
120

Particle Swarm Optimization based on S-Boxes Generation

Alexandr Kuznetsov1,2, Yaroslav Derevianko1,2, Nikolay Poluyanenko1,2,

and Oleksandr Bagmut1

1 V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine
2 JSC “Institute of Information Technologies,” 12 Bakulin str., Kharkiv, 61166, Ukraine

Abstract
The generation of nonlinear substitutions (S-boxes) is an important task in the design of

modern symmetric cryptoalgorithms. Various cryptographic properties of S-boxes

(nonlinearity, balance, delta-uniformity, correlation and algebraic immunity, etc.) characterize

their resistance to linear, differential, algebraic and other cryptanalysis methods. This article

explores a computational particle swarm optimization (PSO) method as applied to the problem

of generating nonlinear substitutions. Having a set of possible solutions (particles) and moving

these particles in the search space, the PSO tries to improve the possible solution in terms of

some quality indicator. We use nonlinearity, balance, delta uniformity, algebraic immunity and

linear redundancy as the main indicators, and randomly generated S-boxes are used as a set of

particles. This article shows several PSO modifications for generating nonlinear substitutions.

At first, we reproduce the previously known PSO modification for generating S-boxes and

show its low efficiency. At second, we propose our own PSO implementation and show that

this method can actually generate substitutions with high cryptographic properties. The

experimental results allow us to establish the influence of the size of the population of particles

and the number of iterations of the outer loop on the efficiency of the heuristic generation of

nonlinear substitutions. In addition, we explore the similarity of the generated substitution

tables with the AES cipher S-box.

Keywords 1
Nonlinear substitutions, s-boxes, particle swarm optimization, computational search.

1. Introduction

The efficiency of symmetric crypto algorithms is determined by many factors [1–3]: basic

transformation structure; key schedule scheme; properties of the strength of crypto primitives, etc.

One of the basic primitive blocks of symmetric cryptography is nonlinear substitutions (S-boxes,

substitution tables) [4–6]. Nonlinearity, balance, delta-uniformity, correlation and algebraic immunity

and other properties characterize resistance of S-boxes to linear, differential, algebraic and other

cryptanalysis methods. Therefore, the problem of generating substitutions with the required properties

is an important and urgent scientific problem [7–9].

Various methods are used to generate cryptographically strong substitutions, see for example

[6,10,11]. In one of the latest works [12], it was proposed to use the particle swarm method (PSO).

However, the results shown in this article are not reliable (see for example our comment [13]). However,

the idea of using PSO to generate S-boxes can be useful. The purposes of our article are researching of

the PSO for heuristic generation of nonlinear substitutions, experimental verification of the results, and

justification of some PSO parameters to form S-boxes with the required properties.

CPITS-II-2021: Cybersecurity Providing in Information and Telecommunication Systems, October 26, 2021, Kyiv, Ukraine
EMAIL: kuznetsov@karazin.ua (A. Kuznetsov); yarik0009258@gmail.com (Y. Derevianko); nlfsr01@gmail.com (N. Poluyanenko);

oleksandr.bagmut@karazin.ua (O. Bagmut)

ORCID: 0000-0003-2331-6326 (A. Kuznetsov); 0000-0002-3290-3373 (Y. Derevianko); 0000-0001-9386-2547 (N. Poluyanenko); 0000-
0003-3241-5756 (O. Bagmut)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kuznetsov@karazin.ua
mailto:nlfsr01@gmail.com
https://www.scopus.com/redirect.uri?url=http://www.orcid.org/0000-0003-2331-6326&authorId=55428957200&origin=AuthorProfile&orcId=0000-0003-2331-6326&category=orcidLink

121

2. Particle Swarm Optimization

Particle swarm optimization - heuristic method of global optimization, which is implemented on the

basis of populations, which is proposed in [14]. PSO is based on "swarm" intelligence, which is a natural

behavior of birds, fishes, insects and others. Swarm particles either fly away or fly together in search of

food before they find a good place, where the food is located. While searching for food, there is always

one bird that feels and seeks food better than others, so such bird is more likely to find a place where

food can be found, which means that it will have better information about the source of food than others.

Since birds constantly share such "good" information in the search process, the flock will eventually

move to a "better" place where food is more likely to be found. In PSO, the movement of "birds" begins

from one location to another, equivalent to a flock, good information is equivalent to the most optimistic

solution, and the expected food is equivalent to the most optimistic solution for the entire operation of

the algorithm.

