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Abstract  
Autoencoders (AE) are emerging artificial neural networks that learn efficient embedding of 

unlabeled data and have been considered in the design of end-to-end transceivers.  However, 

AE-based end-to-end transceivers face with a major challenge of poor generalization ability 

due to the communication channel dynamics. In this paper, a message-passing algorithm 

(MPA) layer is incorporated into an AE to simultaneously enable coarse learning in training 

phase and adaptive reasoning in inference phase. Theoretical analysis is also conducted to 

demonstrate the effectiveness of the MPA layer, recommending that the proposed model is 

applicable in more general systems. 
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1. Introduction 

Machine Learning (ML) is envisioned as a promising means to enable an intelligent six-

generalization (6G) network. It has attracted extensive interests in both academia and industry. As a 

popular ML model, Autoencoder (AE) model learns some hidden but efficient data representations by 

combining the two neural networks that fits well with the classic transceivers in wireless 

communications, one neural network for an encoder and another for a decoder. 

AE-based end-to-end (E2E) transceiver aims to extract the most essential information minimum for 

a specific goal. It naturally requires a joint design of learning algorithms and communication 

techniques. Specifically, an encoder neural network learns to act as a transmitter, while a decoder one 

learns as a receiver. By iterative data sensing and model training, AE-based E2E transceiver actually 

integrates the three factors, data source distribution, goal orientation, and radio channel, into one 

framework. In recent years, there is much research interest on this topic [1, 2, 3, 4, 5].  

Despite of AE-based end-to-end transceiver’s better performance than classical ones, the framework 

still suffer from the following three challenges: 

● Inaccurate Gradient Transmission: Training an AE E2E transceiver needs a channel 

model that is mathematically differentiable to support the backward propagation (BP) of 

gradients from the receiver side to the transmitter side. Nevertheless, a realistic channel 

model must include some non-linear components such as digital/analog pre-distortion and 

other un-differentiable stages like up/down sampling. Therefore, the channel model used in 

AE E2E transceiver training tends to be oversimplified to support inaccurate gradient 

transmission.  

● Excessive and Dynamic Channel Distortion: Essentially, learning on a hidden layer, or an 

intermediate layer, is to react or adapt itself to the posterior probability of its input signal. 

In an AE-based E2E transceiver framework, the first layer of the receiver is such an 

intermediate layer that its input signal is varied with the dynamic channel distortion. 
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Furthermore, the channel variation will penetrate forward to the entire receiver neural 

network part. In case of a fast varying channel, a well-trained receiver might as well become 

obsolete quickly and receiving performance degrades soon. 

● Loss of Important Connectivity: According to [6], some outputs of a DNN-based classifier 

relies on some shortcuts (localities) inside the entire deep neural network. Some parts of the 

neural network is more important than others. “Shortcuts” are designated to the important 

part. If these shortcuts were perturbed, the classification performance would degrade 

significantly. However, the path loss and thermal random noise in communication channels 

may affect the critical shortcuts in some probability, largely undermining the AE-based E2E 

transceiver’s performance. 

These three issues result in the poor generalization ability of the AE-based transceiver over the 

dynamic and time varying wireless environment. Some prior works have developed some solutions.  In 

[7], a two-phase training strategy is proposed, where the AE-based transceiver is first trained through a 

stochastic channel model offline, and fine-tuned when it is used in the real channel. To obtain a 

differentiable channel, [8, 9] proposed to approximate the unknown real channel through generative 

adversarial networks (GANs). With a trained GAN model connecting the encoder and decoder, both 

forward inference and backward propagation can be conducted. Since the obstacle caused by the 

unknown channel is that the back-propagated gradients are not easy to get at the encoder side, methods 

for gradient estimation are introduced in [10, 11]. 

Although the aforementioned works can overcome the three issues to some extent, all of them 

demand high energy consumption, large controlling overhead, and none of them can meet the real-time 

latency requirement in future wireless communications. These issues motivated us to incorporate a 

MPA layer into an AE. Its existence can simultaneously solve the out-of-distribution (OOD) and outlier 

problems usually in the inference stage and reduce the communication and computation costs. 

