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Abstract 
This article was addressed to the problem of improving the quality of low-resource systems 

for cryptographic information transformation. The existing contradictions between the limits 

on software and hardware implementation and the strength of the cryptographic algorithms 

can be partially eliminated by applying a set of groups of symmetric operations of 

cryptographic encoding. Unfortunately, to date, the results of studying symmetric two-bit 

two-operand operations of cryptographic encoding have a limited non-systemic nature. The 

lack of the unified generalized method for synthesizing groups of symmetric multi-bit two-

operand operations of cryptographic encoding makes it impossible to use the full potential of 

the practical application of these operations. Thus, the aim of this article is to create a unified 

method for synthesizing groups of symmetric multi-bit two-operand operations of 

cryptographic encoding. Achieving this aim will make it possible to significantly increase 

both the variability of lightweight low-resource cryptographic algorithms and the 

cryptographic strength directly related to it. A new concept of synthesizing groups of 

operations is proposed, which will make it possible to address the main shortcoming of the 

previous concept in which each method is based on its splitting into suboperands. Addressing 

this shortcoming will also make it possible to synthesize both symmetric two-bit two-operand 

operations of cryptographic encoding and symmetric two-operand operations of arbitrary 

bitness. Having been applied a new concept, it was synthesized a new previously unknown 

group of symmetric two-bit two-operand operations up to permutation. A symmetric group of 

matrix three-bit two-operand operations of cryptographic encoding was synthesized. The 

developed method for synthesizing symmetric multi-bit two-operand operations of 

cryptographic encoding, belonging to different mathematical groups, provides an increase in 

the variability and strength of cryptographic algorithms. 
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1. The Relevance of the Research 

Lightweight and low-resource cryptography are designed to implement cryptographic algorithms 

on devices with limited technical resources. The relevance of this direction and significant interest in 

its development are directly related to the expansion of the scope of using the cryptographic 

information protection [1–5]. Despite the fact that the limits on the hardware and software cases of 

implementing the cryptographic algorithms are different, in practice they are interrelated and most of 

them are overcome by the same means of addressing them. 

The vast majority of recently developed lightweight ciphers are symmetric block ciphers [6–10]. 

As a rule, when constructing low-resource ciphers, simplifications of well-known cryptographic 
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algorithms are used [11–17]. These simplifications are associated with: decreasing the size of 

encryption blocks, decreasing the size of keys, simplifying the key schedule and encryption rounds 

[18]. As it can be seen, all the above simplifications are directly related to the decrease in the 

cryptographic strength of the algorithms. 

One of the ways to partially overcome the conflict between the simplification of the cryptographic 

algorithm and its complexity can be considered increasing the algorithm's variability through the use 

of cryptographic information coding operations. 

2. Overview of the Work-Related Publications 

Symmetric two-operand operations of cryptographic encoding can be used to expand the 

variability of symmetric block ciphers. These operations can change both within the encryption round 

and when its shift. 

In essence, a two-operand operation of cryptographic encoding is a model of an interconnected 

group of lookup table sets for the first operand. Determining the lookup table that implements the 

transformation is defined by the value of the second operand [19]. Asymmetric operations of 

cryptographic encoding do not allow swapping of operand values. In addition, asymmetric operations 

can only be applied in interconnected pairs for direct and inverse transformations. Symmetric 

operations of cryptographic encoding allow permutation of the operands' values in places, and can be 

used for both direct and inverse transformation of information [19]. Based on the above, it can be 

concluded that symmetric operations of cryptographic encoding will be more preferable for use in 

lightweight ciphers in comparison with asymmetric operations. 

Despite the great practical possibilities for application in lightweight cryptography, symmetric 

two-operand operations of cryptographic encoding have almost not been studied. There are only 

partial studies' results of symmetric two-bit two-operand operations of cryptographic encoding. 

In [19], a group of symmetric two-bit two-operand operations of cryptographic encoding, 

synthesized on the basis of bitwise modulo two addition is described and investigated. Operations of 

this group are represented in the Table 1. 
Table 1 represents two-bit two-operand operations of cryptographic encoding of the first group, 
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Table 1 
Two-bit two-operand operations of cryptographic encoding, synthesized on the basis of bitwise 
modulo two addition (first group of operations) 
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where 
1

i
F  and 

2

i
F – i-th one-operand operations of transforming the first and the second 

suboperations, respectively; 

 performing the permutation of elementary functions on the two-bit two-operand operations of 

the base group [19]; 

 performing operations of inversion on synthesized operations [19]. 
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One-operand two-bit operations of cryptographic encoding 
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Basing on the modulo four addition, the second group of symmetric two-bit two-operand 

operations of cryptographic encoding was synthesized [20]. This group of operations is represented in 

the Table 3. 
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Table 3 
Two-bit two-operand operations of cryptographic encoding, synthesized on the basis of left-handed 
modulo four addition (second group of operations) 
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Synthesizing the second group of two-bit two-operand operations based on the modulo four 

addition (left-handed modulo four addition) for symmetric stream cipher is implemented similarly to 

synthesizing the first group of operations with the following differences [20]: 

 the operation of left-handed modulo four addition is split into two suboperations of 

processing the first and the second operands 
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where 4О  is the operation of left-handed modulo four addition; 
*1

4О  and 
*2

4О  are the 

suboperations of processing the first and the second operands, respectively; 

 the synthesis of the basic two-operand operation through transforming the suboperation of 

processing the first and the second operands is implemented as [20]: 
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The processes of further synthesizing the operations of the first and the second groups of 

operations coincide. 

