑣𝑛+1 = 𝑣𝑛 + Δ. The changes Δ can be any combination of
DAG operations such as addition of a new operator, dele-
tion of an existing operator, substitution of an operator,
property editing of an operator, and addition or deletion
of a link. For the remaining of this discussion, when we
refer to a version, it is a version that has been executed,
because we are interested in their results. For each exe-
cuted version, we keep at most one execution result. In
the case where a version is executed multiple times, we
only store the result of the first execution, and reuse for
the later executions of the same version. A workflow
submitted by the user is executed by the backend engine
called Amber [16]. The Analyzer checks the semantic
equivalence of DAGs. More details about those modules
will be explained shortly.

2.1. Answering Workflows Using
Materialized Results

When the user submits a version of the workflow, the
Execution Manager tries to see if one of the previous
execution results can be used to answer the workflow.
For instance, when the user submits the version 𝑣𝑐 in the
running example, we try to find any reusable results from
the executions of 𝑣𝑎 and 𝑣𝑏. In particular, consider the
wordcloud sink 𝑤𝑐 operator in 𝑣𝑐 and its corresponding
sink operator 𝑤𝑏 in 𝑣𝑏. Notice that the sub-DAG of 𝑤𝑐
and the sub-DAG of 𝑤𝑏 have the same structure. Such
structural similarities can be identified using existing
techniques [11]. In this case, we can use the results of 𝑤𝑏
as the result of 𝑤𝑐.

Now consider the scatterplot sink 𝑠𝑐 operator in 𝑣𝑐 and
its corresponding sink operator 𝑠𝑏 in 𝑣𝑏. The sub-DAG of
𝑠𝑐 and the sub-DAG of 𝑠𝑏 have different structures. We
push the pair of these two sub-DAGs to the Analyzer to
verify their equivalence. Based on the positive answer
from the Analyzer, the Execution Manager decides to
reuse the results of 𝑠𝑏 to answer 𝑠𝑐.
Next we consider the choropleth sink operator ℎ𝑐 in

𝑣𝑐 and its corresponding sink operator ℎ𝑏 in 𝑣𝑏. The sub-
DAG of ℎ𝑐 and the sub-DAG of ℎ𝑏 have different struc-
tures. We push the pair of these two sub-DAGs to the
Analyzer to verify their equivalence. Since the answer
from the Analyzer is negative, the Execution Manager

cannot reuse the results of ℎ𝑏 to answer ℎ𝑐. In this case, it
looks for an earlier version, 𝑣𝑎. It compares the sub-DAG
of ℎ𝑎 with its corresponding one from 𝑣𝑎. The Analyzer
gives a positive answer this time, so we can reuse the
result of ℎ𝑎 to answer ℎ𝑐.

In general, for every sink in the execution request of a
workflow, we do the following. For each previous version
and the corresponding sink operator, the Execution Man-
ager first identifies if the structure of the sub-DAGs are
similar, otherwise it contacts the Analyzer to verify their
semantic equivalence. This process terminates when the
Analyzer confirms an equivalence between the current
sink and the sink of one of the earlier versions.

Open Problems. The number of versions for a single
workflow can be large. For instance, in a Texera pro-
duction system, some workflows can have more than 80
executed versions. Checking the semantic equivalence
between a sink operator with those of all the previous ver-
sions can have a high overhead. One interesting question
that we are exploring is deciding when to stop comparing
the version of the execution request with prior ones in-
stead of comparing with all the previous versions without
finding any positive semantic equivalent match. We plan
to devise an objective function to decide on the fly when
to stop the comparison considering a few factors, such
as the degree of differences between the versions, the
size of the processed data, the expense of the execution
job and other indicators. Another direction is to avoid
unnecessary equivalence verification by identifying the
structural similarities of the sub-DAGs. For example,
before calling the Analyzer to verify the equivalence of
the sub-DAGs of ℎ𝑐 and ℎ𝑏, we first verify the structural
similarity of the sub-DAG of ℎ𝑐 with an earlier sub-DAG
that has the same structure, i.e. ℎ𝑎. To avoid storing
all the different structures of all workflow versions, we
only keep the structure of the sub-DAG that created the
materialized result first.

2.2. Verifying equivalence between two
DAGs

When the Analyzer receives a pair of DAGs, it needs to
verify their semantic equivalence. We view each DAG a
query, so essentially we want to check the equivalence
of two queries. Notice that checking equivalence of two
queries is undecidable in general [17]. In the literature
there are solutions for queries with certain constraints,
such as UDP [13], Equitas [14], and Spes [15]. Table 1
describes the conditions that need to be satisfied to use
Equitas and Spes to verify set equivalence. In our system
we want to support different kinds of semantics, such as
set semantic, bag semantic, and list semantic, depending
on the needs of the user.
The Analyzer incorporates one of these solutions as

a module called “Equivalence Verifier” (𝐸𝑉). To use this

Table 1
Constraints the query pair should satisfy to use Equitas(♣)
and Spes(♢) for set equivalence verification.
Condition/Operator SPJ Outer

