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Abstract
We propose a stacked autoencoder (AE) that stacks a novel bit-wise denoising AE and a bit-wise AE for
decode and forward (DF) relay network impacted by the I/Q imbalance (IQI) at all the nodes. Within
the stacked AE framework, we propose block-coded modulation (BCM) and differential-BCM (d-BCM)
designs depending on the availability of the channel state information (CSI) knowledge. Moreover,
IQI estimation increases feedback overhead, thus, we design the stacked AE without utilizing the IQI
parameters information that can generalize well on varying levels of IQI and signal-to-noise ratio,
completely removing the IQI estimation overhead. By extensive evaluation, we show that the proposed
stacked AE framework can remove the deteriorating impact of IQI performing similar to ideal relay
networks without IQI.
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1. Introduction

With the advent of internet-of-everything (IoE) in the sixth-generation (6G) networks, relay
networks will play a pivotal role by enhancing network reliability, data coverage, and spectral
efficiency. The decode-and-forward (DF) [1] relaying outperforms amplify-and-forward (AF) [2]
relaying, but suffers from error propagation due to imperfect signal decoding and re-encoding.

Further, future applications of the IoE mandate low-latency requirements. Thus, designing
block coded modulation (BCM) for short block lengths (𝑛) has gained considerable industry
traction, but remains a difficult problem because (1) it becomes extremely difficult to fit 2𝑘 (for
any 𝑘 input bits) for short block lengths, and (2) bit-labeling requires solving a 2𝑘! combinato-
rial problem, that becomes NP-hard for larger values of 𝑘. Further, estimating channel state
information (CSI) knowledge increases the feedback overhead, that will increase exponentially
in the future IoE-based 6G networks. Thus, we propose to design both the BCM and differential
BCM (d-BCM) with and without the CSI knowledge for the DF relay networks, respectively.

Autoencoder (AE) has appeared as a promising solution for performing BCM and d-BCM
designs [3]–[4]. We can broadly classify the AE as symbol-wise AE and bit-wise AE based
on the maximized symbol-wise mutual information (MI) and bit-wise MI, respectively. While
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Table 1
Comparison of proposed work versus state-of-the-art AE-based DF relay works [7]–[10].

Ref Bit-wise Denoising BCM d-BCM I/Q Im- Rate
No. AE Bit-wise AE design design balance 𝑅𝑇 [bits/channel-reuse]

[7] ✗ ✗ ✗ ✓ ✗ 4/14

[8] ✗ ✗ ✗ ✗ ✗ N/A
[9] ✗ ✗ ✗ ✓ ✗ 4/14

[10] ✓ ✗ ✗ ✗ ✗ N/A
Ours ✓ ✓ ✓ ✓ ✓ 8/14

symbol-wise AE needs to perform bit-labeling separately by solving a 2𝑘! combinatorial problem,
bit-wise AE performs automatic bit-labeling possibly in a Gray-coded format [5], [6].

A handful works have analyzed AE for DF relaying networks in [7, 8, 9, 10]. While [7, 8, 9]
consider a symbol-wise AE, [10] consider bit-wise AE for cooperative non-orthogonal multiple
access. All works [7]–[10] consider a separate AE for each phase, where the hard decision
decoding (HDD) is performed on the soft probabilistic output of the first phase’s AE before
passing it as input to the second phase’s AE. Directly, the chances of incorrectly decoding the
soft outputs lying close to the hard decision threshold increases, thus biggest disadvantage of
conventional DF relay networks, i.e., the problem of error propagation, still remains unsolved
in AE works. Further, [7] proposed a better two-step training policy compared to an iterative
two-step training policy in [9]. Only [7, 9] considered a symbol-wise AE-based d-BCM design.