Synthesizing the third group of symmetric two-bit two-operand operations of cryptographic 

encoding based on right-handed modulo four addition is considered in [21]. This group of operations 

is represented in the Table 4. 
Synthesizing the third group of symmetric two-bit two-operand operations based on the operation 

of right-handed modulo four addition is implemented similarly to synthesizing the first and the second 

groups of operations [21]. The operation of right-handed modulo four addition is split into two 

suboperations of processing the first and the second operands 
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where 4О  is the operation of right-handed modulo four addition. 

 

Synthesizing the basic group of symmetric two-bit two-operand operations through the operation 

of right-handed modulo four addition is implemented as [21]: 
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The processes of further synthesizing the operations of all three groups of operations coincide. 
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Table 4 
Two-bit two-operand operations of cryptographic encoding, synthesized on the basis of right-
handed modulo four addition (third group of operations) 

Operation classifier 

Operations of inversion 
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In [19-21], particular methods of synthesizing some groups of symmetric two-bit two-operand 

operations of cryptographic encoding are considered. These methods were developed taking into 

account the simplicity of their practical implementation. Currently, there is no unified method for 

synthesizing groups of symmetric multi-bit two-operand operations of cryptographic encoding. 

Therefore, the purpose of this study is to develop a to increase the variability of lightweight low-

resource cryptographic algorithms. 
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3. The Method for Synthesizing Symmetric Two-Operand Operations of 
Cryptographic Encoding 

The results of a computational experiment [22] indicate that there are 4 groups of symmetric two-

bit two-operand operations of cryptographic encoding by 24 operation. The conducted researches 

have shown that the unexplored group of operations is operations up to the permutation accuracy of 

the 
4

iО  values of the truth table of the operation 
4

1О , which are represented in the Table 5. 

Table 5 

The truth table of the operations 4

1О  and 4

iО  

The operation 4

1О  4

iО  

The operands' values 00 01 10 11 00 01 10 11 

00 00 01 10 11 a b c d 
01 01 11 00 10 b d a c 
10 10 00 11 01 c a d b 
11 11 10 01 00 d c b a 
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The operations’ 
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1О  truth table, can be represented as: 
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It turned out to be difficult to apply the considered synthesis methods [19 - 21] to synthesize a 

group of operations based on the operation 
4

1О
. This is due to the fact that synthesizing the 

considered groups of operations is constructed on extracting the operation of the suboperations' 

groups for processing the first and the second operands: 
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where 1f , 2f  are the elementary functions for obtaining the first and the second bits of the result, 

respectively; 
*

1f , 
*

2f  elementary functions for processing the corresponding bit of the suboperand. 

The operation 
1

1О  (1) is correctly decomposed into suboperands in accordance with (5). 

Operations 
2

1О  (2) and 
3

1О  (3) are conditionally decomposed into suboperands, since a complete 

decomposition in accordance with (5) has not been obtained. Decomposition of the operation 
4

1О  (5) 

into suboperands, causes even more difficulties. At the same time, it should be taken into account that 

each method is based on its decomposition into suboperands. To address the noted shortcomings, it is 

necessary to change the synthesis concept of the operations' groups: 
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To reduce the synthesis complexity, it is advisable to synthesize only the operations of the base 

group through this concept, and the rest to obtain by permutations and inversions, which is 

implemented in the prototype methods. 

By applying the new concept, a group of operations up to the permutation accuracy is being 

synthesized, on the basis of the operation 
4

1О . The synthesis results are represented in the Table 6. 
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Two-bit two-operand operations of cryptographic encoding, synthesized basing on the operation 
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1О  (fourth group of operations) 
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The obtained synthesis results coincided with the results of the computational experiment, in 

which the truth tables of symmetric two-bit two-operand operations of cryptographic encoding were 

modeled and sorted [22]. 

The proposed concept makes it possible synthesizing symmetric two-operand operations of 

arbitrary bitness, besides the symmetric two-bit two-operand operations of encoding. To do this, in 

concept (6), it is necessary to expand the number of bits:  

If 
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Based on this suggestion (7), the algorithm of the method for synthesizing symmetric two-operand 

operations of cryptographic encoding can be represented as follows: 

1. Based on a complete iterating over n-bit one-operand operations of the base group, applying 

the concept (7), it is synthesized symmetric two-operand operations of cryptographic encoding of 

the base group; 

2. Having performed the operations of elementary functions permutation over the two-operand 

operations of the base group, it will be obtained the extended group of symmetric operations; 

3. Having performed the operations of inverting the preliminary transformation results over the 

two-operand operations of the extended group, it will be obtained the complete group of 

symmetric two-operand operations of a given bitness. 

