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Abstract
Complex event processing (CEP) detects situations of interest by matching patterns in a continuous stream of events. Queries
for these patterns can be learned automatically in the presence of event data that is labelled with the situation to detect.
However, existing event query discovery methods deal with scaling issues in a somewhat ad-hoc manner. In this paper, we
therefore outline our plan to characterize the design space for event query discovery, instantiate it with concrete algorithms,
and provide means to recommend algorithms based on properties of the event data used as input. Specifically, we consider
four dimensions in the design of discovery algorithms that search the space of candidate queries. We also identify the core
functionality underlying the respective algorithms and provide initial results on their realization.

1. Introduction
Complex Event Processing (CEP) systems evaluate a
given set of queries (or rules) over large-scale streams of
event data in order to identify situations of interest [5].
As the queries establish a (causal) relation between the
observed events and the phenomena to reveal, CEP is the
foundation for reactive and predictive applications in a
wide range of domains.

The specification of event queries is not trivial, though.
In addition to the inherent complexity of event query lan-
guages, there is often only partial knowledge available
(i.e., by a domain expert) on how a situation of interest
materializes in an event stream. This is particularly true
for predictive applications [2], where event queries are
employed to anticipate a situation of interest to imple-
ment mitigation strategies.

Against this background, it was suggested to discover
queries automatically, by learning them from labeled his-
toric event data [9, 4]. In practice, such an approach
cannot be expected to yield queries that can directly be
employed. Rather, the results support a user in the design
of a suitable query workload, as the discovered queries
can be inspected, evaluated, and eventually refined to
avoid apparent overfitting of the event data used as a
starting point. Unlike black-box models like for instance
Machine Learning approaches to detect or predict a situa-
tion of interest, relying on the discovered queries fosters
traceability and explainability of the results of the respec-
tive application.

However, the problem of event query discovery is com-
putationally hard, due to the large space of candidate
queries that needs to be searched. The size of the search
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space depends, among other aspects, on the length of the
queries to be discovered (i.e., the number of events re-
quired to occur to indicate a match of a query) as well as
the size of the stream alphabet (i.e., the size of the domain
of possible event values). Since queries may characterize
the events to be matched by any combination of their
values, the query search space grows exponentially in
the query length and domain size.
Existing algorithms to event query discovery [9, 4]

cope with the scalability challenges in a rather ad-hoc
manner. They guide the respective search by first identi-
fying common event values and, based thereon, discover
common sequences of these values. Yet, the approaches
incorporate various design choices that are motivated by
implicit assumptions on the event data, for instance, in
terms of the frequency distribution of event values, the
distinctness of the events that are part of query matches,
as well as the selectivities of the queries to discover. As
a consequence, it is not clear (i) in which application sce-
narios the existing discovery algorithms can be expected
to work, and (ii) whether incorporating different design
choices may facilitate event query discovery in scenarios
in which existing algorithms are intractable.
Event query discovery has been applied to a range

of fields such as cluster monitoring, finances and urban
transportation [9, 4], which indicates that the approach
is not limited to certain areas. This PhD project sets out
to systematically explore the design space of algorithms
for event query discovery. Specifically, it is devoted to
the following research questions:

1) How to characterize the design space for event query
discovery?

2) How to instantiate this space in terms of concrete algo-
rithms?

3) How to provide means to recommend particular discov-
ery algorithms based on properties of the event data
used as input?

In the light of these research questions, §2 provides a
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Figure 1: Construction of traces from an event stream.

formal characterization of the problem of event query
discovery, before we review related work in §3. In §4, we
present our initial research results, including a discus-
sion of relevant design choices for discovery algorithms,
a generic algorithmic template that incorporates these
choices, an exemplary instantiation of this template, and
initial experimental results obtained with the resulting
discovery algorithm. Finally, we conclude and discuss
next steps in §5.

