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Abstract

The goal of this thesis is to introduce a new design for building federated query optimizers, based on machine learning. We
propose a modular and flexible architecture, allowing a federated query optimizer to integrate with any database system that
supports SQL, with close-to-zero engineering effort. By observing the performance of the external systems, our optimizer
learns and builds cost models on-the-fly, enabling federated query optimization with negligible communication with the
external systems. To demonstrate the potential of this research plan, we present a prototype of our federated query optimizer
built on top of Spark SQL. Our implementation effectively accelerates federated queries, achieving up to 7.5x better query
execution times compared to the vanilla implementation of Spark SQL.
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1. Introduction

In the complex infrastructure of the modern “big data”
ecosystem, data are usually distributed across multiple,
diverse database systems. This has led to the develop-
ment of federated query engines that enable users to
simultaneously query multiple databases, using a unified,
SQL-based interface. For instance, it is common for a
data scientist to issue a query that joins a "small” table in
a relational database with a bigger table that resides in
a distributed data lake, like Amazon S3! or Delta Lake?.
A number of federation engines developed by some of
the largest database vendors, including Athena Federated
Query?, BigQuery*, Spark SQL [1], Presto’® or Dremio®
over the last years, provide clear evidence for the impor-
tance of federated query engines. Taking into account
the heterogeneity of the underlying systems that a federa-
tion engine integrates with, optimizing federated queries
is one of the most challenging tasks for these systems.
Usually, a federated query engine follows a one-size-fits-
all approach, to connect with as many external database
systems as possible. In summary, the query lifecycle in
most federation systems (e.g. Spark, Presto) is quite sim-
ple. First, the federated engine transfers all the tables and
views included in the query from the external database
systems to federation execution engine through the net-
work. A number of specific rule-based optimizations, e.g.
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subquery pushdown, might also be applied. Finally, the
resulting query plan is executed in the federation engine.

Ideally, an efficient optimizer should be able to gener-
ate more sophisticated federated query plans, like in tra-
ditional databases. For example, instead of just pushing
down selections to the external systems, it should con-
sider pushing down larger parts of the federated query,
like a join sub-tree. However, the heterogeneous na-
ture and architectural differences of the external systems
make the task of deciding which parts of the query to push
down and where particularly complex. One of the main
challenges is the complexity of estimating the subquery
execution cost in an external system. This is a tricky
task, for a number of factors. For example, due to the
lack of access to statistics in the remote database system,
estimating the local execution cost (in the external sys-
tem) and result size is very challenging. Furthermore, the
larger search space that derives from the additional plan-
ning decisions (i.e. where to execute each operator) due
to federated execution, makes optimization even more
challenging.

As a result, the majority of federation engines apply
very few rule-based optimizations (i.e., selection push-
down), discarding optimization opportunities that would
leverage the full potential of the external systems. While
there have been some attempts to develop wrappers [2, 3]
and custom cost models [4] to enable more fine-grained
federated query plan generation, these approaches face
the following challenges. First, developing custom wrap-
pers and cost models for new systems is a tedious task,
making the integration with new systems extremely dif-
ficult. Second, the communication with external systems
to obtain cost estimates can slow optimization down,
something known as cost of costing [5]. Taking into ac-
count these challenges, we try to answer the following
question: Can we develop a generic design for federated
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query optimizers that integrate with any external database
system with 1. close-to-zero engineering effort and 2. mini-
mal communication overhead during optimization?

To answer this question, we present an engine-
agnostic approach for federated query optimization, that
copes with the heterogeneity of the underlying infras-
tructure. Using machine learning, our solution allows
the optimizer to learn the performance of the external
database systems, without relying on any system-specific
knowledge. Instead, it treats the external systems as black
boxes. The key idea behind our approach is the following.
In contrast to previous approaches that depend on cost
estimates obtained from external systems (e.g. by parsing
the output of EXPLAIN clause [6]), we use a unified query
vector model, to represent queries in the vector space.
Using this model, query trees can be simply transformed
to vectors, and fed to various machine learning models
in order to learn and predict the performance of the ex-
ternal systems. We can then leverage these learned cost
models in order to develop a federated query optimizer
that can easily connect to different systems, and has zero
communication cost during optimization. In summary,
our contributions are the following:

« We introduce a machine learning based architec-
ture for federated query optimization that is able
to integrate with any SQL-based database system
with close-to-zero engineering effort.

