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Abstract
Data dependencies have a direct application to data profiling as they can provide information about the metadata. The rise
of practical real-world use of graph data resulted in increased interest in studying dependencies and constraints in graphs
and their applications. In this project, we propose a new class of dependencies for graph data named Graph Generating
Dependencies, or GGDs. Informally, a GGD expresses constraints between two (possibly different) graph (sub-)structures
enforcing dependencies according to user-defined topological (graph) patterns and similarities in the corresponding data
(property) values. The expressiveness of GGDs allows to describe information about the graph data about both topology and
property values, making it an interesting class of dependency for graph data profiling. In this paper, we present the GGDs
and further topics on graph data profiling that we plan to investigate during the project
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1. Introduction
Data profiling refers to the task of collecting information
about the content of the data. In the area of data profiling,
data dependencies are used as a tool not only to assist the
user in understanding the data and possible correlations
between different attributes but also as a tool to express
and ensure data quality rules. The property graph model
is the emerging standard with current efforts from both
industry and academia on standardizing a graph query
language (GQL)1. Therefore, it is important to define and
study new classes of dependencies for this model and its
practical use.

Consider a social network graph in which it has been
identified that whenever two people vertices have the
same last name and address property values, and have an
edge labelled “friend” connecting both, then there should
also exist an edge of the type “is family” connecting these
two vertices. It is important to be able to capture and
present such constraints to the user as can arise naturally
in graph data and such information is valuable for further
profiling and use of the data.

However, classes of graph dependencies [1, 2, 3] for
the property graph model previously proposed in the
literature cannot fully capture such information as they
are defined over one graph pattern and focus on gener-
alizing functional dependencies (i.e., variations of egds,
equality-generating dependencies).
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To represent such information, in this project, we pro-
pose a new class of graph dependencies for the property
graph model named Graph Generating Dependencies
(GGDs) [4]. A GGD can express topological constraints
according to two (possibly) different graph patterns and
data constraints that express the similarity of the prop-
erty values of nodes and edges on the defined graph
patterns. Given the expressiveness of GGDs, this class
of dependencies can be used in practical scenarios such
as describing the content of the data (discovery and visu-
alization of GGDs) and ensuring data quality (detecting
data inconsistencies, entity resolution and repair of graph
data).

In this paper, we introduce in section 3 the syntax and
semantics of GGDs, its main reasoning problems and
practical use cases of GGDs. section 4 we present the
topics regarding the use of GGDs for graph data profiling
and exploration that we are currently investigating.

2. Related Work
We place GGDs in the context of relational and graph
dependencies proposed in the literature.

The classical Functional Dependencies (FDs) have been
studied and extended for contemporary applications in
data management. Conditional Functional Dependencies
(CFDs) [5] were later proposed for data cleaning tasks.
CFDs enforce an FD only for a set of tuples specified
by a condition, unlike the original FDs, in which the
dependency holds for the whole relation. Due to its large
application to data cleaning, discovery algorithms and
extensions were proposed for CFDs [6].

The idea of FDs and CFDS were extended to
graph dependencies on Graph Functional Dependencies
(GFDs) [1] and Graph Entity Dependencies (GEDs) [2].
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The GFDs are formally defined as a pair (𝑄[𝑥], 𝑋 → 𝑌) in
which 𝑄[𝑥] is a graph pattern that defines a topological
constraint, and 𝑋, 𝑌 are two sets of literals over the ver-
tex attributes, that define the property-value functional
dependencies of the GFD. Besides the property-value de-
pendencies present in the GFDs, GEDs also carry special
id literals to enable identification of vertices in the graph
pattern.

Differential Dependencies (DDs) [7] were proposed to
support applications such as entity resolution, in which
the similarity of the attributes must be considered. The
DDs extend the FDs by specifying constraints accord-
ing to user-defined distance functions between attribute
values [7]. This idea was also introduced in a class of
graph dependencies, the Graph Differential Dependen-
cies - GDDs [3].

Recently, PG-Keys were proposed as a formalism to
define keys over property graphs [8]. While GFDs and
GEDs define constraints only over vertex attributes, PG-
Keys can identify and constraint unique vertices, edges
and properties in the property graph.

Tuple-generating dependencies (tgds) are a well-
known type of dependency used in the areas of data
integration and data exchange [9]. Special cases of tgds
and its extensions also have a wide range of applications.
One example of a special case of tgds are inclusion de-
pendencies (INDs) that are often used to identify foreign
keys in relational data [10]. Close to the idea of having
constraints for property values, there is an extension to
egds and tgds called constrained tuple-generating depen-
dencies (ctgds) [11]. The ctgds extends the tgds by adding
a condition (a constraint) on variables.