2. Autoencoder-based Transceiver Design with MPA 

In this section, we first propose a new AE-based transceiver by inserting an MPA layer with the 

transmitter, i.e., MPA-AE. Then, we introduce the detailed training process, including the forward sub-

iteration and backward sub-iteration. 

2.1. Autoencoder-based transceiver with MPA 

 
Figure 1: AE-based transceiver with an MPA layer 

 

As illustrated in Fig. 1, we consider an AE-based transceiver that consists of a DNN-based 

transmitter and a DNN-based receiver.  The transmitter and the receiver are connected by wireless 

channels. To adapt to the dynamic channel conditions, we insert an MPA layer between the transmitter 

and the communication channel. Without loss of generality, we assume that the channel state 

information is available at the transmitter, which can be realized by concurrent channel feedback or 

uplink/downlink channel reciprocity. 



The MPA layer is responsible for conducting a linear dimension reduction transformation, whose 

coefficients are fine-tuned using an iterative algorithm with two sub-iterations. The first one is the 

forward sub-iteration that passes messages from the DNN transmitter to the DNN receiver through the 

channel. The other is the backward sub-iteration that passes message from channel layer to the output 

layer of the DNN transmitter. To better describe the working mechanism of the introduced transceiver, 

we first provide the key parameters throughout the paper, as summarized in Table I. 

 

Table 1 
System Parameters 

Parameters Meaning 

L Dimension of the transmitter’s output 
N Dimension of the communication channel measurement 

𝒉𝑘 The k-th channel measurement 
𝒏𝑘 The n-th additive noise measurement 
𝒇𝑖 The i-th feature  of the transmitter’s output 
𝒕𝑘 The k-th feature vector of the MPA layer’s output 
𝒓𝑘 The k-th received signal 
F Input feature matrix [𝒇1, … , 𝒇𝐿] 
H Channel vector [𝒉1, … , 𝒉𝑁] 
N Noise vector [𝒏1, … , 𝒏𝑁] 
R Received signal vector[𝒓1, … , 𝒓𝑁] 
T Output feature matrix [𝒕1, … , 𝒕𝑁] 

 

Based on the notations, we elaborate the detailed training process in the sequel. 

2.2. Forward Sub-iteration with Support Vector Machine 

Support vector machine (SVM) is a supervised machine learning model used for data classification, 

regression, and outlier detection.  In general, an SVM model is composed of a non-linear dimension 

extension function 𝜑(∙), a linear combination function 𝑓(𝐱) = 𝐰 ∙ 𝜑(𝐱) + 𝐛, and a binary classification 

function sign(∙), where 𝐱 is the input data, 𝐰 is the weight coefficient vector and 𝐛 is the bias vector. 

The objective of SVM is to divide the data samples into classes to find a maximum marginal hyper-

plane. 

 

 
Figure 2: MPA layer with SVM 
 

Taking advantage of the dimension transformation of SVM, we use it to transform the dimension of 

the transmitter’s output, L, to the dimension of the communication channel measurement, N. Fig. 2 

shows the detailed forward iteration with SVM. Specifically, the input of the MPA-layer is an L-



dimensional feature matrix 𝐅 = [𝒇1, 𝒇2, … , 𝒇𝐿] , where 𝒇𝒊  is the i-th input feature  vector with K-

dimension. The output of the MPA-layer is an N-dimensional feature matrix 𝐓 = [𝒕𝟏, 𝒕𝟐, … , 𝒕𝑵] where 

𝒕𝒊 is the i-th output feature vector with K-dimension.  When the output feature vectors are transmitted 

via communication channels, the received signal is given by 

𝒓𝑖 = ∑ 𝛼𝑙,𝑖 ∙ 𝒇𝑙 ∙ 𝒉𝑖

𝐿

𝑙=1

+ 𝒏𝑖,  𝑖 = 1, … , 𝑁, 

where 𝛼𝑙,𝑖 is the coefficient of the connection between neuron l and neuron i. 