2. Research context

2.1. Stream and Query Model
We define the model for our work as follows. An event
schema is a finite sequence of attributes 𝐴 = (𝐴1, … , 𝐴𝑛)
and each attribute can take on values from a given domain
dom(𝐴𝑖) for 𝑖 ∈ {1, … , 𝑛}, which is a finite set of types. An
event is an 𝑛−tuple and an instance of an event schema,
i.e., 𝑒 = (𝑎1, … , 𝑎𝑛), 𝑎𝑖 ∈ 𝑑𝑜𝑚(𝐴𝑖) for 𝑖 ∈ {1, … , 𝑛}, which
can be represented as the string of the respective types. A
stream 𝑆 is an unbounded sequence of events, 𝑆 = 𝑒1𝑒2… ,
which, again, can be represented as a string of the events.
The stream events are ordered by ascending time of oc-
currence. Without loss of generality, we assume that all
events in a stream have the same event schema. Also, the
stream alphabet is defined as dom(𝑆) ∶= ⋃𝑛

𝑖=1 dom(𝐴𝑖).
Given a set of labels for a stream that indicate situation
of interests, a set of traces can be extracted to serve as a
training set to discover event queries. Formally, a trace
𝑡 is a finite, non-empty subsequence of the stream 𝑆 (or
is string representation, respectively). Traces can be ob-
tained in different ways. In Fig. 1, the different options
are illustrated with an example. Assuming that only po-
tentially relevant data is given, one may partition events
by one of the domains𝐴𝑖 (i.e., traces partitioned by Job Id).
Another option is to select the labeled events and then
either cut traces after the occurrences of labeled events
(i.e., traces separated by event of interest fail) or to only
include all events that occur within a predefined time

window before a labeled event (i.e., traces separated by
event of interest fail with time window 6). In A sequence
database 𝐷 is a finite set of traces, 𝐷 = {𝑡1, … , 𝑡𝑚}. To de-
fine queries over streams, and hence sequence databases,
let Vars be a set of variables, such that the intersection
of Vars and dom(𝑆) is empty.

Definition 2.1 (Query). Let dom(𝑆) be a stream alpha-
bet. Then, a query is a tuple 𝑞 = (𝑠, 𝑤), where

∘ 𝑠 ∈ ((dom(𝑆) ∪ Vars)𝑘)+ is the query string, where
𝑘 is the number of attribute domains;

∘ 𝑤 ∈ ℕ the window size.

In the remainder, a query that only contains types, or
only variables, is called a type query, or pattern query,
respectively. A query 𝑞 matches a trace 𝑡, denoted by
𝑞 ⊧ 𝑡, if by replacing the variables with suitable types, the
query string is a (not necessarily continuous) substring
of the trace, while staying within the window size. A
specific match is a respective substring of the trace, while
the set of all matches of 𝑞 in 𝑡 is denoted by Ω(𝑞, 𝑡).
Note that this query model is similar to SQL-like lan-

guages, such as SASE [16]. For instance, taking the event
schema from Fig. 1, the query 𝑞 = ((𝑥0, 𝑆)(𝑥0, 𝐹 ), 5) with
𝑆, 𝐹 ∈ dom(𝑆), 𝑥0 ∈ Vars could be written in the SASE
language as follows:

PATTERN SEQ(Event e1, Event e2)
WHERE e1.status=S AND e2.status=F AND e1.job=e2.job
WITHIN 5 minutes

We define the support of query 𝑞 for the sequence
database 𝐷 as:

supp(𝑞, 𝐷) ∶= |{𝑡 ∈ 𝐷 ∣ 𝑞 ⊧ 𝑡}| .

Next, we consider a support threshold for the sequence
database 𝐷, denoted by supp𝐺(𝐷) ∈ {0, … , |𝐷|} which
determines the number of traces that the query needs
to match. Then, a query 𝑞 matches the database 𝐷, if
supp(𝑞, 𝐷) ≥ supp𝐺(𝐷).
Independent of any specific sequence database, we

further define 𝑀 as the set of all possible traces 𝑡 ∈
(dom(𝑆)𝑘)+ that match to a given query 𝑞:

𝑀(𝑞) ∶= {𝑡 ∈ (dom(𝑆)𝑘)+ ∣ 𝑞 ⊧ 𝜏} .

2.2. Problem Statement
For a given sequence database 𝐷, more than one query
might satisfy a given support threshold. In this case, the
respective queries might be comparable and can poten-
tially be ordered according to their strictness, as follows.

Definition 2.2 (Strictness). Let 𝑞1, 𝑞2 be queries. We
say that 𝑞1 is stricter than 𝑞2, denoted as 𝑞1 ≺ 𝑞2, if𝑀(𝑞1) ⊆
𝑀(𝑞2).