Join
Agg (count,
sum, avg)

Agg (max,
min)

Union

Predicate conditions have
to be linear

♣ ♢ ♣ ♢ ♣ ♢ ♣ ♢ ♢

The pair should have ex-
actly 0 or 1 of the operator
types

♣ ♣ ♣

Table is not scanned more
than once

♣

Input must be SPJ ♣
The pair is isomorphic ♢ ♢ ♢ ♢
Grouping columns must be
the same

♢ ♢

module, we need to ensure the queries passed to it meet
its constraints. When the pair of DAGs violate the con-
straints, e.g., inclusion of Unnest and Label in the run-
ning example, the Analyzer cannot pass the pair to the
𝐸𝑉. Notice that the two DAGs are isomorphic to each
other except those places with changes. We exploit this
isomorphic mapping to break each DAG into smaller
“segments”. We can reduce the problem of evaluating
the equivalence of entire DAGs to the problem of verify-
ing segment-wise equivalence. The segments start from
the left most changes and end at the right most changes
following the topological ordering of the DAG’s. For
example, Figure 4 shows the pair of DAGs of the scatter-
plot sink operator in versions 𝑣𝑐 and 𝑣𝑏. The minimum
segments are highlighted to show the inclusion of all
the differences between the two versions, i.e., addition
of Filter before Join and removal of Filter after Join in 𝑣𝑏,
and removal of Filter before Join and addition of Filter
after Join in 𝑣𝑐.

maximal
covering
segment

minimum
segment

minimum segment

maximal
covering
segment

isomorphic
mapping

isomorphic
mapping

Figure 4: Minimum segments and maximal covering seg-
ments for the scatterplot sinks in 𝑣𝑏 and 𝑣𝑐.

Once the minimum segment in a version is identified,
the Analyzer expands it in both directions to include as
many operators as possible while they still satisfy the
constraints of the 𝐸𝑉. In other words, the Analyzer aims
to find a maximal covering segment that satisfies the
constraints of the 𝐸𝑉. In the running example, to find a
maximal covering segment for each minimum segment,
we include Scan on the left and Filter on the right. The in-
clusion of these operators does not violate the constraints

of the 𝐸𝑉. Adding Label on the left or Unnest on the right
will violate the constraints. In general, there can be more
than one maximal covering segment.

Given two workflow DAGs, an 𝐸𝑉, and a type of equiv-
alence such as set equivalence, bag equivalence, or list
equivalence, we compute a pair of maximal segments
that cover all the changes between these two DAGs and
satisfy the constraints of the 𝐸𝑉. After that, the Analyzer
passes the two segments as two queries to the 𝐸𝑉 to verify
their equivalence.

2.3. Extending Equivalence Verifiers to
Include Non-relational Operators

It is possible that the minimum segments that contain the
changes do not satisfy the constraints to use an existing
𝐸𝑉s. For instance, in the running example, a change
on the Label operator will result in the operator being
included in the minimum segment. The equivalence of
the two operators in the two versions cannot be verified
by the existing 𝐸𝑉’s because it is a non-relational operator.
In this case, the Analyzer cannot verify equivalence of
the pair. We plan to extend the existing 𝐸𝑉s to overcome
these limitations.

We define the result of a sink operator as a list of tuples
with a specific schema and a possible order. To reason
the semantics of a segment, we represent its results as
⟨Tuple⟩ and ⟨List⟩. ⟨Tuple⟩ represents a single tuple on the
list. ⟨List⟩ represents the entire result list and contains
information about how many times a tuple exists in the
list and the order of the list. ⟨Tuple⟩ and ⟨List⟩ can be
represented using the elements 𝑇, 𝑆, 𝐶, and 𝑂 as follows.

⟨Tuple⟩ 𝑇 ∶∶= 𝐹𝑂𝐿 and 𝑆 ∶∶= 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

⟨List⟩ 𝐶 ∶∶= 𝑆𝑃𝑁𝐹 and 𝑂 ∶∶= 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝑇 is a first-order-logic (FOL) formula that indicates if

an input tuple exists in the output result or not. 𝑆 repre-
sents the set of columns, i.e., the schema of the tuple in
the output result. 𝐶 indicates the cardinality of a tuple in
the entire relation and is represented in a sum-product
normal form (SPNF). 𝑂 contains the columns the list is
ordered in. This result representation allows us to only
use ⟨Tuple⟩ elements when we need the set semantics.
We abstract the operators to show their impact on each
part of the representation in Table 2. We construct the
representation at each operator using its own logic based
on its properties. Finally, to verify if two segments are
equivalent, we ask an SMT solver [18] to verify whether
𝑠𝑒𝑔𝑚𝑒𝑛𝑡1 ≠ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡2 using their representation is satisfi-
able or not.

3. Conclusion and future work
In this work, we introduced Drove, a framework that
manages the end-to-end lifecycle of the execution result

Table 2
Impact of an operator on element of the ⟨Tuple⟩ and ⟨List⟩
representation.