Based on the above description, we can conclude that the forward sub-iteration is to keep fine-tuning 

the hyper-plane of the SVM model in both training and inference phases for given transmitter’s feature 

matrix 𝐅, channel state information 𝐇, noise vector 𝐍, and received signal 𝐑. 

Note that the MPA layer is mathematically differentiable. Once the coefficients 𝛼𝑙,𝑖 are fixed, it can 

pass the BP gradients from the receiver side to the transmitter side during the training stage.  

2.3. Backward Sub-iteration with Attention-DNN 

As we discussed earlier, the MPA layer needs to be trained by a standalone mode rather than a 

connection mode with back-propagation from the receiver. In this regards, we consider to use an 

attention-DNN in the backward sub-iteration. 

 

 
Figure 3: The structure of attention-DNN 

 

Attention-DNN is an efficient approach that measures the similarity of two features with different 

dimensions. Fig. 3 depicts the structure of the attention-DNN.   The input is the received signal 𝐑. The 

attention operation is conducted by computing the inner product of each 𝒓𝑖 with an attention coefficient 

𝒄𝑙, i.e., ⟨𝒓𝑖, 𝒄𝑙⟩. This inner product implies the similarity of the signal 𝒓𝑖 and the attention coefficient 

𝒄𝑙, which is normalized by a softmax layer as 

𝛼𝑙,𝑖 =
𝑒⟨𝒓𝑖,𝒄𝑙⟩

∑ 𝑒⟨𝒓𝑛,𝒄𝑙⟩𝑁
𝑛=1

, 𝑖 = 1, … , 𝑁. 

Then, the output of the attention-DNN is given by 

𝒛𝑙 = ∑ 𝛼𝑙,𝑖 ∙ 𝒓𝑖

𝑁

𝑖=1

, 𝑙 = 1, … , 𝐿. 

We shall note that the number of attentions are less than the number of received signals, i.e., 𝐿 < 𝑁. 



Attention-DNN can be employed in the MPA layer for back-propagation. Specifically, each 

extracted feature vector 𝒇𝑙 can be used as an attention coefficient. Then, in the backward sub-iteration, 

the coefficient 𝛼𝑙,𝑖 can be given by  

𝛼𝑙,𝑖 =
𝑒⟨𝒓𝑖,𝒇𝑙⟩

∑ 𝑒⟨𝒓𝑛,𝒇𝑙⟩𝑁
𝑛=1

, 𝑖 = 1, … 𝑁, 𝑙 = 1, … , 𝐿. 

3. Global Tandem Learning 

In this section, we propose two algorithms for the AE-based transceiver in the training phase and 

the inference phase. 

3.1. Coarse Learning 

The training of the AE-based transceiver includes two parts. One is for the MPA layer in a standalone 

mode and the other is for the DNNs in the transmitters and receivers by BP. The detailed procedure is 

summarized in Algorithm 1. 

 
Algorithm 1. The training algorithm 

1. Initialize the coefficients of the MPA layer 𝛼𝑙,𝑖 =
1

𝐿
 . 

2. Initialize the batchsize 𝑏. 

3. For step from 1: T do 

4.        In tandem stage 1 

5.             Sample a batch of training messages 𝐗 = [𝐱1, … , 𝐱𝑏]. 
6.             DNN-based transmitter computes 𝐅 = [𝒇1, … , 𝒇𝐿] based on the training messages 𝐗. 

7.             Compute 

𝒕𝑖 = ∑ 𝜶𝑙,𝑖 ∙ 𝒇𝑙

𝐿

𝑙=1

 , 𝑖 = 1, … 𝑁, 

8.             Send 𝐓 = [𝒕1, 𝒕2, … , 𝒕𝑁]to the DNN-based receiver via communication channels, as 

9.                        𝒓𝑖 = 𝒕𝑖 ∙ 𝒉𝑖 + 𝒏𝑖, 𝑖 = 1, … , 𝑁. 
10.             DNN-based receiver inputs the received signals 𝐑 = [𝒓1, 𝒓2, … , 𝒓𝑁]  into the DNN and 

computes the decoded message. 

