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Abstract  
Background 
Due to rich information embedded in published articles, literature review has become an 

important aspect of research activities in the biomedical domain. Machine Learning (ML) 

techniques have been explored to retrieve relevant articles from a large literature archive (i.e., 

classifying articles into relevant and irrelevant classes), and to accelerating the literature 

review process. Meanwhile, an ensemble classifier, a system that assigns classes based on the 

outputs of multiple classifiers, tends to be more robust and has better performance than each 

individual classifier. Ensemble classifiers are often composed of classifiers trained on 

different training sets (e.g., sampled data sets) or of those using different ML algorithms. In 

this paper, we propose a simple ensemble approach where an ensemble is composed of 

classifiers using different feature sets for an ML algorithm. We evaluated the approach using 

Support Vector Machine (SVM) on two publicly available collections of MEDLINE citations, 

the Post-translational modification (PTM) data sets and the Immune Epitope Database (IEDB) 

data sets, that resulted from biomedical database curation projects.  

Results 
The evaluation showed that ensemble classifiers outperformed their constituent classifiers as 

measured by both area under ROC curve (AUC) and precision/recall break-even-point (BEP), 

provided with enough training data. We observed that the performance of SVM ensembles 

were competitive or better than the best results previously reported for the data sets used.  

Conclusions 
The proposed ensemble approach was found to be effective in improving performance of 

SVM classifiers. The approach is also simple and easy-to-deploy in document 

classification/retrieval tasks. However, improvement of classifiers through the current 

approach is still modest. We plan to explore different ways to derive and combine constituent 

classifiers, and continue our investigation over other data sets. 

  



Background  
Due to rich information embedded in published biomedical articles, literature review has 

become an increasingly important aspect of research activities in the biomedical domain, e.g., 

[1, 2]. One of the initial steps in literature review is document retrieval, i.e., gathering 

documents relevant to the target topic from a large literature archive such as MEDLINE. To 

mitigate human effort in retrieving relevant articles, there has been a growing interest in 

automatic document retrieval. It has become an active research area in biomedical text 

mining. For example, Genomics Track (2003–2007) of Text Retrieval Conference (TREC) 

has dedicated to the evaluation of biomedical document retrieval systems [3]. Also, one of the 

tasks in BioCreAtIvE II1 (http://biocreative.sourceforge.net/biocreative_2.html) asked 

participants to order biomedical articles based on their relevance to protein interaction 

annotation. 

 Document retrieval is to prioritize (i.e., order) documents according to their relevance 

to the target topic. Considering the target documents as positive instances and others as 

negative instances, the priority order of documents can be obtained using a classifier that 

yields a confidence score in assigning positive/negative classes to documents. Machine 

Learning (ML) approaches such as Naïve Bayes and Support Vector Machine (SVM) have 

enjoyed great success in document classification and retrieval [4]. In the biomedical domain, 

ML classifiers have been considered for document retrieval in database curation projects [5-

9], and therefore the efficiency of database curation can be enhanced by improving document 

classifiers. For a specific application, improvement of ML classifiers can be attempted 

through incorporation of task-specific features/heuristics and/or elaborated domain-specific 

features [3, 7, 8]. Alternatively, or in conjunction with such effort, classifier performance can 

be improved by combining multiple classifiers, i.e., ensemble of classifiers [10].  

In this study, we consider a simple and easy-to-deploy ensemble approach for 

biomedical document classification tasks where an ensemble is composed of classifiers built 

                                                 

1 Protein Interaction Article Sub-task (IAS) of the Protein-Protein Interaction task (PPI). 

  



with different sets of features. The goal of this study is two fold: i) examine the effectiveness 

of our ensemble approach for classification of MEDLINE citations; and ii) report 

classification performance on publicly available data sets in the domain. 

In the following, we first provide background information for classifier ensemble. 

Next, we describe two publicly available data sets used in this study, the Post-translational 

modification (PTM) data sets [8] and the Immune Epitope Database (IEDB) data sets [7], 

resulted from actual biomedical database curation projects.  

Classifier ensemble 
It has been observed that “accurate and diverse” classifiers make an ensemble classifier that 

outperforms a single classifier [10, 11]. A classifier is “accurate” if it performs better than a 

random classifier and classifiers are “diverse” if they do not make the same classification 

mistakes. Popular ensemble approaches include bagging and boosting. In the bagging 

approach [12], constituent classifiers of an ensemble are trained on data sets sampled from the 

training data. In the boosting approach [13], constituent classifiers are trained sequentially, in 

which misclassified instances are assigned more weights during the training of the next 

classifier. The performance of bagging and boosting is dependent on the ML algorithm used. 