» We present an implementation of our architecture
on top of Spark SQL and we demonstrate how our
system can effectively optimize federated queries
over multiple systems, with zero communication
overhead.

« We discuss an experimental evaluation that
demonstrates our system’s ability to effectively
learn the performance of the external systems,
while generated federated query plans always
outperform Spark SQL.

The rest of the paper is organized as follows. Section 2
presents some background on federated query optimiza-
tion, as well as a brief overview of the federated query
processing research. Next, we present a prototype and
architecture of a machine learning based federated query
optimizer in Section 3. Then, we present some early ex-
perimental evaluation in Section 4. Finally, in Sections 5
and 6, we conclude and present ongoing and planned
PhD research.

2. Background and Related Work

A federated query contains tables that reside in one, or
multiple external database systems. The corresponding
system is called a federation engine. A federated query

processor follows a similar design to a traditional, single-
engine query processor. The main extension is the ability
to load data from external data sources. In this work,
our main focus will be the optimizer. Federated query
optimization is more complex than traditional query op-
timization, as it has to tackle the challenges that arise
from the heterogeneity of the external systems.
Federated Query Processing. Federated query pro-
cessing is not a new problem, and there has been exten-
sive work over the last few decades [7, 8] that aims at
optimizing queries across diverse data sources. For in-
stance, Garlic [2] introduces a federated query optimizer
based on a cost-based, dynamic-programming approach
that uses data wrappers in order to integrate, and exe-
cute queries across different data sources. Recent works,
like MuSQLE [4] and System-PV [3] present federated
(ak.a. multi-engine) query optimization approaches that
perform both inter- and intra-engine optimizations. A
similar approach based on data wrappers, is followed by
another notable category of systems, called polystores
[9, 10]. However, these approaches depend strongly on
cost models, provided by the external systems. If a sys-
tem does not provide cost estimates, the only way to
integrate new systems is to implement the cost models.
This process makes the integration with new systems im-
practical. Moreover, the communication needed with the
external systems to obtain cost estimates of local query
executions leads to excessive overheads that make the
optimization process slow (cost-of-costing [5]).
Learned Query Optimization. The idea of learned
query optimization has gained a lot of attention through
the last years. Approaches like Neo [11] and Bao [12]
are representative examples that showcase how machine
learning can be utilized for self-driving query optimizers.
However, most of these works are focusing mainly on
single-node database systems. The closest approach to
our system is the one presented by Liqi Xu et al. [6],
which presents a supervised-learning approach for fed-
erated query optimization. The system learns the per-
formance of the externally connected systems and it pre-
dicts the best federation engine, which can be any of
the connected data sources. However, this work does
not consider splitting further the complement queries,
ignoring potential query plans that could achieve better
performance. Furthermore, it relies on information (e.g.,
cost or row estimates), gathered by the EXPLAIN clause of
the target data source. Continuously invoking EXPLAIN
during query planning on multiple external data sources
can make the process significantly slower, due to the com-
munication overhead. Furthermore, the assumption that
any of the connected data sources can be considered as
the federation engine is not realistic, as it is not common
for a DBMS to support reading data from external data
sources.

The main weaknesses of prior work are the following.



First, integration with new systems can be tedious. Next,
the cost estimation and interpretation for the external
systems, as well as the continuous communication of the
external systems during query optimization makes the
process relatively slow, resulting in a high cost-of-costing.
In the next section, we describe how we address these
problems with machine learning, as well as a unified
query vectorizer that maps queries to vectors.

3. ML-Based Federated Query
Optimization

3.1. Architecture

Figure 1 depicts the architecture of our federated query
optimizer prototype. In this section, we describe in detail
each individual component of our system.

Query Vectorizer. The query vectorizer takes as input
a parsed SQL query in its abstract syntax tree (AST) form
and converts it into a vector that represents the semantics
of the query, e.g., which tables are joined in the query or
in which columns a GROUP BY operator is applied. In the
current version, we follow a simple one-hot-encoding
approach. Each query operator is represented by a vector.
For example, the aggregation vector g = [1,0,0, 1] rep-
resents a query in which the GROUP BY clause is applied
on the first and the fourth columns. We combine all the
vectors for all the predicates that we need to include in
our search space and create a unified vector that repre-
sents the full query.