11.             Update the transmitter and the receiver by back-propagation. 

12.         In tandem stage 2 

13.              For iteration from 1: M do 

                     Compute 𝒓𝑖 = ∑ 𝒉𝑖 𝛼𝑙,𝑖 ∙ 𝒇𝑙𝒊 . 

14.                        Compute  

||𝒓|| = √𝒓1
2 + 𝒓2

2 + ⋯ + 𝒓𝑁
2 . 

15.                        Update  

         𝜷𝑙,𝑖 = ⟨
𝒓𝒊

||𝒓||
, 𝒇𝑙⟩ , 𝑖 = 1, … , 𝑁, 𝑙 = 1, … , 𝐿. 

16.                        Update the coefficients of the MPA layer by 

17.        𝜶𝑙,𝑖 = softmax(𝜷𝑙,𝑖), 𝑖 = 1, … , 𝑁, 𝑙 = 1, … , 𝐿.   
18.              Endfor 

19.     Endfor 

20. Output 𝜶𝑙,𝑖, 𝑙 = 1, … , 𝐿; 𝑖 = 1, … , 𝑁. 

3.2. Inference Cycle Adaptation 

Once the training is finished, the AE-based transceiver is used for inference. In particular, the MPA-

layer can help the transceiver adapt to the channel dynamics: when the neurons on the encoder neural 



network and decoder neural network are fixed, the coefficient 𝛼𝑙,𝑖 on the MAC layer could continue to 

adapt themselves in terms of the current physical channel condition. The detailed procedure is 

summarized in Algorithm 2. 

 
Algorithm 2. The inference algorithm 

1.  Input：New messages 𝐗. 

2.  DNN-based transmitter computes 𝐅 = [𝒇1, … , 𝒇𝐿]  based on the new message 𝐗. 

3.  For iteration from 1: M do 

         Compute 

 𝒓𝑖 = ∑ 𝒉𝑖 𝛼𝑙,𝑖 ∙ 𝒇𝑙
𝐿
𝑙=1 , , 𝑖 = 1, … 𝑁. 

4.            Compute  

  ||𝒓|| = √𝒓1
2 + 𝒓2

2 + ⋯ + 𝒓𝑁
2 . 

5.             Update  

         𝜷𝑙,𝑖 = ⟨
𝒓𝒊

||𝒓||
, 𝒇𝑙⟩ , 𝑖 = 1, … , 𝑁, 𝑙 = 1, … , 𝐿. 

6.             Update the coefficients of the MPA layer by         𝜶𝑙,𝑖 = softmax(𝜷𝑙,𝑖), 𝑖 = 1, … , 𝑁, 𝑙 =

1, … , 𝐿.   
  

7.   Endfor 

8.  Compute  

𝒕𝑖 = ∑ 𝜶𝑙,𝑖 ∙ 𝒇𝑙

𝐿

𝑙=1

 , 𝑖 = 1, … 𝑁, 

9.  Compute   

            𝒓𝑖 = 𝒕𝑖 ∙ 𝒉𝑖 + 𝒏𝑖, 𝑖 = 1, … , 𝑁. 
10.  DNN-based receiver inputs the received signals𝐑 = [𝒓1, … , 𝒓𝑁] into the DNN and computes the 

decoded message �̂� 

11. Output �̂�. 

 

4. Simulations  

We consider the following simulation settings. The transmitter sends a block with 256 bits in each 

time slot through 16QAM modulation scheme without channel coding. The channel gain changes every 

200 time slots by a random distortion, which follows ℎ𝑡+1 = ℎ𝑡 + ∆ℎ𝑑, where the random distortion 

follows ∆ℎ𝑑~𝐶𝑁(0, 0.3).  