In practice, the DF relay networks are compromised by the hardware impairments, e.g., in-
phase (I) and quadrature-phase (Q) imbalance (IQI), deteriorating the network performance [11,
12, 13]. All prior works [7]–[10] consider an ideal case of I/Q matching, where the signal-to-
interference-ratio (SIR) becomes infinity, while [11] show that even small IQI can deteriorate
the SIR. Any IQI compensation algorithm [11], [12] requires the IQI parameters estimation [13],
increasing the feedback overhead. However, none of prior signal processing [11]–[13] nor
AE [3]–[10] works have performed BCM/d-BCM without estimating IQI parameters. We
summarize our comparison in Table 1. The major contributions of this work are as follows:

• We propose stacked AE-based BCM and d-BCM designs for the DF relay network with
IQI at all the nodes. We propose a bit-wise AE for the first phase and a novel denoising
bit-wise AE for the second phase, where we directly utilize the soft probabilistic outputs
as the input of denoising AE. Further, we propose a two-step training, where we propose
new training for denoising AE using the input of the first phase’s AE. Thus, even though
the AE in first-phase produces erroneous soft-outputs, the denoising AE can denoise these
outputs, while encoding-decoding the signal. Thereby, denoising AE helps in correctly
decoding the bits close to hard decision threshold, reducing the error propagation.

• We propose BCM and d-BCM that remove the necessity of IQI estimation, reducing the
feedback overhead. We focus on generalizability, the trained stacked AE can generalize
well on any testing IQI and signal-to-noise-ratio (SNR). Under a low SIR regime, we show
that stacked AE completely removes the IQI, performing similarly to ideal relay networks.



(a) System model.
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(b) Impact of IQI on the SIR.

Figure 1: DF relay networks with IQI at each node and impact of IQI on each hop in DF relay networks.

2. System Model

Now, we detail the DF relay network with IQI at all the nodes, as shown in Fig. 1a. Each node
has a single antenna and the direct link is absent because of large scale shadowing and path-loss.
The effective transmission rate 𝑅𝑇 = 𝑘/2𝑛 [bits/channel reuse], where 𝑘 bits are transmitted
in 2 phases using 𝑛 transmissions. For explanation, we keep 𝑛 = 1.

2.1. Modelling the I/Q Imbalance (IQI)

We can model the IQI effects at the complex local oscillator (LO) signals, operating with angular
frequency 𝜔𝐿, at transmitter (Tx) and receiver (Rx) sides as [11]:

𝑧𝑇 (𝑡) = 𝐺1𝑒
𝑗𝜔𝐿𝑡 +𝐺2𝑒

−𝑗𝜔𝐿𝑡, 𝑧𝑅(𝑡) = 𝐾1𝑒
−𝑗𝜔𝐿𝑡 +𝐾2𝑒

𝑗𝜔𝐿𝑡 (1)

Let {𝜉𝑇 , 𝜑𝑇 } and {𝜉𝑅, 𝜑𝑅} represent the effective amplitude and phase imbalances of the Tx
and Rx sides, respectively. Using (1) we can obtain the IQI parameters at Tx and Rx sides as
𝐺1 = (1+ 𝜉𝑇 𝑒

𝑗𝜑𝑇 )/2, 𝐺2 = (1− 𝜉𝑇 𝑒
−𝑗𝜑𝑇 )/2,𝐾1 = (1+ 𝜉𝑅𝑒

−𝑗𝜑𝑅)/2,𝐾2 = (1− 𝜉𝑅𝑒
𝑗𝜑𝑅)/2.

In the ideal without IQI scenario, the IQI parameters at Tx and Rx sides becomes 𝜉𝑇 = 𝜉𝑅 = 1
(or 𝐺1 = 𝐾1 = 1) and 𝜑𝑇 = 𝜑𝑅 = 0∘ (or 𝐺2 = 𝐾2 = 0), respectively.

2.2. Signal Transmission–Reception

We detail the steps for signal transmission–reception between the Tx node Γ = {𝑆,𝑅} and Rx
node ϒ = {𝑅,𝐷}, where Γ ̸= ϒ, in two phases of DF relay network, as below:

Firstly, the Tx node Γ maps intended bits sΓ ∈ {0, 1}𝑘 to a complex symbol 𝑥Γ ∈ C, such
that E{|𝑥Γ|2} = 1. The up-converted signal in presence of Tx IQI becomes 𝑥𝐼𝑄Γ , as

𝑥𝐼𝑄Γ = 𝐺1𝑥Γ +𝐺⋆
2𝑥

⋆
Γ (2)

where (·)⋆ denotes conjugate operation. Secondly, Tx node Γ transmits signal to Rx node ϒ, as
𝑦ϒ =