For example, in the newswire domain, Dong and Han [14] examined the utility of different 

ensemble methods including bagging and boosting for document classification. In their work, 

although a boosted Naïve Bayes classifier outperformed a single Naïve Bayes classifier, a 

boosted SVM classifier performed worse than a single SVM classifier. In fact, since SVM 

does not depend on weights/frequencies of instances, boosting may not be an appropriate 

choice for SVM (see, e.g., [15]). In Dong and Han, there was little or no improvement 

reported also for bagging with Naïve Bayes and with SVM. 

 In bagging or boosting, constituent classifiers of an ensemble are built by varying 

training data sets (i.e., using sampled documents or documents with different weights). In this 

study, we propose an ensemble approach that builds constituent classifiers by varying the size 

  



of feature words used (i.e., by varying feature vectors, but using the same document set and 

the same ML algorithm). 

Publicly available data sets for biomedical document classification/retrieval   
PTM data sets2 – The PTM data sets developed at Protein Information Resource (PIR) 

consist of five collections of MEDLINE citations for five different PTM types (acetylation, 

glycosylation, hidroxylation, methylation, and phosphorylation), which were labelled by 

domain experts as either positive or negative at the level of abstract or full-length article. 

Small parts of the abstract-level PTM data sets have been used in a document retrieval study 

by Han et al. [8], which specifically investigated document retrieval for small data sets. We 

used these small data sets for performance comparison purposes. Of five data sets used in Han 

et al., we used two data sets, the acetylation and phosphorylation data sets, where there are at 

least 50 positive documents3 (Table 1). In the work reported in [8], Naïve Bayes classifiers 

exploiting substring features outperformed SVM classifiers on these data sets.  

IEDB data sets [7]4 – The IEDB data sets were developed during the annotation of epitopes 

from four different sources with a view to populating the Immune Epitope Database. Thus, 

the data sets consist of four sets of MEDLINE citations (abstracts and titles), which were 

retrieved from PubMed using “complex queries.” Citations were, then, manually classified as 

positive and negative documents. In this study, following the study of Wang et al. [7], we 

combined the four data sets and derived a corpus of 20,907 MEDLINE citations. In [7], the 

authors reported that Naïve Bayes classifiers outperformed SVM classifiers in the 

                                                 

2 The PTM data sets are available at the PIR iProLink web site (http://pir.georgetown.edu/cgi-

bin/ipkLitFt.pl?stat=12). In this study, we used smaller parts of these data sets, which were introduced 

in the study by Han et al. (http://www.ist.temple.edu/PIRsupplement/). 

3 The acetylation data set contains 55 references to MEDLINE citations (PMIDs) for positive 

documents. However, when the citations were downloaded, six of them were no longer accessible with 

the listed PMIDs (see the caption of Table 1). 

4 http://www.biomedcentral.com/1471-2105/8/269/additional/ 

  



experiments, and the best classification performance was obtained using domain- and task-

specific features. Summaries of the data sets are found in Table 1.  

Methods 
We used SVM Light [16] to derive SVM classifiers in this study. Specifically, we used radial 

basis function (RBF) with gamma value of 1.0 as the kernel, with the default setting for the 

regularization parameter C in SVM Light. We used this setting for its yielding the good 

performance in preliminary experiments using the small portion of the data sets. For 

classification features, only normalized words in documents are used without any task- or 

domain-specific features/heuristics. 

Word normalization 
For SVM classifiers, we used words in documents as features, except for stop words listed in 

the NCBI stopword list5 and rare words that appear in less than three documents in a training 

data set. Words are defined as consecutive alphabet letters, numbers, hyphens (-), or slash (/), 

e.g., IL-1 is regarded as one word without being tokenized into smaller sequences. All words 

were processed with our implementation of S-stemmer [17], which converts plural nouns and 

third person singular verbs into their base forms, e.g., receptors  receptor, studies  study, 

IFNs  IFN. Also, within each word, alphabet letters were lowercased, a number sequence 

was converted to a token “DIGIT”, and Greek alphabets to a token “GREEK”, e.g., KappaB 

 GREEKb and Ras1  rasDIGIT. 