Cost Model Learning. In order to learn cost models,
we use data obtained from past and current workloads.
For each query, we keep its execution time and its vector
form. We feed this data to a machine learning model, that
predicts the execution time of future queries. Our cur-
rent prototype trains its models with respect to execution
time. However, the approach can be easily modified in
order to take into account more objectives, like monetary
cost in a cloud setting.

Federated Query Optimizer. Our federated query opti-
mizer uses the first two components in order to generate
near-optimal federated plans. First, it transforms the AST
form of the query to a graph, in which each vertex repre-
sents one table and its location, while an edge represents
a join between two tables. The optimizer works in two
phases. The first pass, which we call Location-First Search,
is an extension of the traditional Breadth-First-Search al-
gorithm which traverses the graph, and generates a new
binary tree with the following property. It is guaranteed
that all vertices (tables) that reside in the same location,
will be co-located under the same subtree (whenever that
is possible, given the query semantics). The second pass
processes each subtree at each location, and makes the
required transformations, being advised by the learned

cost model. For example, in some cases it might make
sense to break a subtree that joins four tables into two
subtrees that join two tables, in order to avoid computing
a large result, and fetching that result to the federation
engine over the network. This is achieved by adjusting
a parameter called join_limit, which defines the max-
imum subquery size that can be pushed down for local
execution to an external system.

Federated Rewriter. This module takes as input the
federated query plan produced by the previous step. For
each subtree that refers to a specific location (database
system) of the query plan, it performs on-the-fly SQL
code generation that will be pushed down to the exter-
nal system for local execution. Finally, it generates the
SQL code that will be executed in the federation engine,
which will aggregate the results of each component query
executed in the external locations.

3.2. Query Lifecycle

The query lifecycle follows the same steps as in the pre-
vious section. First, an SQL query is parsed and trans-
formed to the corresponding AST form. Then, this query
is passed to the vectorizer, which will transform it to the
corresponding vector form. Next, the optimizer takes
the AST of the query, it converts it to the corresponding
graph, and it produces the final federated query plan.
Finally, the federated plan is passed to the rewriter which
will perform the necessary SQL code generation for the
external systems and the federation engine. The query
is then executed by leveraging both the external systems
and the federation engine, and the result is returned to
the user. At the end of execution, we also keep the query
execution metrics, like the total execution time and the in-
dividual execution times of the subqueries in the external
engines. We keep these metrics in order to re-train and
refine our learned cost models and keep them up-to-date.
As mentioned in the previous sections, the key advan-
tages of our federated query optimizer are the following.
First, the query vectorizer allows our system to be easily
integrated with any system that supports SQL, making
the design specifics of the external system transparent
to the federation engine. For example, in our implemen-
tation over Spark SQL, we use JDBC drivers in order to
connect to the external system. Then, our system oper-
ates only on Spark’s intermediate representation (AST) of
the input query. This design will work exactly the same
over any possible set of connected systems. Second, we
minimize the potential communication overhead during
optimization. By leveraging learned cost models, the cost
estimates for each subquery in each external system are
computed fast, while most of the optimization time is
spent on useful work, i.e. plan enumeration.
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Table 1
Execution Time

System Avg. Exec Time (s)
Spark SQL 1.15

Optimal 0.122

Federated Optimizer | 0.152

4. Preliminary Results

We evaluate our prototype experimentally and compare
to Spark SQL. Our goal is to show that our design can ef-
fectively chose the right engine to execute each subquery,
and the resulting plans outperform the vanilla implemen-
tation of Spark SQL. We evaluate our first prototype on
a MacBook Pro with 16GB of memory and an Apple M1
chip. The infrastructure consists of a standalone, single-
node Spark SQL cluster, one Postgres 14.0 instance and
one MySQL 8.0.27 instance, everything running on the
same machine. We used the TPC-H 7 (1GB) and the JOB
[13] benchmarks.