Other types of constraints for graphs include: Graph
Repairing Rules (GRRs [12]), an automatic repairing se-
mantics for graphs, and Graph-Pattern Association Rules
(GPARs [13]), a specific case of tgds and has been applied
to social media marketing applications.

The main differences of GGDs compared to previous
works are: (i) the use of differential constraints, (ii) edges
are first-class citizens in the graph patterns (in align-
ment with the property graph model) and (iii) the ability
to entail the generation of new vertices and edges. In
general, GGD is the first constraint formalism for prop-
erty graphs supporting both egds and tgds, and DDs for
property values.

3. GGDs
In this section, we present the Graph Generating De-
pendencies (GGDs), which includes: GGDs definition,
reasoning problems and examples of practical use cases
of GGDs.

3.1. Syntax and Semantics of GGDs
We start by presenting the syntax and semantics of the
GGDs, previously published in [4]. A Graph Generat-
ing Dependency (GGD) is a dependency of the form

𝑄𝑠[𝑥], 𝜙𝑠 → 𝑄𝑡[𝑥, 𝑦], 𝜙𝑡

where:

• 𝑄𝑠[𝑥] and 𝑄𝑡[𝑥, 𝑦] are graph patterns, called
source graph pattern and target graph pattern,
respectively;

• 𝜙𝑠 is a set of differential constraints defined over
the variables 𝑥 (variables of the graph pattern 𝑄𝑠);
and

• 𝜙𝑡 is a set of differential constraints defined over
the variables 𝑥 ∪ 𝑦, in which 𝑥 are the variables of
the source graph pattern 𝑄𝑠 and 𝑦 are any addi-
tional variables of the target graph pattern 𝑄𝑡.

A differential constraint in 𝜙𝑠 on [𝑥] (resp., in 𝜙𝑡 on
[𝑥, 𝑦]) is a constraint of one of the following forms [3, 7]:

1. 𝛿𝐴(𝑥.𝐴, 𝑐) ≤ 𝑡𝐴
2. 𝛿𝐴1𝐴2(𝑥.𝐴1, 𝑥′.𝐴2) ≤ 𝑡𝐴1𝐴2
3. 𝑥 = 𝑥′ or 𝑥 ≠ 𝑥′

where 𝑥, 𝑥′ ∈ 𝑥 (resp. ∈ 𝑥 ∪ 𝑦) for 𝑄𝑠[𝑥] (resp. for 𝑄𝑡[𝑥, 𝑦]),
𝛿𝐴 is a user defined similarity function for the property
𝐴 and 𝑥.𝐴 is the property value of variable 𝑥 on 𝐴, 𝑐 is
a constant of the domain of property 𝐴 and 𝑡𝐴 is a pre-
defined threshold. The differential constraints defined
by (1) and (2) can use the operators (=, <, >, ≤, ≥, ≠).

The constraint (3) 𝑥 = 𝑥′ states that 𝑥 and 𝑥′ refer
to the same entity (vertex/edge) and can also use the
inequality operator stating that 𝑥 ≠ 𝑥′. An important
feature of GGDs is that both vertices and edges are con-
sidered variables (in source and target graph patterns),
which allows the comparison of vertex-vertex variables,
edge-edge, and vertex-edge variables.

Consider a graph pattern 𝑄[𝑧], a set of differential
constraints 𝜙𝑧 and a match of this pattern represented by
ℎ[𝑧] in a graph 𝐺. The match ℎ[𝑧] satisfies 𝜙𝑧, denoted
as ℎ[𝑧] ⊧ 𝜙𝑧 if the match ℎ[𝑧] satisfies every differential
constraint in 𝜙𝑧. If 𝜙𝑧 = ∅ then ℎ[𝑧] ⊧ 𝜙𝑧 for any match
of the graph pattern 𝑄[𝑧] in 𝐺.

A GGD 𝜎 = 𝑄𝑠[𝑥], 𝜙𝑠 → 𝑄𝑡[𝑥, 𝑦], 𝜙𝑡 holds in a graph G,
denoted as 𝐺 ⊧ 𝜎, if and only if for every match ℎ𝑠[𝑥] of
the source graph pattern 𝑄𝑠[𝑥] in 𝐺 satisfying the set of
constraints 𝜙𝑠, there exists a match ℎ𝑡[𝑥, 𝑦] of the graph
pattern 𝑄𝑡[𝑥, 𝑦] in 𝐺 satisfying 𝜙𝑡 such that for each 𝑥 in 𝑥
it holds that ℎ𝑠(𝑥) = ℎ𝑡(𝑥). In case a GGD does not hold
in 𝐺 (it is violated), it can be repaired by generating new
vertices/edges in 𝐺.

Example - The GGD in Figure 1 describes that when-
ever there is amatch of the source graph pattern, inwhich
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Figure 1: Example of a GGD

a Person node of the type “TV-Personality” is connected
to Magazine by the edge “appeared on”, there should
exist an edge of the type “is about” from this Magazine
to a node labeled Genre in which its attribute name is
“TV-Shows”.