Feature vector generation 
To select classification features among normalized words identified in a training data set, we 

used information gain (IG), also known as expected mutual information, commonly used in 

text classification, e.g., [7, 8, 18, 19]. IG is calculated: 
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5 http://www.ncbi.nlm.nih.gov/books/bv.fcgi?indexed=google&rid=helppubmed.table.pubmedhelp.T43 

  



where H(•) is an entropy for having different classes given a document set, and Dw+ and Dw- 

are partitions of a document set D, each of which consists of documents containing (w+) or 

not containing (w-) word w, respectively. In building classifiers, we consider the top R 

percent of words according to the IG measure. In this study, ten different R values were 

considered: R = 1, 4, 9, …, 100, i.e., R=n2 for n = 1, 2, ..., 10. Among the words with higher 

IG values, differences of IG values for any two words tend to be greater, while among those 

with lower IG values, such differences tend to be smaller6. This motivated us to use the above 

choices of R in deriving a set of “diverse” classifiers. Namely, we varied the percentage less 

for the smaller values of R, e.g., 1  4  9  …, but varied the percentage more for the 

larger values of R, e.g., …  64  81  100. 

A document was represented with a set of selected feature words found therein (a 

bag-of-words approach) in a vector format. Each value in a vector associated with a feature 

word is a frequency of words (i.e., terms) in the document (TF) weighted by the inverse of the 

document frequency (IDF), i.e., ( )jji IDFTF log, ×  for word j in document i. As in [19], feature 

vectors are normalized so that the Euclidean norm of a vector is 1.0. 

Classifier ensemble 
Given a set of input documents, a classifier will assign a numeric value to each document, 

which is regarded as a confidence score for a positive (or negative) class. With a single 

classifier, documents are ranked according to assigned confidence scores. With multiple 

classifiers, documents can be raked according to the summation of confidence scores assigned 

to each document. 

                                                 

6 To be clear, let w1, w2, w3, .... wn be an ordered list of all words in a corpus such that IG(w1) ≥ IG(w2) ≥ 

… ≥ IG(wn), where IG(•) is a function mapping a word to an IG value. Then, roughly speaking, we 

observed IG(wi)-IG(wi+1) > IG(wi+1)-IG(wi+2) for i=1…n-1. In other words, comparatively speaking, an 

SVM classifier exploiting 1% of top IG-value words, say SVMR=1, can differ much from another 

classifier SVMR=4, while SVMR=97 and SVMR=100 may be almost the same in terms of their performance. 

  



 In order to derive multiple classifiers from one training data set, we built each 

classifier by varying the threshold value R in selecting features. As detailed in the previous 

sub-section, a set of ten classifiers are derived using ten different R values (i.e., R=1, 4, 9, 16, 

…, 100). Among these single classifiers, a group of two (R=1 and 4), three (R=1, 4, and 9), 

four (R=1, 4, 9, and 16), …, ten (R=1, 4, 9, … 100) classifiers were selected so that each 

group of classifiers makes an ensemble classifier, i.e., nine ensemble classifiers. 

Classifier evaluation 
Two measures were used to evaluate the performance of classifiers: Area under ROC curve 

(AUC) and Precision/recall break-even-point (BEP). Given an ordering of documents by a 

classifier, AUC is interpreted as the probability that the rank of a positive document d1 is 

greater (i.e., more likely to be positive) than that of a negative document d0, where d1 and d0 

are documents randomly selected from positive and negative document sets, respectively. The 

higher the AUC value, the better the classifier is. After documents (of size n) are ranked from 

1 (least likely to be positive) to n (most likely to be positive), AUC can be calculated as 

( )
10

11 21
nn

nnSAUC +−
= , where S is the sum of the ranks assigned to positive documents, and n0 

and n1 are the numbers of negative and positive documents, respectively (see the details in 

[20]). BEP is a precision (or a recall)7 obtained for a classification threshold where the 

precision and the recall become equal (see, e.g., [19]). 

 While AUC can provide a summary of the overall ordering of positive and negative 

documents by a classifier, when comparing classifiers from literature reviewers’ point of 

view, a higher AUC value does not necessarily imply the better utility of the classifier. For 

example, suppose reviewers can go over at most 100 articles among the list of articles 

                                                 

7 For a fixed threshold on confidence scores assigned by a classifier, documents are classified into two 

classes. Then, precision is the number of true positives divided by the total number of true positives 

and false positives. Recall is the number of true positives divided by the total number of positive 

instances. 

  



retrieved at a time. Then, for reviewers, changes in document ordering matter only when they 

take places within the first 100 documents. In this respect, BEP may be the more appropriate 

performance measure. 

 Each classifier was evaluated in m repeated n-fold cross-validation, and average AUC 

and BEP over m×n runs were calculated, i.e., a document collection was split into n equally-

sized partitions, and classifiers trained on n-1 partitions were evaluated over the remaining 

one partition, which was repeated n times using a different partition as a test set each time. 