In event query discovery, it is sufficient to focus on the
strictest queries, assuming that they provide the most
exact characterizations of how the situation of interest
manifests in an event stream. As such, we summarize
the respective problem as follows:

Problem 1. Given a sequence database 𝐷 and a support
threshold supp𝐺(𝐷), find a set of queries 𝑄 such that 𝑄 is:

correct: 𝑞 ∈ 𝑄 ⟹ supp(𝑞, 𝑇 ) ≥ supp𝐺(𝑇 ),
minimal: 𝑞1 ∈ 𝑄, 𝑞1 ≺ 𝑞2 ⟹ 𝑞2 ∉ 𝑄,
complete: 𝑞 is correct and minimal ⟹ 𝑞 ∈ 𝑄.

3. Related Work
Closest to our work are iCEP [9] and the IL-Miner [4],
which both address the problem of event query discov-
ery. Yet, both algorithms take ad-hoc design choices
and are also limited in the considered types of queries.
iCEP cannot discover queries, in which types occur mul-
tiple times. The IL-Miner, in turn, cannot discover pure
pattern queries, as it constructs queries from frequent
sequences of types.
Also, the use of machine learning algorithms to an-

ticipate situations of interest received much attention
recently [8, 12, 10]. For example, representation learning
can help to construct probabilistic state machine pat-
terns [8], which enable a prediction about the occurrence
of a critical situation. The main drawback of such ma-
chine learning algorithms is the lack of traceability and
explainability of the derived predictions.
Furthermore, event query discovery is linked to re-

search on sequential pattern mining. In general, frequent
sequence mining [1, 15, 14] limits the output sequences
to the type-level. Pattern discovery has also been inves-
tigated for streams of time-series data [11, 13]. However,
all of these methods were designed to work on only types
or scalar values, so that they do not aim at finding corre-
lation criteria as encoded with variables.

Another remotely related field is the correlation analy-
sis in streaming data [6]. Here, the output are multivari-
ate correlations rather than event queries.

4. Towards a Solution
This section gives an overview of our initial research re-
sults. We first elaborate on the design space for discovery
algorithms, before introducing an algorithmic template
and its exemplary instantiation. We close with initial
experimental results.

4.1. Design Space for Algorithms
We have identified four dimensions to consider in the
design of discovery algorithms that search the space of
candidate queries:

1. Direction: bottom-up/top-down.

2. Strategy: depth-first-search/breadth-first-search.

3. Construction: type/pattern queries, unified or
separated.

4. Domains: unified or separated.

Below, we explain these dimensions in detail.
Direction. When traversing the query search space,

two directions may be considered: bottom-up approaches
start with the most generic query and, by adding types or
variables to the query string, stricter queries are gener-
ated. This traversal stops, when a query does not match
the sequence database. On the other hand, top-down
approaches start with the most specific query, i.e., the
shortest trace of the sequence database. Here, we explore
the search space by deleting types or exchanging them
with variables; stopping whenever a matching query was
found.
Strategy. Adopting a depth-first search strategy, the

search space is explored by relaxing/tightening the query
string until a query with a different matching behavior is
reached (the desired matching behavior depends on the
search direction). With breadth-first search, we start with
matching all queries of the same length before continuing
with queries of the next level (the query string becomes
longer or shorter depending on the search direction).

Construction. Another algorithmic choice is whether
to discover type queries and pattern queries within the
same search space, or rather create two search spaces,
explore them independently, and finally merge the results
to obtain also the strictest mixed queries. Note that the
isolated discovery of type queries corresponds to the
common problem of frequent sequence mining.
Domains. Similar to the query construction, we can

build the query search space over all domains simultane-
ously, or separate the attribute domains in the discovery
process and merge the resulting queries per to obtain the
final result.

4.2. Discovery Phases
For the design of a concrete algorithm, we propose a
template that structures the discovery process into the
following phases:

∘ Query candidate generation
∘ Redundancy check
∘ Matching
∘ Query set filtering



Algorithm 1: Exemplary discovery algorithm
Input: Sequence database 𝐷
Output: Complete set of correct and minimal queries 𝑄

1 Q ← ∅
2 A ← set of supported types occurring in 𝐷
3 𝔻 ←∅ // dictionary with query strings and their matching

behavior

4 O ← {} // stack for queries to be matched; initially the

empty query

5 while O ≠ ∅ do
6 q ←𝑂.pop()
7 R,M ← CheckRedundancy(q, 𝔻)
8 if 𝑅 = 𝐹𝑎𝑙𝑠𝑒 then M ← MatchQuery(q,D)
9 if 𝑀 = 𝑇 𝑟𝑢𝑒 then
10 Q ←Q ∪ {q}
11 O ← NextQueries(q,A)

12 Q ← FilterQueries(Q)

13 return Q

While the specific realization of these phases depends
on the design choices taken along the above dimensions,
the phases yield a template for a collection of discovery
algorithms.