This method helps to find the most optimistic solution due to the cooperation of each element of the

population, the “bird.” Quite complex optimization problems can be solved using PSO algorithm. The

advantages allow it to be applied to many areas of optimization alone and in combination with other

existing algorithms. The algorithm is used in such areas as neural network training, optimization of

certain functions, machine learning, signal processing, etc., [15–18].

In the basic PSO algorithm, the population consists of «N» particles, and the location of each of the

particles corresponds to a potential solution in d -dimensional space. The position of each particle in

the swarm is influenced by both the most optimistic position during its movement (individual

experience, called personal best - pBest of the particle), and the position of the most optimal particle

in its vicinity (experience that is called the best of all - gBest).

Flock particles fly into search space due to their exploration and exploitation capabilities and use

pBest and gBest , to find the best solution in PSO. In addition, each particle is characterized by

velocity. The velocity and position of each particle are reviewed after each subsequent iteration of the

algorithm.

The velocity and position of each particle are determined at each step as:

 1

1 1 2 2() ()k k k k k k

id id id id id idv v c r pBest x c r gBest x (1)

 1 1k k k

id id idx x v (2)

where:

 k

idv and k

idx is velocity and position of the particle « i » at its « k » times and the d-dimension

quantity of its position;

 k

idpBest is d -dimension quantity of the individual « i » element at its most optimist position;

 k

idgBest is d -dimension quantity of the most optimistic position of the whole «swarm»;

 parameters 1 2 1 2, , ,c c r r are randomly generated within[0,1] .

In abstract [12] proposed interpretation of PSO for the generation of highly nonlinear S-boxes that

implement bijective mappings 8 8:{0,1} {0,1}S . Although, the authors of this research made mistakes

in calculating the nonlinearity of S-boxes (in particular, see our commentary [13]), we reproduced their

proposed algorithm for computational search of nonlinear substitutions and made our own researches

of the efficiency of PSO.

2.1. PSO Implementation to Generate S-Boxes

According to the description from [12] the generation of S-boxes occurs using the following

algorithm.

1. Population initialization

For S-box optimization problem, each individual 8 8 S-box is considered as the particle. The S-

box population is generated randomly so that the S-Boxes remain bijective. Generation is repeated until

the N -sized population is filled.

122

2. Calculation of nonlinearity

Next, nonlinearity is calculated for each block. According to this nonlinearity, the population of

blocks is sorted (in descending order of nonlinearity).

3. PSO vector initialization

The velocity vector is filled with zeros and updated at each successful iteration. Each position vector

is initialized using the appropriate S-Box in the population. The velocity vector is updated by formula

(1), and the location vector is updated by formula (2). The vector of the most optimistic positions during

the iteration (pBest) is updated for each generated population if the nonlinearity values of the new

blocks are better than the previous ones. The most optimal of all is the particle with the highest

nonlinearity in the population.

4. Initialization of PSO parameters

PSO parameters, such as
1c ,

2c ,
1r and

2r are randomly selected using a Renyi map. During the

optimization phase of the algorithm, these parameters randomly change at each iteration. Another

parameter is the coefficient of inertia (inertial weight), which is given by the formula:

 2 1
1 (1)()curIter

w w
w w curIter

maхIter

 (3)

where
1w and

2w is the initial and final value of the coefficient, respectively.

5. Improvement and adjustment

The velocity and location vectors are updated according to the laws in formulas (1) and (2)

respectively. The process of such improvement generates certain values that are repeated or negative.

To prevent this, the authors use certain processing methods, replacing repeated values with values that

are lacking to preserve the bijectivity. An algorithm for such improvements is not provided in [12].

6. The final step of the iteration

Next, the nonlinearity value is also calculated for all newly generated blocks, and all S-Boxes,

including those already in the population, are sorted again in descending of nonlinearity. N best blocks

according to the nonlinearity remain in the population, all other blocks are discarding. Vectors pBest

and gBest are updated as above.

The pseudocode of the algorithm presented in the article [12], is shown in Fig. 1.

In [13] we showed that the calculation of the nonlinearity of S-Boxes in [12] was incorrect.

According to Fig. 1 nonlinearity is chosen as the main target of optimization. Therefore, the

effectiveness of the use of PSO to generate substitutions can’t be established by publication [12].

In this article, we reproduced the algorithm shown in Fig. 1 and made some experimental researches

with correct calculation of nonlinearity. Unfortunately, we were unable to form a single S-Box with a

nonlinearity greater than 98, even after numerous experiments. This is a very poor result, which

indicates an unsuccessful PSO interpretation. But this does not mean that the PSO method cannot be

efficiency applied in another interpretation.