Then, such n-fold cross-validation test was repeated m times over the data collection. For 

each data set, the same partitioning was used for all the evaluated classifiers. To make the 

results comparable to the previously reported results, different pairs of m and n were used for 

the data sets. (m=20 and n=5 for the PTM data sets, and m=1 and n=10 for the IEDB data 

sets). 

Results and discussion 
Results on the PTM data sets 
On the two PTM data sets (acetylation and phosphorylation), we evaluated ten single SVM 

classifiers and nine ensemble classifiers as detailed in the Method section. For each single and 

ensemble classifier, we repeated 5-fold cross-validation tests 20 times as in [8], and calculated 

average AUC and BEP measures of, thus, 100 runs. In each run, there were about 2,500 and 

1,800 unique words in the training set portion of the acetylation and phosphorylation data 

sets, respectively. R% of the unique words were used in training a single classifier. The 

results of the experiments are reported in Table 2. 

 We found inclusion of excessive word features was harmful for these small data sets, 

although SVM can usually exploit a large number of word features including those that are 

less informative (e.g., in terms of IG) [19]. For both of the data sets, the best performance of 

single SVM classifiers was obtained at R = 4 in term of AUC measure, and R = 9 in terms of 

BEP (Table 2). The best performance of ensemble classifiers was obtained when five single 

classifiers (R=1, 4, 9, 16 and 25) were combined for the acetylation data set, and when four 

  



classifiers (R=1, 4, 9 and 16) were combined for the phosphorylation data set. For both of the 

data sets, performance of ensemble classifiers was consistently better than single classifiers in 

terms of both AUC and BEP. 

 We found the performance of single SVM classifiers and that of the most comparable 

SVM classifier in [8] (WB-SVM-IG) were still very different. While further investigation is 

needed, this difference may be attributed to different classifier settings (e.g., a linear kernel 

function in [8] vs. an RBF kernel function in our experiments for SVM), document 

representation (e.g., we used normalized TF-IDF vectors in our experiments, while it is not 

clear in [8]), and/or threshold settings in feature selection (i.e., a fixed threshold, IG > 0.02, in 

[8]). 

 We also examined the applicability of the ensemble approach on the glycosylation, 

hydroxylation and methylation data sets used in Han et al, where there are very small 

numbers of positive instances (Table 1). On these data sets, performance of ensemble 

classifiers was no better than that of single classifiers, or sometimes even worse. On the 

hydroxylation and methylation data sets where there are especially small numbers of positive 

and negative documents, BEP of single classifiers were low (e.g., an average BEP of ten 

single classifiers was 0.24 and 0.47 for the hydroxylation and the methylation data set, 

respectively). We assumed that such classifiers were not reliable enough to contribute to an 

ensemble classifier. 

Results on the IEDB data sets 
On the combined IEDB data sets, ten single SVM classifiers and nine ensemble classifiers 

were evaluated just like on the PTM data sets. Compared to the PTM data sets used by Han et 

al., there are a much larger number of documents in this data set (20,907 MEDLINE citations 

as opposed to 916 or 457 citations), and we obtained stable results in a ten-fold cross-

validation test. In each fold, there were about 22,000 unique words in the training set portion 

of the data set, R% of which were used as features in training a single classifier. The results 

are shown in Table 3. Figure 1 shows how AUC and BEP change as R changes for single and 

  



ensemble classifiers. Note that, for ensemble classifiers, R is to indicate the largest percentage 

of feature words used among constituent classifiers, e.g., an ensemble classifier consists of 

single classifiers using 1, 4, 9, …, up to R% of word features. 

 As in Figure 1, for single classifiers, the BEP measure peaks at R=16 and it degrades 

when R < 16 or R > 16. On the other hand, performance of ensemble classifiers keeps 

improving as R gets larger. The ensemble classifier with R=100 outperformed all the single 

SVM classifiers in terms of both AUC and BEP (Table 2). 

 To examine the applicability of this ensemble approach to Naïve Bayes methods, we 

repeated the same experiment using the MALLET library [21] to build multinomial Naïve 

Bayes classifiers. The results are reported in Table 3 and Figure 2. Table 3 shows that 

performance (i.e., AUC) of Naïve Bayes classifiers in this study agrees with that in [7] 

(despite that [7] used binary feature vectors and we used TF feature vectors, see, e.g., [18]). 

As in Table 3 and Figure 2, although the proposed ensemble approach improved classification 

performance of Naïve Bayes classifiers in terms of AUC, it did not improve in terms of BEP. 