Query candidate generation. This phase generates
queries to match against the sequence database. Since
the query search space may grow exponentially, any real-
ization of this phase shall meet the following constraints
in order to avoid unnecessary computation:

1. Every matching query is generated.
2. Every query is generated at most once.

This way, it is ensure that all strictest queries can be
discovered.
Redundancy check. Matching a query against the

whole sequence database is time consuming. Hence, in
this phase, we check if matching is actually necessary
or whether the matching behavior can be deduced from
previously matched queries. There are two possible sce-
narios that we can exploit. Given two queries 𝑞1, 𝑞2 and
a sequence database 𝐷 and let 𝑞1 ≺ 𝑞2. If we check query
𝑞2, but, during the discovery process, have already suc-
cessfully matched a stricter query 𝑞1 to the sequence
database, then query 𝑞2 is known to match. Similarly,
if 𝑞2 does not match the sequence database, then any
stricter query will also not match.
Matching. The matching problem for our query

model is known to be NP-complete [7]. Yet, since we
often match queries that are similar, we might not al-
ways have to match the whole query against the entire
sequence database.
Query set filtering. Finally, we have to remove

matching queries for which stricter queries that also
match have been found.

0 10 20 30 40 50
number of iterations

10 4

10 3

10 2

10 1

100

101

102

tim
e

Discovery Algorithms
domain-unified
domain-separated

Figure 2: Runtime of discovery for increasing search spaces.

4.3. Exemplary Instantiation
In Alg. 1, we illustrate a specific discovery algorithm that
adopts bottom-up, depth-first search, where pattern and
type queries as well as all domains are considered in the
same search space. It initially puts an empty query onto
the stack 𝑂. The loop will continue until there are no
further queries to be matched on the stack. In each loop,
the query is checked for redundancy and, if necessary,
the matching function will be called. Only if the query
matches, possibly new queries will be added to the stack
by adding the result of the function NextQueries. When
the whole query search space has been explored, the
query filtering function ensures that only the strictest
queries are returned.

Matching algorithm. For each query that we match,
we save for each trace the last matching position of the
first match. For a stricter query, we can then rely on this
information, so that only the newly added part of the
query needs to be matched on the remaining part of the
traces. For queries containing patterns, we first replace
the newly added pattern by all possible types and then
match the maintained type queries as described before.
As such, we leverage the similarity of the considered
queries, thereby avoiding the need to match the same
substring over and over again.

4.4. Experimental Results
To achieve a controlled setup for evaluating the design
choices in discovery algorithms, we proceed as follows.
Since the size of the sequence database (number of traces
and length of traces) is of minor importance, unlike the
type distribution, we initialize a small, synthetic database
with two traces of length ten with three domains. Each



type of each domain occurs only once in the whole
database, so that initially, there is no query to discover.
We then adapt the database in 50 iterations, each time
picking a trace position and domain randomly. Then,
we either copy the type of one trace into all the other
traces to generate matches for a type query, or we copy a
type in each trace to another random position to generate
matches for a pattern query. As such, in each iteration,
we increase the result size and also the query search
space.

Fig. 2 illustrates the runtime of a Python implementa-
tion of two variants of the discovery algorithms (bottom-
up, depth-first, unified construction) that treat domains
separately or unified. The runtime increases with the
number of iterations. Also, domain-separated discov-
ery performs better for smaller search spaces, whereas it
is outperformed by domain-unified discovery for larger
ones. This result underlines the need to explore the re-
spective design choices in a systematic manner and high-
lights the potential of linking them to properties of the
sequence database.

5. Conclusions and Next Steps
In this paper, we introduced the query discovery problem
and pointed out different dimensions for the design of
discovery algorithms. We also exemplified the design
space with a specific algorithm and initial experimental
results.

As a next step, we intend to explore in detail the rela-
tion between the outlined design choices for discovery
algorithms and properties of sequence databases. This
way, we hope to obtain a model that enables us to pre-
dict, which discovery algorithm shall be adopted in a
given application scenario. Moreover, we strive for a
characterization of the aspects of a sequence database
(e.g., in terms of specific types or traces) that render dis-
covery intractable and, hence, may be subject to some
preprocessing of the database (e.g., by filtering particular
types).
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