2.2. New PSO Implementation to Generate S-Boxes

In this work, we propose a new implementation of PSO. The PSO method modified by us almost

completely repeats algorithm from [12]. The main difference is in the first iteration of the while loop

when forming the first block in the new population, as well as when filling the vectors of the most

optimal blocks. Additionally, we estimate other properties of S-Boxes (algebraic immunity, delta

uniformity, and linear redundancy).

The essence of the modified algorithm is given below.

1. Population initialization

As in the algorithm discussed earlier, each 8 8 S-box is considered as the particle. The S-box

population is generated randomly so that the S-Boxes remain bijective. Generation is repeated until the

N -sized population is filled.

2. Calculation of nonlinearity

Next, nonlinearity is calculated for each block. According to this nonlinearity, the population of

blocks is sorted (in descending order of nonlinearity).

123

__

Input arguments:

N ← number of blocks in the population

max_itr ← maximum number of iterations

xr ← initial value of Renyi chaotic map

c ← parameter of Renyi map

__

Generation of the initial population of S-boxes:

xr ← renyi_map(xr, c, 100)

population ← zeros(2 × N, 256) // 256 for 8 × 8 S-boxes

for i ← 1 to N

 [sboxi, xr] ← gen_sbox(xr, c)

 population[i] ← sboxi

end for

population[1] ← aes_sbox

__

Calculation of nonlinearity for each of the particles:

for i ← 1 to N do:

NL[i] ← nonlinearity(population[i])

end for

NL_sorted ← sort(NL) // sorting in descending order

gBest ← population[1]

pBesti ← population[i]

Vel ← zeros(N, 256)

Setting the inertial weight w

__

The beginning of the improvement phase:

While (max_itr > 0) do:

 xr ← renyi_map(xr, c); c1 ← 2∗xr
 xr ← renyi_map(xr, c); c2 ← 2∗xr
 xr ← renyi_map(xr, c); r1 ← xr

 xr ← renyi_map(xr, c); r2 ← xr

 NL ← NL_sorted

 for i ← 1 to N do:

 for j = 1 to 256 do:

Vel[i][j] ← ceil(w∗Vel[i][j] + c1∗r1∗(pBest[i][j] - population[i][j]) +

c2∗r2∗(gBest[j]-population[i][j]))
 if (Vel[i][j] < 0)

 Vel[i][j] ← (Vel[i][j] + 256)mod(256)

 end if

 X[i, j] ← int(population[i][j] + Vel[i][j])mod(256)

 temp_sbox[j] ← X[i, j]

 end for

Apply a specific control algorithm to preserve the bijecivity int temp_sbox

 population[N + i] ← temp_sbox

 end for

 for i ← 1 to N do:

 NL_sorted[N + i] ← nonlinearity(population[N + i])

 end for

 NL_sorted ← sort(NL_sorted)

 Discarding of redundant elements

 for i ← 1 to N do:

 if (NL[i] < NL_sorted[i])

 pBest[i] ← population[i]

 end if

 end for

 Update gBest

 max_itr ← max_itr - 1

end while

__

Figure 1: Implementation of PSO from the article [12]

3. PSO vector initialization

The velocity vector is filled with zeros and updated at each successful iteration. Each position vector

is initialized using the appropriate S-Box in the population. The velocity vector is updated by formula

(1), and the location vector is updated by formula (2). The difference in our algorithm is that when

forming a new population, the first block of the new population is formed due to the interaction of the

first block of the initial population with itself and changing a small number of values. This gives an

almost zero velocity vector on the first iteration, which allows to gradually deteriorate on subsequent

iterations. In subsequent iterations, if after applying this method the nonlinearity of S-box is higher than

98, the block is further mixed randomly to improve other parameters such as linear redundancy, delta

uniformity and algebraic immunity.

This is done in order to reach a compromise, so that there are no situations where one parameter is

very good and the others are bad. It is possible to ensure that all parameters are sufficient and satisfy

most conditions using this method.

The vector of the most optimistic positions during the iteration (pBest) is updated for each

generated population if the nonlinearity values of the new blocks are better than the previous ones.

The most optimal particle in our method is also updated at each iteration and equated to the best

block in the vector of the most optimistic positions pBest .

124

4. Initialization of PSO parameters

PSO parameters such as 1c ,
2c ,

1r and
2r are randomly selected. During the optimization phase of

the algorithm, these parameters randomly change at each iteration. Inertial weight is also (3).