 While these results need to be confirmed on other data sets, the success of the 

proposed ensemble approach may be attributed to the property of SVM classifiers that they 

can exploit a large number of features (even less informative features in terms of IG) with 

hardly over-fitting to data sets [19]. Namely, given a larger number of words as features, 

SVM classifiers will yield a globally well-ordered document list without over-fitting. On the 

other hand, given a small number of the top IG value words, SVM classifiers will identify 

apparently positive and apparently negative documents confidently. Thus, the ensemble 

classifiers will take advantage of the both ranking schemes. This did not hold for Naïve Bayes 

classifiers, whose performance (BEP) degraded when a large number of features were used. 

Conclusions  
In this study, we examined a simple and easy-to-deploy classifier ensemble approach for 

biomedical document classification/retrieval tasks. In the proposed approach, constituent 

classifiers were built by varying the sizes of the feature set for an ML algorithm. Note that 

  



even when a single classifier is employed in a database curation project, a number of 

classifiers with different sizes of feature sets would be built anyway before the best 

performing system is selected. The proposed approach suggests combining such intermediate 

classifiers. In our experiments, SVM ensembles outperformed all the constituent classifiers in 

terms of both AUC and BEP. Using this approach, we updated the classification performance 

previously reported on the benchmarking data sets, and set new baseline performance for the 

data sets. However, the ensemble approach was not effective when there was no sufficient 

data to train reliable constituent classifiers or when it was applied to Naïve Bayes classifiers.  

 In the current ensemble method, the way we derive constituent classifiers is based on 

our observation of the list of feature words. We plan to explore systematic ways in selecting 

different sets of features, and different approach to combining resulted classifiers. We also 

plan to investigate the effectiveness of the method using different data sets and different ML 

algorithms. 
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Table 1 - Summaries of PTM and IEDB data sets 
The parts of the PTM data sets used in Han et al. are available as lists of PubMed Unique 

Identifiers (PMIDs) assigned to MEDLINE citations. Some of the citations, however, are no 

longer accessible with the listed PMIDs. In this table, numbers in parentheses are the 

document counts reported in the original papers introducing the data sets. We used two of the 

five data sets from Han et al., the acetylation and phosphorylation data sets (indicated by * in 

the table), where there are (originally) more than 50 positive documents. 

Data sets Positives Negatives 

Data sets in Han et la. Acetylation* 49 (55) 867 (868) 

 Glycosylation 41 711 

 Hydroxylation 26 (27) 133 

 Methylation 23 (27) 171 

 Phosphorylation* 68 (79) 389 

IEDB data sets 5,711 (5,712) 15,196 (15,198) 

 

  



Table 2 - Classification performance on the PTM data sets  
A classifier WB-SVM-IG by Han et al. is an SVM classifier using words selected for IG > 

0.02 as features. SB-NB-WRST is a Naïve Bayes classifier using substrings of words selected 

for Wilcoxon rank-sum test ≥ 0.15 as features. For the results we obtained, we report AUC 

and BEP measures for the best performing single SVM and SVM ensemble classifiers with 

the settings of R, a percentage of words used as features (see the Method section).  

 Acetylation Phosphorylation 

Methods AUC BEP AUC BEP 

WB-SVM-IG by Han et al. .869 n/a .896 n/a 

SB-NB-WRST by Han et al. .916 n/a .925 n/a 

Single (R%) .892 (4) .440 (9)  .923 (4) .643 (9) 

Ensemble (from 1 up to R%) .913 (25) .509 (25) .931 (16) .677 (16) 

 

Table 3 - Classification performance on the IEDB data sets 
The classifier (NB) by Wang et al. employed a Naïve Bayes method using around 20,000 

word features selected for document frequency (DF) >3 and IG >0.00002. Another classifier 

by Wang et al. (NB w/ MeSH etc.) uses additional features such as MeSH headings and other 

domain-oriented/task-specific features. See the caption of Table 2 for the definition of R used 

in the classifiers we trained.  

Methods AUC BEP 

NB by Wang et al. .838 n/a 

NB w/ MeSH etc. by Wang et al.  .848 n/a 

NB (R%) .837 (49) .645  (25) 

NB ensemble (from 1 up to R%) .840 (100) .639 (64) 

SVM (R%) .871 (49) .680 (16) 

SVM ensemble  (from 1 up to R%) .878 (100) .690 (100) 

  



Figure 1 - Classification performance on the IEDB data sets (SVM) 

Each figure shows how AUC or BEP changes as the setting of R changes for single SVM

classifiers (▲) and SVM ensemble classifiers (■). 
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Figure 2 - Classification performance on the IEDB data sets (Naïve Bayes) 

The each figure shows how AUC or BEP changes as the setting of R changes for single

Naïve Bayes classifiers (▲) and Naïve Bayes ensemble classifiers (■). 
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