√
𝑃ΓℎΓϒ𝑥

𝐼𝑄
Γ + 𝑛ϒ, where 𝑃Γ is Γ’s transmit power, ℎΓϒ ∼ 𝒞𝒩 (0, 1) is fading channel

between Γ,ϒ, and 𝑛ϒ ∼ 𝒞𝒩 (0, 𝜎2
ϒ) is AWGN at ϒ. Thirdly, the received signal at ϒ with the

Rx side IQI, becomes

𝑦𝐼𝑄ϒ = 𝐾1𝑦ϒ +𝐾2𝑦
⋆
ϒ (3)



𝑦𝐼𝑄ϒ =
√︀

𝑃Γ (𝐾1𝐺1ℎΓϒ+𝐾2𝐺2ℎ
⋆
Γϒ)𝑥Γ⏟  ⏞  

Desired signal, Λ(Γ,ϒ)𝑥Γ

+
√︀

𝑃Γ (𝐾1𝐺
⋆
2ℎΓϒ+𝐾2𝐺

⋆
1ℎ

⋆
Γϒ)𝑥

⋆
Γ⏟  ⏞  

Self-interference signal, Ω(Γ,ϒ)𝑥⋆
Γ

+𝐾1𝑛ϒ+𝐾2𝑛
⋆
ϒ⏟  ⏞  

Noise, �̃�ϒ(Γ,ϒ)

Thus, IQI leads to signal distortion,Λ(Γ,ϒ)𝑥Γ, and causes self-interference,Ω(Γ,ϒ)𝑥⋆Γ. Fourthly,
we apply traditional zero-forcing (ZF)-based IQI compensation at the Rx node as follows[︃

𝑦𝐼𝑄ϒ
𝑦𝐼𝑄

⋆

ϒ

]︃
=

[︂
Λ(Γ,ϒ) Ω(Γ,ϒ)
Ω(Γ,ϒ)⋆ Λ(Γ,ϒ)⋆

]︂ [︂
𝑥Γ
𝑥⋆Γ

]︂
+

[︂
𝐾1 𝐾2

𝐾⋆
2 𝐾⋆

1

]︂ [︂
𝑛ϒ

𝑛⋆
ϒ

]︂
y𝐼𝑄
ϒ = A(Γ,ϒ)xΓ +B(Γ,ϒ)nϒ (4)

We perform ZF-based IQI compensation to get 𝑦𝐼𝑄ϒ , as [𝑦𝐼𝑄ϒ , 𝑦𝐼𝑄
⋆

ϒ ] = (A(Γ,ϒ))−1 × y𝐼𝑄
ϒ .

Please note in ZF-based IQI compensation, we know IQI parameters, but in its absence, we
only have 𝑦𝐼𝑄ϒ = 𝑦𝐼𝑄ϒ . Fifthly, we perform maximum likelihood decoding (MLD) as ŝΓ =

argmin𝑥∈𝒞 ||𝑦𝐼𝑄ϒ −
√
𝑃ΓℎΓϒ𝑥||2, where 𝒞 denotes all possible symbols and ŝΓ is decoded bits.

2.3. Impact of IQI on DF Relay Networks

Considering there are no noise terms 𝑛ϒ = 0, the SIR for each phase can be given as

SIR (in dB) =
E{|Λ(Γ,ϒ)𝑥Γ|2}
E{|Ω(Γ,ϒ)𝑥⋆Γ|2}

=
|𝐾1|2|𝐺1|2 + |𝐾2|2|𝐺2|2

|𝐾1|2|𝐺2|2 + |𝐾2|2|𝐺1|2
(5)

In Fig. 1b, we analyze the impact of IQI on SIR. In the ideal without IQI scenario, SIR becomes
infinity, whereas, even a small phase/amplitude offset (IQI) can deteriorate SIR significantly.

3. Proposed Stacked AE-based DF Relay Networks with IQI

In this section, we propose a stacked AE-based DF relay network with IQI. We consider each
phase in the DF relay network as a separate AE-based transmission because the direct link is
absent and the relay node operates in DF mode. For the first phase, we consider a bit-wise AE
with its NN encoder at the source node S and its NN decoder at the relay node R. Now, for the
first time, we introduce the bit-wise denoising AE, defined as below.

Definition 1. A bit-wise denoising AE is a bit-wise AE with the difference that the input at the
NN encoder is the soft probabilistic values lying between [0, 1] instead of bits {0, 1}.