5. Improvement and adjustment

The following algorithm was developed to preserve the objectivity of S-Boxes (Fig. 2). After

forming a block, each of its elements is checked for coincidence with another element in this block. If

when checking a certain element such an element already exists in this block, then the variable contains

becomes 1, and the value is updated by adding a random value to it, and taking it by modulo 256. This

is repeated as long as only unique values from 0 to 255 remain in the S-Box. The pseudocode of the

algorithm is given below.
__

for (int i = 0; i < N; ++i)

 for (int j = 0; j < size;)

 Updating values by (1) and (2)

 int contains;

 if (contains == 0)

 tempSbox[j] = X;

 end if

else

 tempSbox[j] = myModulusDec((tempSbox[j] + rand()), 256);

 end else;

 contains = 0;

 for (int k = 0; k < j; ++k)

 if (tempSbox[k] == tempSbox[j])

 contains = 1;

 break;

 end if

 end for

 if (!contains)

 j++;

 end if

 end for

end for

__

Figure 2: Algorithm for preserving the bijectivity of population particles

6. The final step of the iteration

Next, the nonlinearity value is also calculated for all newly generated blocks, and all S-Boxes,

including those already in the population, are sorted again in descending of nonlinearity. N best blocks

according to the nonlinearity remain in the population, all other blocks are discarding. Vectors pBest

and gBest are updated as above.

The pseudocode of the modified algorithm is shown in Fig. 3.

Our proposed new modification of PSO allows to form S-boxes with nonlinearity 104, delta

uniformity 8, linear redundancy 0 and algebraic immunity 3 in a relatively short time. As an example,

we give one of the following S-boxes (8-bit output vectors are given in decimal format):
{99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 180,

202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114,

192, 183, 253, 147, 38, 54, 63, 29, 146, 52, 165, 229, 241, 113, 216, 49,

88, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117,

9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83,

209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 51, 207, 208,

239, 170, 251, 67, 77, 166, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81,

163, 64, 143, 221, 28, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205,

12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129,

79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58,

10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55,

109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37,

46, 187, 232, 72, 198, 85, 247, 116, 31, 191, 189, 139, 138, 112, 62, 181,

102, 204, 3, 75, 17, 97, 53, 87, 185, 134, 193, 148, 158, 225, 248, 152,

223, 105, 217, 142, 176, 155, 30, 135, 233, 206, 40, 45, 22, 140, 161, 137,

13, 153, 230, 66, 104, 65, 246, 15, 21, 84, 157, 14, 118}

The next step in our research was examination of the effect of particle population size and the

number of iterations of the external cycle on the efficiency of heuristic generation of nonlinear

substitutions.
__

125

Input arguments:

N ← number of blocks in the population

max_itr ← maximum number of iterations

mode ← mode (0 – algorithm from [12], 1 – modified algorithm)

__

Generation of the initial population of S-boxes:

srand(time(NULL));

int flag = rand()%size;

population ← zeros(2 × N, 256) // 256 for 8 × 8 S-boxes

for i ← 1 to N

 [sboxi, xr] ← gen_sbox(i+flag)

Generation occurs using rand () and Fisher-Yates mixing

 population[i] ← sboxi

end for

population[1] ← aes_sbox

__

Calculation of nonlinearity for each of the particles:

for i ← 1 to N do:

NL[i] ← nonlinearity(population[i])

end for

NL_sorted ← sort(NL) // sorting in descending order

gBest ← population[1]; pBesti ← population[i]; Vel ← zeros(N, 256);

Setting the inertial weight w

__

The beginning of the improvement phase:

While (max_itr > 0) do:

 Using (3) for w

 c1 ← 2∗rand() [0,1]; c2 ← 2∗rand() [0,1]; r1 ← rand() [0,1]; r2 ← rand() [0,1];
 NL ← NL_sorted

 for i ← 1 to N do:

 for j = 1 to 256 do:

 if (mode == 1)

Vel[i][j] ← ceil(w∗Vel[i][j] + c1∗r1∗(gBest[i][j] - population[i][j]) +

c2∗r2∗(gBest[j]-population[i][j]))
 end if

if (mode == 0)

Vel[i][j] ← ceil(w∗Vel[i][j] + c1∗r1∗(pBest[i][j] - population[i][j]) +

c2∗r2∗(gBest[j]-population[i][j]))
 end if

 if (Vel[i][j] < 0)

 Vel[i][j] ← (Vel[i][j] + 256)mod(256)

 end if

 X[i, j] ← int(population[i][j] + Vel[i][j])mod(256)

 temp_sbox[j] ← X[i, j]

 end for

Using algorithm from Fig.2 to prevent bijectivity

if (i == 0)

int LAT = LATMax(tempSbox, size, count);

 int NL = raiseToPower(2, count - 1) - LAT;

 if (NL > 98)

 for (int v = 0; v < 15; ++v)

 srand(tempSbox[v] * (curIter * v) % 256); int coeff = rand() % 50;

 printf("coeff1 %d", coeff); int coeff2 = rand() % 256;

 printf("coeff2 %d", coeff2); int temp = tempSbox[coeff];

 tempSbox[coeff] = tempSbox[coeff2]; tempSbox[coeff2] = temp;

 end for

end if

end if

 population[N + i] ← temp_sbox

 end for

 for i ← 1 to N do:

 NL_sorted[N + i] ← nonlinearity(population[N + i])

 end for

 NL_sorted ← sort(NL_sorted)

 Discarding of redundant elements

 if (curIter == 0)

 for (int m = 0; m < size; ++m)

 gBest[m] = population[0][m];

 end for

 for (int i = 1; i < N; ++i)

 for (int j = 0; j < size; ++j)

 pBest[i - 1][j] = population[i][j];

 end for

 end for

 end if

 else

 for (int m = 0; m < size; ++m)

 gBest[m] = population[1][m];

 end for

 for (int i = 2; i < N; ++i)

 for (int j = 0; j < size; ++j)

 pBest[i - 1][j] = population[i][j];

 end for

 end for

 end else

 Evaluation of all blocks in the population for compliance with the required parameters

 Updating gBest, if find

 max_itr ← max_itr – 1; mode = 0

 ++curIter

end while

Write the final population to file

__

Figure 3: Modified PSO to generate S-Boxes

126

3. Results of Experimental Research and Discussion

A new modification of PSO was examined in detail during the experiments. The results of test runs

to search for blocks with the required parameters are given in Tables 1-13.

Table 1
Experiment 1 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 84.88 – –
5 50 not found 492.55 – –
5 100 not found 946.41 – –
5 150 not found 1353.63 – –
5 200 not found 1741.28 – –

10 10 not found 217.65 – –
10 50 not found 992.38 – –
10 100 not found 1862.28 – –
10 150 41 761.95 30 0.8828
10 200 173 2979.45 31 0.8789
20 10 not found 449.93 – –
20 50 not found 1904.47 – –
20 100 not found 3584.98 – –
20 150 not found 5301.96 – –
20 200 not found 6942.43 – –
40 10 not found 858.82 – –
40 50 not found 3682.55 – –
40 100 not found 7099.77 – –
40 150 141 9752.98 31 0.8789
40 200 not found 14270.52 – –

Table 2
Experiment 2 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 104.23 – –
5 50 not found 538.65 – –
5 100 not found 1190.65 – –
5 150 not found 1805.80 – –
5 200 not found 2314.13 – –

10 10 not found 238.50 – –
10 50 not found 1305.35 – –
10 100 not found 2491.63 – –
10 150 not found 3573.84 – –
10 200 not found 4656.12 – –
20 10 not found 541.57 – –
20 50 not found 2554.30 – –
20 100 not found 4785.10 – –
20 150 128 5721.88 34 0.8671
20 200 180 7902.11 30 0.8828
40 10 not found 1125.40 – –
40 50 not found 5054.16 – –
40 100 not found 9507.63 – –
40 150 not found 13671.93 – –
40 200 115 9065.45 32 0.8750

127

Table 3
Experiment 3 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 80.47 – –
5 50 not found 415.47 – –
5 100 not found 850.42 – –
5 150 not found 1265.85 – –
5 200 not found 1722.77 – –

10 10 not found 174.28 – –
10 50 not found 922.19 – –
10 100 not found 1782.55 – –
10 150 139 2416.90 30 0.8828
10 200 not found 3433.16 – –
20 10 not found 370.90 – –
20 50 not found 1832.72 – –
20 100 59 1972.26 30 0.8828
20 150 not found 5230.96 – –
20 200 119 3931.65 33 0.8710
40 10 not found 800.76 – –
40 50 not found 3621.85 – –
40 100 not found 7091.61 – –
40 150 not found 10458.92 – –
40 200 185 12779.69 31 0.8789

Table 4
Experiment 4 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 77.60 – –
5 50 not found 390.76 – –
5 100 not found 808.13 – –
5 150 not found 1202.86 – –
5 200 not found 1625.47 – –

10 10 not found 165.16 – –
10 50 not found 864.62 – –
10 100 46 725.23 34 0.8671
10 150 not found 2534.65 – –
10 200 not found 3364.91 – –
20 10 not found 359.31 – –
20 50 not found 1756.20 – –
20 100 not found 3448.87 – –
20 150 not found 5132.69 – –
20 200 not found 6735.40 – –
40 10 not found 754.74 – –
40 50 not found 3512.35 – –
40 100 not found 6878.40 – –
40 150 not found 10011.85 – –
40 200 160 10223.11 32 0.8750