Learned Cost Models. We first evaluate our opti-
mizer’s effectiveness in choosing the most performant
execution engine. We use the TPC-H dataset for this ex-
periment, making all tables available in all systems. First,
we run a set of micro-benchmarks by randomly picking
some of the TPC-H queries in order to collect data and
train the cost models. Next, we run all TPC-H queries
to evaluate our system. For each TPC-H query, the opti-
mizer is assisted by the learned cost models, and decides
whether it is better to push the full query into MySQL,
Postgres, or fetch all the data and execute the query in
Spark. For the sake of the experiment, we run each query
in all three modes, which allows us to compare our op-
timizer’s decision both with Spark SQL and the optimal
decision (i.e. minimum execution time). The results are
reported in Table 1, and depict the end-to-end execution
time, including query processing and data fetch from the
external systems. Using our optimizer, we achieve an
average speedup of 7.5x compared to Spark SQL.
Optimized Queries. We use the JOB benchmark for
this section. In this scenario, tables are randomly placed
across MySQL and Postgres. For those queries, we ex-
perimented with changing the number of the maximum
tables (join_limit parameter) that can be included in
a subquery that is pushed-down for local execution to
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an external engine. This parameter needs adjustment for
the following reason. Imagine pushing down a large join,
that produces a very large intermediate result. Fetch-
ing this result from the external database system to the
federation engine will result in excessive network over-
heads. Thus, the query performance will decrease. Us-
ing our very first prototype of a Reinforcement Learn-
ing based optimizer that tries out different values of the
join_limit parameter, we conclude that for this setup
the join limit should be either two or three. Sticking to
these values, the average query execution time is 60%
of time that the vanilla implementation of Spark SQL re-
quires. This improvement is achieved mainly by splitting
the query execution across Spark SQL and the external
systems (e.g. pushing down part of the join), utilizing
both the federation engine and the systems it connects
to.

5. Research Plan

There is still work that needs to be done in order to release
a fully-functional prototype of our ML-based optimizer.
We presented individual parts of the system that we cur-
rently work on, and an early experimental evaluation
of those components that showcase the current perfor-
mance improvements that our system achieves.
Short-Term Goals. We are working towards the full
integration of our optimizer with the learned cost models.
Our main idea is to adopt a dynamic programming ap-
proach for plan enumeration, as in traditional databases.
We plan to modify the algorithms and make them lever-
age the learned cost models in order to evaluate the cost
of the enumerated federated, cross-database plans. We
foresee the following challenges. First, in case of updates,
the cost models will become outdated and might mislead
the optimizer. In this case, the system should notice the
performance degradation and re-calibrate models with
respect to new data, possibly by re-training the models.
Next, for queries with many joins, the large optimization
space due to the multiple execution engine options might
slow the optimizer down. We plan to develop specialized
heuristics to prune the search space to maintain reason-
able optimization time.

Long-Term Plan. Our current design already has some
promising results for OLAP workloads on static data.
However, as previously mentioned, relying on past query
executions might be limiting if any updates are included
in the workload, i.e. the learned cost models will become
outdated. Furthermore, the larger search space that de-
rives from the multiple-systems scenario might result
in slow optimization for larger join queries. To address
these challenges, we are working towards an extension,
based on Reinforcement Learning. Instead of using cost
estimates, this RL-based optimizer will try out different



splits and join orders for the initial query during the ex-
ploration phase. Using RL, we can develop an adaptive
optimizer, that will explore different subquery combina-
tions and pushdowns across the different systems. This
will not require prior training, and past workloads. Our
goal is to create a solution that quickly adapts to data
changes (in case of updates), while avoiding the costly
enumerations in query planning.

Vision. A federated query engine should be flexible, con-
nect easily to new data sources and hide the complexity
of the underlying infrastructure from the user. Existing
approaches on federated query optimization, like System-
PV [3] and MuSQLE [4], still require a lot of manual work
from the user. Our intuition is that the more generic, ML-
based design that we develop as part of this PhD research
will democratize federated query optimization, and make
it possible to adopt these optimization schemes in the
real world. While we implement our optimizer on top
of Spark SQL, our design is generic enough and can be
easily implemented in similar systems. The long-term
goal of this PhD is to introduce new federated query opti-
mization designs that are autonomous, and can be easily
adopted by systems both in industry and academia.

6. Conclusions

We presented a PhD research plan that proposes a new
federated query optimization design, based on machine
learning. Our design is still under development and in an
early stage. The preliminary results show that ML-based
federated query optimization achieves notable perfor-
mance improvements when compared to Spark SQL. In
contrast to past works on federated query processing,
our prototype leverages machine learning in order to
cope with the heterogeneity of the underlying database
systems. Our optimizer is able to connect new systems
with close-to-zero engineering effort, and effectively op-
timize federated queries with minimal communication
overhead.
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