In the second phase, we employ the bit-wise denoising AE with its NN encoder at the relay
node R and its NN decoder at the destination node D because the NN decoder (of bit-wise
AE) at the relay node R produces soft outputs, which can be directly fed as an input to the
denoising AE. Thus, we remove the HDD on the soft outputs of the bit-wise AE in the first phase
as [7]–[10], which suffers from error propagation because the wrongly decoded bits are fed for
re-transmission. Further, the probability of erroneous bit decoding is highest for soft outputs
close to HDD threshold due to the ambiguity. Instead, by directly utilizing soft outputs as input
to the bit-wise denoising AE, we can remove noise from input and decode soft probabilities
close to HDD threshold correctly. Note stacked AE mimics the operations of conventional DF
mode that employs decoding and re-encoding, with additional denoising of decoded signal.
Thus, processing requirements of stacked AE remains same as conventional DF relay network.



Figure 2: Proposed stacked AE framework for DF relay networks with IQI.

3.1. Designing of the Bit-wise AE for Phase 1

In this work, we utilize dense layers in the NN architectures, where any 𝑙th dense layer in a
NN can be represented as 𝜔𝑙(x𝑙) = 𝜎𝑙 (W𝑙x𝑙 + b𝑙) where 𝛿𝑙 is number of neurons, x𝑙 ∈ R𝛿𝑙 is
input, W𝑙 ∈ R𝛿𝑙×𝛿𝑙+1 is weight matrix between the 𝑙th and (𝑙 + 1)th dense layers, b𝑙 ∈ R𝛿𝑙 is
bias vector, and 𝜎𝑙 is activation function. We denote 𝜃(·)𝑇𝑥/𝑅𝑥

as the weight and bias terms of
the Tx or Rx at the (·) node with constituent 𝑀 or 𝑁 , respectively.

The source node S takes 𝑘 bits s𝑆 ∈ {0, 1}𝑘 as input and maps to 𝑛 complex symbols x𝑆 ∈ C𝑛

using the mapping function, given as

𝑓𝜃𝑆𝑇𝑥
(s𝑆 ,x𝑆) = PN (𝜔𝑀 (...𝜔1(s𝑆)...)) (6)

where PN is the power normalization layer that mandates ||x𝑆 ||22 = 𝑛. Then, symbol-by-
symbol transmission takes place using (2)–(3) with Γ,ϒ = 𝑆,𝑅 to obtain 𝑛 symbols y𝐼𝑄

𝑅 ∈ C𝑛

at NN decoder of relay node, that obtains 𝑘 soft probabilistic outputs �̃�𝑔𝜃𝑅𝑅𝑥

(s𝐴|y𝐼𝑄
𝑅 ) ∈ [0, 1]𝑘 ,

using the de-mapping function, given as

𝑔𝜃𝑅𝑅𝑥
(y𝐼𝑄

𝑅 , �̃�𝑔𝜃𝑅𝑅𝑥

(s𝑆 |y𝐼𝑄
𝑅 )) =𝜔𝑁 (...𝜔1(LL(y

𝐼𝑄
𝑅 ))...) (7)

where LL denotes the Lambda layer with no trainable NN parameters.



Table 2
Training data and hyper-parameter settings.

Comments Parameters Values
Training SNR 𝐸𝑏/𝑁0 𝒮 = {3, 8, 13, 23, 33, 43, 53, 63} dB

dataset creation Phase offset 𝜑 𝒫 = {25∘, 35∘, 40∘, 45∘}
parameters Amplitude offset 𝜉 𝒜 = {0.4, 0.5, 0.6, 0.7}

NN Optimizer Adam
Settings Weight initializer Glorot

Batch size 𝐵 = 6000

Step decay Initial LR 𝜏0 = 0.002
for learning Drop 𝜂 = 0.5
rate (LR) Step size 𝐷𝐸 = 25