128

Table 5
Experiment 5 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 76.79 – –
5 50 not found 391.46 – –
5 100 not found 795.54 – –
5 150 not found 1213.76 – –
5 200 not found 1601.32 – –

10 10 not found 167.58 – –
10 50 not found 867.30 – –
10 100 67 1079.23 35 0.8632
10 150 not found 2528.51 – –
10 200 not found 3370.54 – –
20 10 not found 356.95 – –
20 50 not found 1741.53 – –
20 100 93 3127.57 30 0.8828
20 150 not found 5102.65 – –
20 200 not found 6763.24 – –
40 10 not found 753.54 – –
40 50 not found 3527.99 – –
40 100 not found 6828.83 – –
40 150 not found 9957.19 – –
40 200 128 8043.43 32 0.8750

Table 6
Experiment 6 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 74.34 – –
5 50 47 354.86 32 0.8750
5 100 60 432.99 31 0.8789
5 150 not found 1193.36 – –
5 200 25 177.53 33 0.8710

10 10 not found 167.10 – –
10 50 not found 847.43 – –
10 100 46 703.24 36 0.8593
10 150 not found 2500.45 – –
10 200 9 133.74 31 0.8789
20 10 not found 351.87 – –
20 50 not found 1711.80 – –
20 100 not found 3380.28 – –
20 150 87 2739.64 33 0.8710
20 200 not found 6702.15 – –
40 10 not found 726.33 – –
40 50 not found 3475.42 – –
40 100 not found 6769.95 – –
40 150 not found 10019.90 – –
40 200 101 6294.79 31 0.8789

129

Table 7
Experiment 7 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 79.10 – –
5 50 not found 394.38 – –
5 100 not found 825.93 – –
5 150 not found 1236.77 – –
5 200 not found 1650.94 – –

10 10 not found 170.88 – –
10 50 19 293.26 32 0.8750
10 100 not found 1733.82 – –
10 150 not found 2602.92 – –
10 200 not found 3467.82 – –
20 10 not found 373.83 – –
20 50 not found 1800.63 – –
20 100 not found 3494.82 – –
20 150 not found 5237.45 – –
20 200 not found 6982.87 – –
40 10 not found 761.22 – –
40 50 not found 3621.89 – –
40 100 not found 7057.81 – –
40 150 not found 10465.29 – –
40 200 not found 13880.89 – –

Table 8
Experiment 8 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 7 51.30 32 0.8750
5 50 not found 408.70 – –
5 100 not found 824.20 – –
5 150 not found 1258.96 – –
5 200 not found 1644.69 – –

10 10 not found 172.86 – –
10 50 not found 879.15 – –
10 100 25 392.40 32 0.8750
10 150 not found 2572.43 – –
10 200 119 1918.16 35 0.8632
20 10 not found 371.46 – –
20 50 not found 1771.66 – –
20 100 not found 3531.34 – –
20 150 59 1909.44 31 0.8789
20 200 59 1899.25 32 0.8750
40 10 not found 755.48 – –
40 50 not found 3621.89 – –
40 100 not found 6942.53 – –
40 150 106 6943.96 32 0.8750
40 200 not found 13843.27 – –

130

Table 9
Experiment 9 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 79.37 – –
5 50 not found 396.52 – –
5 100 not found 804.42 – –
5 150 not found 1242.67 – –
5 200 16 117.86 35 0.8632

10 10 not found 170.65 – –
10 50 not found 874.37 – –
10 100 45 723.78 33 0.8710
10 150 not found 2590.71 – –
10 200 not found 3376.27 – –
20 10 not found 368.23 – –
20 50 not found 1812.57 – –
20 100 not found 3483.90 – –
20 150 not found 5128.78 – –
20 200 not found 6737.66 – –
40 10 not found 760.91 – –
40 50 not found 3567.87 – –
40 100 60 3895.49 32 0.8750
40 150 12 784.66 33 0.8710
40 200 122 7741.89 31 0.8789

Table 10
Experiment 10 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 76.87 – –
5 50 not found 396.38 – –
5 100 not found 811.63 – –
5 150 68 503.72 36 0.8593
5 200 not found 1641.91 – –

10 10 not found 171.87 – –
10 50 not found 885.23 – –
10 100 not found 1735.72 – –
10 150 not found 2597.36 – –
10 200 not found 3440.48 – –
20 10 not found 366.27 – –
20 50 not found 1783.27 – –
20 100 not found 3530.93 – –
20 150 not found 5177.53 – –
20 200 not found 6878.85 – –
40 10 not found 751.28 – –
40 50 not found 3600.52 – –
40 100 not found 7044.17 – –
40 150 not found 10293.34 – –
40 200 not found 13629.83 – –