3.2. Reasoning of GGDs
To understand the application of GGDs in real-world data
and its properties, we study how we can reason about
GGDs. We discuss three reasoning problems for GGDs:
Satisfiability, Implication, and Validation. Due to space
limitation, in this section, we give an overview of how
we can solve each one of these problems.

Satisfiability - A set of GGDs Σ is satisfiable if there
exists a model that is a graph 𝐺, such that (i) 𝐺 ⊧ Σ and
(ii) for each GGD 𝜎 ∈ Σ there exists a match of 𝑄𝑠[𝑥] in
𝐺. The satisfiability problem is to answer if given a set Σ,
is Σ satisfiable?

Informally, the Satisfiability problem is to verify if the
set of GGDs Σ is consistent. A set of GGDs Σ is not
satisfiable when contradictory constraints are enforced
to the same node or edge in a graph G. Similar to the
Satisfiability checking for GEDs [13], the satisfiability
problem for GGDs can be solved by using a Chase pro-
cedure for GGDs. Given a graph 𝐺Σ which contains a
match of each source side of each GGD in Σ, if the Chase
procedure terminates and there are no infeasible/contra-
dictory differential constraints enforced in any properties
of any nodes/edges of 𝐺Σ, we can conclude that the set Σ
is satisfiable.

Implication - Given a set of GGDs Σ and a GGD 𝜎,
does Σ imply 𝜎, (denoted by Σ ⊧ 𝜎) for every non-empty
graph G that satisfies Σ?

The implication of data dependencies can be proven
by using Chase. Given a initial graph 𝐺𝑐𝑙𝑜𝑠𝑢𝑟𝑒 which con-
tains a match of the source of 𝜎, the Chase procedure
will interactively apply GGDs of Σ and enforce its target
constraints. After Chase terminates, if for every match of
the source of 𝜎 there exists a match of its target in 𝐺𝑐𝑙𝑜𝑠𝑢𝑟𝑒
then the implication is true, otherwise, it is false.

Validation - Given a set of GGDs Σ and a non-empty
graph 𝐺, does the set of GGDs Σ hold in 𝐺, denoted as
𝐺 ⊧ Σ?

The validation problem can be solved by an algorithm
with the following steps:

1. Check if ℎ𝑠(𝑥) satisfies the source constraints (ie.,
ℎ𝑠(𝑥) ⊧ 𝜙𝑠). If yes then continue.

2. Retrieve all matches ℎ𝑡(𝑥, 𝑦) of the target graph
pattern 𝑄𝑡[𝑥, 𝑦] where ℎ𝑠(𝑥) = ℎ𝑡(𝑥) for all 𝑥 ∈ 𝑥.
If there are no such matches of the target graph
pattern, return false.

3. Verify if ℎ𝑡(𝑥, 𝑦) ⊧ 𝜙𝑡. If there exists at least
one match of the target graph pattern such that
ℎ𝑡(𝑥, 𝑦) ⊧ 𝜙𝑡, then return true, else return false.

3.3. Practical Use of GGDs
In this section, we present how GGDs can be used in
practice in two different scenarios: (1) Identifying data
inconsistencies and (2) Entity Resolution. The algorithms
used in these scenarioswere implemented in the sHINER2

system using the G-Core language interpreter3[14] and
the Spark framework4.

Identifying Data Inconsistencies - Given a set of
GGDs Σ, we define as inconsistent data a set of graph
pattern matches of the source side of each GGD in Σ in
which there does not exist a match of the target side that
satisfies the target constraints 𝜙𝑡.

From the definition of inconsistent data, we can ob-
serve that this problem is related to checking if a set of
GGDs, Σ, is violated or not. For this reason, to identify in-
consistent data, we modify the previously introduced Val-
idation algorithm to return which matches of the source
(ℎ𝑠(𝑄𝑠[𝑥) ⊧ 𝜙𝑠) were not validated instead of returning
true or false if the set is validated or not.

We implemented two versions of this algorithm using
“left anti joins” and “left outer joins” to identify data in-
consistencies. This choice of operators were based on
previous studies on validation over tgds of the literature
in the scenario of validating schema mappings [15, 16].
Although there is room for optimization and improve-
ment on the implementation, the goal of these results
is to show how GGDs are feasible even when using an
available query engine such as SparkSQL.

We compared these two versions of the algorithms us-
ing the LDBC benchmark dataset5. For both of these
datasets, we manually defined a set of GGDs. Even
though both versions of the algorithms finished in a
feasible time, the the algorithm that uses left anti join
performed better in terms of scalability (see Figure 2).