Minimum LR 𝜏min = 10−5

3.2. Designing of the Bit-wise Denoising AE for Phase 2

The relay node R takes the 𝑘 soft probabilistic outputs �̃�𝑔𝜃𝑅𝑅𝑥

(s𝑆 |y𝐼𝑄
𝑅 ) ∈ [0, 1]𝑘 as input and

maps to 𝑛 complex symbols x𝑅 ∈ C𝑛 using mapping function, given as

𝑓𝜃𝑅𝑇𝑥
(�̃�𝑔𝜃𝑅𝑅𝑥

(s𝑆 |y𝐼𝑄
𝑅 ),x𝑅) = PN(𝜔𝑀 (...𝜔1(�̃�𝑔𝜃𝑅𝑅𝑥

(s𝑆 |y𝐼𝑄
𝑅 ))...)) (8)

where PN ensures ||x𝑅||22 = 𝑛. Then, symbol-by-symbol transmission takes place using (2)–(3)
with Γ,ϒ = 𝑅,𝐵 to obtain 𝑛 symbols y𝐼𝑄

𝐷 ∈ C𝑛 at the NN decoder of destination node,
that obtains 𝑘 soft probabilistic outputs �̃�𝑔𝜃𝐷𝑅𝑥

(𝑠𝑚𝑆 |y𝐼𝑄
𝐷 ) ∈ [0, 1], for all 𝑚, using de-mapping

function, (where LL denotes the Lambda layer), given as

𝑔𝜃𝐷𝑅𝑥
(y𝐼𝑄

𝐷 , �̃�𝑔𝜃𝐷𝑅𝑥

(s𝑆 |y𝐼𝑄
𝐷 )) = 𝜔𝑁 (...𝜔1(LL(y

𝐼𝑄
𝐷 ))...) (9)

3.3. Proposed AE-based BCM and d-BCM Designs

We propose stacked AE-based BCM and d-BCM, where for generalizability, we employ same
NN architecture for BCM/d-BCM, except Lambda layer LL in the NN decoders is designed as

• BCM – Herein, we assume the CSI knowledge and perform channel equalization in
Lambda layer with ℎΓϒ.

• d-BCM – Herein, we assume absence of CSI knowledge and employ a radio transformer
network (RTN), widely employed to estimate the CSI knowledge [3]. However, we propose
an RTN that also helps in removing the IQI from the received signal at the Rx node ϒ.

Remark 1. Unlike the conventional networks performing ZF-based IQI compensation (in Sec. 2.2)
using IQI parameters, we do not utilize the IQI parameter information. Thus, removing the feedback
overhead for IQI estimation.



3.4. Training of the Proposed Stacked AE

Both AEs are optimized by minimizing binary cross-entropy loss, ℒΓϒ(s𝑆 , �̃�𝑔𝜃ϒ𝑅𝑥

(s𝑆 |y𝐼𝑄
ϒ )),

denoted as ℒΓϒ for clarity, solving the multi-label binary classification problem, as

ℒΓϒ =
𝑘∑︁

𝑚=1

−(1− 𝑠𝑚𝑆 ) log2(�̃�𝑔𝜃ϒ𝑅𝑥

(𝑠𝑚𝑆 |y𝐼𝑄
ϒ ))− 𝑠𝑚𝑆 log2(1− �̃�𝑔𝜃ϒ𝑅𝑥

(𝑠𝑚𝑆 |y𝐼𝑄
ϒ )) (10)

Note that minimization of (10) only takes place during training (offline phase), once the stacked
AE is trained we can deploy the trained NNs (testing phase). The NN architectures for encoder,
decoder, and RTN are generalizable for both the AEs, as shown in Fig. 2. We assume 𝜉𝑇 = 𝜉𝑅 = 𝜉
and 𝜑𝑇 = 𝜑𝑅 = 𝜑. We create a training dataset (using simulations) with 2𝑘+2 blocks of data
for each combinations of 𝐸𝑏/𝑁0, phase offsets and amplitude offsets from the sets [𝒮,𝒫,𝒜]
detailed in Table 2. Using this training set we train both the AEs individually by estimating the
expected loss in (10) with mini-batch training, using the hyper-parameter settings detailed in
Table 2. Specifically, we employ Adam optimizer and Glorot initializer for weight initialization.
Dependence on different weight initializations is left for future work. We utilize the step-decay
method to update the learning rate and reduce overfitting [14]. The distinct advantages are:

• We create a single training dataset such that a single trained stacked AE framework can
generalize well for varying levels of testing 𝐸𝑏/𝑁0 and IQI.