131

Table 11
Experiment 11 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 75.93 – –
5 50 not found 389.89 – –
5 100 not found 790.66 – –
5 150 not found 1172.46 – –
5 200 not found 1609.27 – –

10 10 not found 165.39 – –
10 50 not found 856.82 – –
10 100 81 1326.95 30 0.8828
10 150 not found 2468.59 – –
10 200 not found 3366.65 – –
20 10 not found 355.20 – –
20 50 not found 1744.30 – –
20 100 not found 3376.48 – –
20 150 not found 5062.85 – –
20 200 not found 6741.53 – –
40 10 not found 740.96 – –
40 50 5 306.39 32 0.8750
40 100 not found 6799.41 – –
40 150 not found 10074.13 – –
40 200 85 5273.26 31 0.8789

Table 12
Experiment 12 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 77.67 – –
5 50 7 48.54 33 0.8710
5 100 not found 785.60 – –
5 150 not found 1209.89 – –
5 200 not found 1615.53 – –

10 10 not found 165.72 – –
10 50 not found 868.91 – –
10 100 73 1192.63 30 0.8828
10 150 not found 2515.39 – –
10 200 195 3237.48 31 0.8789
20 10 not found 354.79 – –
20 50 not found 1742.73 – –
20 100 not found 3437.68 – –
20 150 not found 5130.86 – –
20 200 not found 6792.29 – –
40 10 not found 750.21 – –
40 50 not found 3545.66 – –
40 100 not found 6870.33 – –
40 150 not found 10212.32 – –
40 200 11 699.60 31 0.8789

132

Table 13
Experiment 13 (PC 32 cores)

N MaxIter M Т, s Nd Nd, %

5 10 not found 79.36 – –
5 50 not found 401.46 – –
5 100 41 302.12 32 0.8750
5 150 not found 1244.88 – –
5 200 not found 1615.53 – –

10 10 not found 169.78 – –
10 50 not found 886.25 – –
10 100 not found 1759.42 – –
10 150 not found 2600.69 – –
10 200 122 1979.11 32 0.8750
20 10 not found 370.42 – –
20 50 not found 1833.76 – –
20 100 not found 3495.82 – –
20 150 not found 5286.66 – –
20 200 23 751.50 37 0.8554
40 10 not found 770.72 – –
40 50 not found 3591.87 – –
40 100 not found 7075.36 – –
40 150 not found 10520.47 – –
40 200 not found 13910.12 – –

The Tables 1-13 indicate:

 N is number of blocks in the population.

 MaxIter is specified number of iterations.

 M is number of iterations to find the required block (or not found).

 T is work time.

 Nd is the number of positions differs from AES.

 Nd, % is coefficient of similarity (in percent) with AES S-Box.

Below is a summary of the information presented in the form of a histogram (see Fig. 4).

In Fig. 4 on the x -axis indicates the number of iterations, on the y -axis is the number of blocks in

the population, on z - the number of blocks (with the required parameters) found (as required set:

nonlinearity = 104, algebraic immunity = 3, linear redundancy = 0). As you can see, the larger N and

MaxIter , the more blocks found.

Additionally, the last two columns in Tables 1-13 should be commented on. These columns contain

parameters of difference (absolute and relative) from the values of the algebraic S-box of the AES

cipher [19,20]. This S-box is used as the initial filling of one of the particles of the swarm (see the line

«population[1] ← aes_sbox» in Fig. 1, 3), therefore is a certain initial value when generating

substitutions. The corresponding differences characterize the "distance" of the found S-box from this

initial value.

As you can see, the generated substitution tables are very similar to the AES cipher S-box (almost

90% similarity). S-boxes generated by the algorithm from [21] are also close by this property.

Therefore, it is promising to compare these two generation algorithms for the efficiency of

computational search.

133

Figure 4: Graph of the dependence of the number of found blocks on N and MaxIter

4. Acknowledgements

This work was supported in part by the National Research Foundation of Ukraine under Grant

2020.01/0351.

5. References

[1] B. Schneier, Applied cryptography : protocols, algorithms, and source code in C, New York :

Wiley, 1996. http://archive.org/details/appliedcryptogra00schn_328 (accessed July 25, 2020).

[2] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, P.C. van Oorschot, S.A. Vanstone, Handbook of

Applied Cryptography, CRC Press, 2018. https://doi.org/10.1201/9780429466335.

[3] S. Rubinstein-Salzedo, Cryptography, Springer International Publishing, Cham, 2018.

https://doi.org/10.1007/978-3-319-94818-8.