Entity Resolution - Entity Resolution is the task of
identifying instances of data that refer to the same real-
world entity. Entity Resolution can be used not only to

2https://github.com/smartdatalake/gcore-spark-ggd
3https://ldbcouncil.org/gcore-spark/
4https://spark.apache.org/
5https://ldbcouncil.org/benchmarks/snb/
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Figure 2: Scalability of Validation of GGDs
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Figure 3: Example of a GGD used for Entity Resolution

deduplicate data but also to integrate datasets according
to real-world entities that they have in common.

GGDs can be used in practice to describe rules for
Entity Resolution. By using GGDs, we are able to declare
deduplication rules over graph data according to graph
patterns and the similarity of the attributes of nodes
and edges defined in these graph patterns. Observe in
Figure 3 an example of a GGD for Entity Resolution.

To check if two entities match according to a GGD,
we can use the same modified version of the Validation
algorithm used for data inconsistencies. This algorithm
will identify which matches of the source graph pattern
should have an edge indicating that they are the same
but do not actually have one in the dataset. Given this
set of matches, the next step is to generate the new edges.
We implemented a version of the GGDs repair algorithm
by assuming that these missing edges will always be
generated. Since the generation of an edge can trigger
the validation of another GGD, this algorithm stops when
there are no changes in the graph.

Using our implementation in sHINER and the expertise
of our industrial partners in the SmartDataLake6 project,
we set the GGDs manually and tested their performance
on datasets from our industrial partners. Our partners
were able to achieve the same Recall and Precision using
GGDs compared to their internal tools, however, with
less human effort to run entity resolution.

6https://smartdatalake.eu/

4. Research Plan
Given the work on GGDs, in this section we introduce
the topics that we will investigate on GGDs for graph
data profiling.

Approximate Discovery of GGDs - Discovering
data dependencies from the data is not a trivial task,
and new challenges arise when dealing with graph data.
Dependency classes proposed for graph data in the prop-
erty graph model are usually defined over a graph pat-
tern, which means that not only the constraints over
attributes should be discovered, but also the constraints
over the topology must be identified by the discovery
algorithms. Discovery algorithms proposed for graph
dependencies [1, 17] uses frequent graph pattern mining
algorithms to find themost relevant graph patterns. How-
ever, the discovery of GGDs is even more challenging as
correlations between graph patterns and the similarity
of the attributes/properties of its nodes and edges should
be identified. To the best of our knowledge, there is no
method that can discover such correlations. Our goal is
to develop an algorithm in which given a graph data 𝐺
and a degree of inconsistency 𝜏 outputs a set of GGDs
Σ which holds on 𝐺 with at most 𝜏 degree of violation.
To solve such problem we are currently working on an
approach that uses the ideas proposed in the association
rule mining area [18] to discover correlations between
graph patterns, and on metrics or strategies that can
quantitatively measure 𝜏.

Visualization of GGDs - One of the main advan-
tages of dependencies is that their syntax is human inter-
pretable. However, depending on the content and volume
of the data, it can be difficult for the general user to un-
derstand the cases in which a dependency holds or not.
While there are many tools that have explored the idea
of visualization of data dependencies using relational
data [19], to the best of our knowledge, this topic has not
been explored in the context of graph data. Thus, many
of these systems focus on ways to visualize the semantics
of the dependency and not how this dependency occurs
in the data. Given these challenges, the goal is to develop
a system in which the user can understand the GGDs
through visualization of examples of data in which the
GGDs hold.

User-guided repair using GGDs - Repairing graphs
with constraints is a key task to ensure data quality. The
repairing problem for GGDs can be defined as given a set
of GGDs Σ and a data graph 𝐺, make 𝐺 ⊧ Σ, meaning Σ
holds on 𝐺. Given the “generating” property of GGDs, a
naive way to repair the graph data is to always create new
nodes or edges. However, this solution can create even
more noise in the data and might not generate useful in-
formation. To avoid this situation, the knowledge of the
dataset specialist is crucial to correctly clean the data [20].
Involving the user can be very expensive because of the

https://smartdatalake.eu/


large number of possibilities to be verified. For this rea-
son, this topic has two main challenges: (1) develop a
mechanism to suggest the best option on how to repair
the data to the user and; (2) develop a policy on how and
which order the suggestions should be presented to the
user. To the best of our knowledge there is no method in
user-guided repair using dependencies in the property
graph model, however, studies in the context of relational
data and on knowledge bases [20, 21] can be reviewed
and provide inspiration to solve the problem.

5. Conclusion
In this project, we propose GGDs, a new class of depen-
dencies for the property graph model. GGDs can express
an association between (possibly different) graph pat-
terns and their attributes. GGDs can be used to describe
meaningful information about the graph data and as-
sist the user in further data analysis. In this paper, we
presented the definition of GGDs, practical use cases of
GGDs and the topics and challenges that we will investi-
gate on graph data profiling using GGDs.
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