• For the bit-wise denoising AE we utilize the input bits at source node and soft outputs of
NN decoder for minimizing the loss in (10), with Γ,ϒ = 𝑅,𝐵, as shown in Fig. 2. Thus,
NN decoder of bit-wise denoising AE learns the distribution �̃�𝑔𝜃𝐷𝑅𝑥

(s𝑆 |y𝐼𝑄
𝐷 ), learning the

soft outputs for input bits at source node. If end-to-end training between the input-output
of the bit-wise denoising AE have been performed, then the NN decoder of would have
learnt the distribution �̃�𝑔𝜃𝐷𝑅𝑥

(�̃�𝑔𝜃𝑅𝑅𝑥

(s𝑆 |y𝐼𝑄
𝑅 )|y𝐼𝑄

𝐷 ), learning the soft outputs of the NN

decoder of bit-wise AE in first phase, propagating the errors made in first phase.

During deployment, we can monitor the decoding performance, if it falls below a threshold due
to varying environmental conditions, we can re-train the NN using transfer learning [14].

4. Performance Evaluation

In this section, we evaluate the proposed stacked AE under Rayleigh block fading channels with
𝑅𝑇 = 8/7 [bits/channel reuse], where the channel remains constant for 𝑛 = 7 symbols and
then changes randomly. For the conventional scenarios, we utilize QPSK (with CSI)/d-QPSK
(without CSI) with (7, 4) Hamming codes and consider the following as benchmarks – (1) MLD
without any IQI compensation (MLD: No IQIC), (2) MLD with ZF-based IQI compensation (MLD:
ZF IQIC), and (3) MLD in ideal relay network without IQI (Ideal MLD).

In Fig. 3a, we compare the proposed staked AE with state-of-the-art AE works in [7], [9] for
an ideal relay network without IQI because no prior works consider IQI. Also, we can’t compare
with [10] because it considers a NOMA scenario. Proposed stacked AE-based d-BCM design
outperforms [7], [9] by 2.5, 3.5 dB, showing the merits of proposed stacked AE framework.
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Figure 3: Performance evaluation of the proposed stacked AE-based BCM and d-BCM designs.

In Fig. 3b, 3c, we analyze the stacked AE-based BCM and d-BCM designs for DF relay
networks with varying IQI levels. In Fig. 3b, we analyze the BCM design for SIR < 3 dB. In
Fig. 3c, we analyze the d-BCM design for SIR < 6 dB. We can see that the MLD with ZF-based
IQI compensation (MLD: ZF IQIC) is always able to decode the signals because of the presence
of IQI parameters, while MLD without any IQI compensation (MLD: No IQIC) is unable to
decode the signals because of absence of IQI parameters. Also, the proposed stacked AE is
always able to decode the signal, even without utilizing the IQI parameters information. In
fact, stacked AE performs similar to MLD for an ideal relay network without IQI (Ideal MLD:
No IQI), indicating stacked AE completely removes the impact of IQI, without utilizing the IQI
parameters information (reducing feedback overhead), even under low SIR regimes, due to:

• Bit-wise AE in the first phase forms 2𝑘 codewords in 2𝑛-dimensional space with kurtosis
as 1, indicating that spherical codes are formed, which are optimal for small block lengths.
Also, it maximizes the minimum Euclidean distance between codewords to 1.5 and 1.2
for BCM and d-BCM designs compared to 1.4 and 0.76 in QPSK and d-QPSK, respectively.

• Bit-wise denoising AE in the second phase takes soft probabilistic outputs as input, thus it
learns almost a slightly different codeword for different soft outputs, helping in removing
the noise in the input soft probabilistic outputs while decoding the signal at NN decoder.

5. Conclusion

In this work, we propose stacked AE-based BCM and d-BCM designs for the DF relay network
with IQI at all the nodes. We propose to employ bit-wise AE in the first phase and a novel
bit-wise denoising AE in the second phase, with a new training policy for bit-wise denoising AE.
The proposed stacked AE generalizes well on any testing IQI and SNR. Under a low SIR regime,
we show that stacked AE performs similar to ideal DF relay network without IQI, even without
utilizing the IQI parameters, thereby saving bandwidth and computational resources, highly
suitable for IoE applications that mandates low latency. Further, stacked AE can be directly
re-utilize for low-density parity-check (LDPC) codes as the outer codes, similar to the work [15].
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