On the example of synthesizing symmetric two-bit two-operand operations, the proposed method 

provides the synthesis of a complete group of operations (24 operations) based on an arbitrary 

operation from this group. 

4. Implementation of the Method for Synthesizing Symmetric Two-Operand 
Operations of Cryptographic Information Encoding 

Consider the synthesis of symmetric three-bit two-operand operations of cryptographic encoding. 

The number of one-operand operations of cryptographic encoding is being determined [23]. 

𝐾𝑜
1(𝑛) = 2𝑛!     (7) 

𝐾𝑜
1(𝑛) = 𝐾об(𝑛) ∙ 𝐾оп(𝑛) ∙ 𝐾ои(𝑛) = 𝐾об(𝑛) ∙ 𝑛! ∙ 2𝑛    (8) 

where n is the operation’s bitness, 𝐾об(𝑛), 𝐾оп(𝑛) = 𝑛!, 𝐾ои(𝑛) = 2𝑛 are the number of basic 

operations, operations of permutations and operations of inversion, respectively. 

Based on the expressions (7) and (8), the number of two-bit one-operand operations of 

cryptographic encoding is determined as: 

𝐾𝑜
1(2) = 4! = 24;  𝐾𝑜

1(2) = 𝐾об(2) ∙ 2! ∙ 22 = 3 ∙ 6 ∙ 4 = 24.  
Since, according to the results of the experiment, there are 96 symmetric two-bit two-operand 

operations, and they make up 4 groups of 24 operations, it can be assumed that 𝐾𝑜
2(2) = 96 = 4 ∙ 22!. 

Consequently: 

𝐾𝑜
2(𝑛) = 𝑘 ∙ 2𝑛!     (9) 

where k is the groups' number of symmetric n-bit two-operand operations of cryptographic encoding. 

The number of operations in each group of symmetric three-bit two-operand operations in 

accordance with (9) is determined: 𝐾𝑜
2(3) = 𝑘 ∙ 23! = 𝑘 ∙ 8! = 𝑘 ∙ 40320 and is 40320 operations. 

In practice, at the time, it is not possible to synthesize a group from such a number of operations. 

This is due to the lack of the unified mathematical apparatus that makes it possible to simulate the 

entire set of three-bit one-operand operations [23]. Therefore, in the process of synthesizing 

symmetric three-bit two-operand operations (Table 7), there will be a limitation only to synthesizing 

basic two-operand operations on the basis of the matrix single-operand operations. 

In accordance with [23], the number of basic three-bit one-operand matrix operations is 28. 
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It is synthesized a basic group of symmetric three-bit two-operand matrix operations of 

cryptographic encoding based on the operation 
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proposed concept (7). The synthesis results are represented in the table 5. 

Application of the proposed method for synthesizing symmetric two-operand operations of 

cryptographic information encoding will provide, in accordance with (8), constructing groups of 1344 

matrix operations (𝐾𝑜
2∗

(𝑛∗) = 28 ∙ 3! ∙ 23 = 28 ∙ 6 ∙ 8 = 1344). 

To check the correctness of the synthesis results of the obtained symmetric matrix operations, it 

was applied the requirements for the symmetry of the operations given by the truth tables [22]. 

Additionally, each operation was checked on the basis of a complete iteration of all input data. 
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The basic group of symmetric three-bit two-operand matrix operations of cryptographic encoding 
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The developed method for synthesizing symmetric two-operand operations of cryptographic 

information encoding provides an opportunity of increasing the variability of lightweight 

cryptographic algorithms. In addition, synthesizing symmetric operations of cryptographic encoding 

which belong to different mathematical groups increases the cryptographic strength of the algorithm. 

The application of two-operand operations of cryptographic encoding, to which the synthesized 
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operations are related, leads to a slight increase in the complexity associated with the implementation 

of the operations' synthesis both at the hardware and software levels [24–27]. 

5. Conclusions 

1. For improving the quality of low-resource cryptographic systems, it was proposed to apply 

groups of symmetric operations of cryptographic information encoding. 

2. For combination of the existing and new results of studying groups of symmetric operations 

of cryptographic encoding, a new concept for synthesizing operations was proposed. 

3. A new method for synthesizing groups of symmetric multi-bit two-operand operations of 

cryptographic encoding has been developed to increase the variability of lightweight low-resource 

cryptographic algorithms. 

4. Having been applied this method, a new, previously unknown group of symmetric two-bit 

two-operand operations of cryptographic encoding has been synthesized. For the first time, a 

symmetric group of matrix three-bit two-operand operations of cryptographic encoding has been 

synthesized. 

5. The obtained results of operations' synthesis coincided with the results of a computational 

experiment by simulation of the obtained operations. 

6. The application of two-operand operations of cryptographic encoding, synthesized on the 

basis of this method, leads to a slight increase in the implementation complexity of the cryptographic 

algorithm both at the hardware and software levels. 

7. The proposed concept and the developed method for synthesizing symmetric multi-bit two-

operand operations of cryptographic encoding provide the construction of operations belonging to 

different mathematical groups. Applying operations from different mathematical groups provides an 

increase in both the variability and the encryption strength. 
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