[4] K. Nyberg, Perfect nonlinear S-boxes, in: D.W. Davies (Ed.), Advances in Cryptology —

EUROCRYPT ’91, Springer, Berlin, Heidelberg, 1991: pp. 378–386. https://doi.org/10.1007/3-

540-46416-6_32.

[5] W. Millan, How to improve the nonlinearity of bijective S-boxes, in: C. Boyd, E. Dawson (Eds.),

Information Security and Privacy, Springer, Berlin, Heidelberg, 1998: pp. 181–192.

https://doi.org/10.1007/BFb0053732.

[6] J. Álvarez-Cubero, Vector Boolean Functions: applications in symmetric cryptography, 2015.

https://doi.org/10.13140/RG.2.2.12540.23685.

[7] D. Souravlias, K.E. Parsopoulos, G.C. Meletiou, Designing bijective S-boxes using Algorithm

Portfolios with limited time budgets, Applied Soft Computing. 59 (2017) 475–486.

https://doi.org/10.1016/j.asoc.2017.05.052.

[8] J. McLaughlin, Applications of search techniques to cryptanalysis and the construction of cipher

components, phd, University of York, 2012. http://etheses.whiterose.ac.uk/3674/ (accessed August

16, 2020).

[9] C. Carlet, Vectorial Boolean functions for cryptography, Boolean Models and Methods in

Mathematics, Computer Science, and Engineering. (2006).

[10] A.J. Clark, Optimisation heuristics for cryptology, phd, Queensland University of Technology,

1998. https://eprints.qut.edu.au/15777/ (accessed May 19, 2021).

134

[11] L.D. Burnett, Heuristic Optimization of Boolean Functions and Substitution Boxes for

Cryptography, phd, Queensland University of Technology, 2005. https://eprints.qut.edu.au/16023/

(accessed May 19, 2021).

[12] M. Ahmad, I.A. Khaja, A. Baz, H. Alhakami, W. Alhakami, Particle Swarm Optimization Based

Highly Nonlinear Substitution-Boxes Generation for Security Applications, IEEE Access. 8 (2020)

116132–116147. https://doi.org/10.1109/ACCESS.2020.3004449.

[13] A. Kuznetsov, K. Kuznetsova, Comment on “Particle Swarm Optimization Based Highly

Nonlinear Substitution-Boxes Generation for Security Applications,” in: 2021 11th IEEE

International Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications (IDAACS), Cracow, Poland, September 22-25.

http://www.idaacs.net (accessed October 15, 2021).

[14] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International

Conference on Neural Networks, 1995: pp. 1942–1948 vol.4.

https://doi.org/10.1109/ICNN.1995.488968.

[15] M.E.H. Pedersen, A.J. Chipperfield, Simplifying Particle Swarm Optimization, Applied Soft

Computing. 10 (2010) 618–628. https://doi.org/10.1016/j.asoc.2009.08.029.

[16] Y. Xiaojing, J. Qingju, L. Xinke, Center Particle Swarm Optimization Algorithm, in: 2019 IEEE

3rd Information Technology, Networking, Electronic and Automation Control Conference

(ITNEC), 2019: pp. 2084–2087. https://doi.org/10.1109/ITNEC.2019.8729510.

[17] Z. Yimin, S. Guojun, Y. Xiaoguang, Cloud service selection optimization method based on parallel

discrete particle swarm optimization, in: 2018 Chinese Control And Decision Conference (CCDC),

2018: pp. 2103–2107. https://doi.org/10.1109/CCDC.2018.8407473.

[18] M.E.H. Pedersen, Tuning & simplifying heuristical optimization, phd, University of

Southampton, 2010. https://eprints.soton.ac.uk/342792/ (accessed August 5, 2021).

[19] J. Daemen, V. Rijmen, Rijndael/AES, in: H.C.A. van Tilborg (Ed.), Encyclopedia of Cryptography

and Security, Springer US, Boston, MA, 2005: pp. 520–524. https://doi.org/10.1007/0-387-23483-

7_358.

[20] J. Daemen, V. Rijmen, Specification of Rijndael, in: J. Daemen, V. Rijmen (Eds.), The Design of

Rijndael: The Advanced Encryption Standard (AES), Springer, Berlin, Heidelberg, 2020: pp. 31–

51. https://doi.org/10.1007/978-3-662-60769-5_3.

[21] O. Kazymyrov, V. Kazymyrova, R. Oliynykov, A Method For Generation Of High-Nonlinear S-

Boxes Based On Gradient Descent, 2013. https://eprint.iacr.org/2013/578 (accessed August 16,

2020).