Operator
Representation Order By Label Unnest Replicate

Tuple T
S

List C
O

of a data-processing workflow. Drove includes in its
core a few modules to achieve the tracking of the results.
We presented a few optimizations to reuse previously-
stored results by reasoning the semantics of workflow
versions that produced the results. We showed a unique
technique to decompose a complex workflow DAG to
smaller segments that include the version changes to
verify their equivalence. We also proposed a technique to
capture the semantics of non-relational operators using
a lightweight representation.
We plan to enhance the framework by studying the

following topics. (1) We plan to extend the current pro-
totype to highlight fine-grain differences between a pair
of results. We also plan to include a high-level snapshot
of the different versions and their results to give the user
an overview of the different runs. (2) One challenge in
the framework is to decide the number of versions to
compare the current version with in order to maximize
the chance of reusing earlier results. In the future, we
plan to use a cost-based process to decide the number.
(3) We plan to extend the verification to include contain-
ment relation so that we further reduce the storage and
maximize reuse opportunities. We need a way to iden-
tify a delta query to be run on existing results to answer
the contained version request. (4) We plan to study the
degree of similarity between workflow versions so that
we can quickly identify those with the highest similarity
with the current version.

Acknowledgments
This work is supported by a graduate fellowship from
KSU and partially supported by the National Science
Foundation under the awards III 1745673 and III 2107150
and the Orange County Health Care Agency.

References
[1] Z. Wang, A. Kumar, S. Ni, C. Li, Demonstration

of interactive runtime debugging of distributed
dataflows in texera, VLDB 13 (2020).

[2] H. Miao, A. Deshpande, Provdb: Provenance-

enabled lifecycle management of collaborative data
analysis workflows, IEEE Data Eng. Bull. (2018).

[3] S. Woodman, H. Hiden, P. Watson, P. Missier,
Achieving reproducibility by combining prove-
nance with service and workflow versioning, in:
WORKS’11, 2011.

[4] Y. Zhang, F. Xu, E. Frise, S. Wu, B. Yu, W. Xu, Data-
lab: a version data management and analytics sys-
tem, in: BIGDSE@ICSE’16, 2016.

[5] A. Chen, A. Chow, A. Davidson, A. DCunha,
A. Ghodsi, S. A. Hong, A. Konwinski, C. Mewald,
S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe,
A. Singh, F. Xie, M. Zaharia, R. Zang, J. Zheng, C. Zu-
mar, Developments in mlflow: A system to acceler-
ate the machine learning lifecycle, in: DEEM@SIG-
MOD’20, 2020.

[6] M. Vartak, H. Subramanyam, W. Lee,
S. Viswanathan, S. Husnoo, S. Madden, M. Zaharia,
Modeldb: a system for machine learning model
management, in: HILDA@SIGMOD’16, 2016.

[7] Klaus Greff, Aaron Klein, Martin Chovanec, Frank
Hutter, Jürgen Schmidhuber, The Sacred Infras-
tructure for Computational Research, in: SciPy’17,
2017.

[8] G. Gharibi, V. Walunj, R. Alanazi, S. Rella, Y. Lee,
Automated management of deep learning experi-
ments, in: DEEM@SIGMOD’19, 2019.

[9] H. Miao, A. Li, L. S. Davis, A. Deshpande, Towards
unified data and lifecycle management for deep
learning, in: ICDE’17, 2017.

[10] I. Elghandour, A. Aboulnaga, Restore: Reusing
results of mapreduce jobs, VLDB’12 (2012).

[11] F. Nagel, P. A. Boncz, S. Viglas, Recycling in
pipelined query evaluation, in: ICDE’13, 2013.

[12] S. Grossman, S. Cohen, S. Itzhaky, N. Rinetzky,
M. Sagiv, Verifying equivalence of spark programs,
in: CAV’17, 2017.

[13] S. Chu, B. Murphy, J. Roesch, A. Cheung, D. Suciu,
Axiomatic foundations and algorithms for deciding
semantic equivalences of SQL queries, VLDB’18
(2018).

[14] Q. Zhou, J. Arulraj, S. B. Navathe, W. Harris, D. Xu,
Automated verification of query equivalence using
satisfiability modulo theories, VLDB’19 (2019).

[15] Q. Zhou, J. Arulraj, S. B. Navathe, W. Harris,
J. Wu, SPES: A two-stage query equivalence verifier,
CoRR’20 (2020).

[16] A. Kumar, Z. Wang, S. Ni, C. Li, Amber: A debug-
gable dataflow system based on the actor model,
VLDB 13 (2020).

[17] A. Mostowski, Impossibility of an algorithm for
the decision problem in finite classes, Journal of
Symbolic Logic 15 (1950).

[18] L. M. de Moura, N. S. Bjørner, Z3: an efficient SMT
solver, in: TACAS’08, 2008.

	1 Introduction
	2 Drove Overview
	2.1 Answering Workflows Using Materialized Results
	2.2 Verifying equivalence between two DAGs
	2.3 Extending Equivalence Verifiers to Include Non-relational Operators

	3 Conclusion and future work