The proposed MPA-AE is first pre-trained at the channel condition ℎ0 with a fixed SNR 10dB to 

learn all the neurons on the encoding and decoding neural network and the coefficients on the MAP 

layer. Each time that the channel varies, only the coefficients 𝛼𝑙,𝑖 at the MPA layer are fine-tuned, while 

the rest neurons are fixed. 

For comparison, we simulate a pre-trained AE without the MPA layer as a baseline, whose neurons 

are fixed even when the channel has changed, and a retrained AE without MPA layer as another baseline, 

that is completely retrained whenever the channel varies. 

The three frameworks use the same AE structure in which a fully connected neural network with 

one hidden layer of 16 neurons is used for both the encoder and the decoder and ReLU is used as the 

activated function for the hidden layer and Adam optimizer is used to train the AE. The only difference 

of MPA-AE to the rest AE is the inserted MPA layer.  

 



 
Figure 4: Performance comparison 
 

Fig. 4 shows the block error rate performance of the proposed MPA-AE method together with the 

two baselines, i.e., pre-trained AE without updating during the channel changing and retrained AE. It 

can be seen that without updating accordingly, the pre-trained AE failed to work. The proposed MPA-

AE and retrained AE show almost the same performance. However, we would like to emphasize that 

retrained AE took almost 14 more times for updating the whole AE than fine-tuning only the MPA 

layer. The retrained AE is too time-consuming to be implemented in the real application scenarios. 

The improvement of the generalization is attributed to the MPA layer tuned per the dynamic channel 

condition during the inference stage. In classic AE architecture, all the neuron layers, both transmitter 

and receiver parts, are frozen. If the channel ran out of distribution in the inference stage (highly likely 

in wireless system), the AE-based transceiver would suffer from these outliers. The MPA layer provides 

some resilience against these dynamic changes.  

The DNN part is a key component against channel uncertainty. Different SNR represents different 

white noise levels. In reality, timing-varying dynamic channel is fading channel that includes path loss 

changes, phrase changes, multiple-path changes and so on. It is hard for a transmitter to perfectly know 

the current channel conditions. Both receiver’s channel feedback and UL/DL reciprocity would 

introduce some uncertainty or bias about the current ground-true channel condition. The uncertainty 

includes both shifts and rotations, which are well addressed by the non-linearity of DNNs on both 

transmitter and receiver and the MPA layer iteration at the transmitter. In this sense, it seems 

indispensable to couple MPA with DNN to enable the wireless transceiver to profit from the DNN-

based autoencoder.  

5. Conclusions and Future Directions 

In this paper, we proposed a MPA-AE structure and its corresponding algorithms to train the end-

to-end transceiver in the scenarios with time-varying channels. The MPA layer inserted between the 

encoder and decoder of traditional AE can be fine-tuned when the under-going channel changes from 

the one the transceiver is trained with. Simulations show the superior performance of the proposed 

method.  

The MPA layer could be flexibly incorporated with the AE-based transceiver in many use cases, 

including single user scenarios and multiuser scenarios. Specifically, in the single user scenarios, the 

MPA layer can be used to design source coding scheme, high-order modulation scheme, massive 

MIMO scheme, and pre-distortion scheme, which can well adapt to the time-varying channel 

conditions. In principle, the DNN layers and MPA layer of a transmitter is to distort the input 

distribution to match the current channel distortion distribution. The non-linear DNN layers provide a 



quick and powerful non-linear distortion, while the linear MPA layer provides a quick and adaptive 

linear matching.    

Moreover, the MPA layer can also be applied in multiuser scenarios for both uplink and downlink 

MIMO design and Multiple-Access design. More than one MPA-AE could share the same channel. 

Then, the MPA layer of each becomes autonomous coding design. These research aspects will be 

considered in future. 

Another research direction is to use more complex channel models in the training phase. In 

particular, the channel models are generated by a DNN with the input of surrounding topological 

information. In this case, the MPA layer is still effective since the inference DNN of the channel is a 

non-linear function. However, the DNN-based channel model is often very large. Therefore, how to 

reduce the DNN model size is an interesting research topic for future investigation. 
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