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Abstract
Materials generation is an essential task in material science that aims to discover new materials. While most of the existing
models have shown interesting results in simulation, they struggle to produce new original and stable materials. This
paper discusses the salient properties required for material generation and studies the difficulties related to material pattern
repetition, which impacts the stability of the generated structures.

1. Introduction
Crystalline materials are involved everywhere in our
modern society. From metal alloy to semi-conductor, sev-
eral technological objects contain crystalline materials.
Discovering new materials remains a difficult task in ma-
terial science. While existing algorithms can search for
new structures in the materials space [1], searching for
a new material with a given set of desirable properties
is not a trivial task. The set of potential candidate ma-
terials is not countable by a computer, and the portion
of stable materials (i.e. materials that can exist with-
out self-destructing) is small. Moreover, estimating the
properties of a single material with chemical simulation
as Density Functional Theory (DFT) is computationally
expensive. To this end, methods based on evolution-
ary algorithms (e.g. [2]) are introduced for generating
new materials from existing datasets composed of stable
materials. However, most of these approaches work by
hybridization and mutation of existing materials. As a
consequence, these methods are not able to find complex
materials.

Discovering new materials is a challenging problem.
But contrary to most generation problems, theoretical
chemistry provides a powerful set of tools to analyse
synthetic and real data. As a matter of fact, simulation
techniques like hartree-fock or DFT are able to estimate
the properties of a given structure by applying physics
laws. Consequently, the stability of the materials can be
estimated through simulation. These methods can also
be used to perform the relaxation of crystalline materials.
Relaxation is the process of minimizing the energy of
a crystalline structure by deforming it. This process is
very common in material science to study a given ma-
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Figure 1: The energy of a structure is given by its geometry
and chemistry. Stable structures are the local minima of the
energy (green dots). Relaxing a structure is the process of
modifying the geometry of a structure to minimize its energy
(an unstable structure represented as a red dot converge to
the nearest stable minima)

terial. It permits the discovery of new materials since
minimizing the total energy of the structure allows it to
be more stable. Consequently, the local minima of the
energy corresponding to stable materials and relaxation
lead to producing stable crystalline structures from an
initially unstable crystal around the stable structures in
the materials space. This is illustrated in Figure 1.

Several methods were recently introduced for chem-
ical simulation either by enhancing current algorithms
with machine learning techniques (e.g. [3]) or by using
end-to-end models (e.g. [4]). Most of these approaches
focus on accelerating DFT by approaching relaxation
as a supervised task. End-to-end models generally re-
quire expensive labels to be trained as interaction forces.
However, these labels are generally not available and
need to be produced through DFT calculation. Thus, the
benefits of end-to-end models is limited because such
models required data from atomistic simulation. Finally,
even if the relaxation may lead to a crystalline struc-
ture, there is no guaranty on its stability. In fact, most of
the random structures do not result in stable structures.
Consequently, approaches based on simulation for new
materials discovery are limited.

Another direction consists in directly generating stable
crystalline structures using machine learning techniques.
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In this case, the generative process can be performed
with successive actions applied to the structure [5]. This
process doesn’t require strictly following physics laws as
long as the stable points (i.e. local minima of the energy)
learned by the machine learning models remain the same
as the real stable points. This fact can be advantageous
in some cases because the realistic relaxation of a ran-
dom structure is not guaranteed to converge to a stable
material. As a result, learning realistic stable points with-
out realistic physics can help machine learning models
produce stable structures.

Indeed, graph neural networks (GNN) have already
been used for the representation and generation of or-
ganic molecules [6]. However, crystalline materials are
known to be more difficult to generate since they gener-
ally have more complicated chemistry. Also, they contain
repetitive patterns defined by the lattice of the crystals,
which make them harder to process. In this paper, we
present how graphs representation of materials are de-
fined. We also discuss some important properties re-
quired for generative models.

2. Problem statement
Crystalline systems As molecules, crystalline sys-
tems can be defined as coloured point clouds. However,
as crystals are periodic structures, additional information
about how the point could is repeated in the space is re-
quired to represent it. The periodicity of the material can
be then represented as a network where a group of points
is repeated by discrete translation, which is equivalent
to tiling space with a parallelepiped containing a cloud
of atoms as illustrated in Figure 2.

As a result, a periodic system can be describe as atomic
positions 𝑥𝑖 ∈ [0, 1[3 with an associated feature space
representing the chemical information of each atom 𝑧𝑖 ∈
ℱ and a lattice 𝜌 ∈ GL3(R) representing the periodicity
of the material. The infinite point cloud generated by
this representation can be defined as

{︀(︀
𝜌·(𝑥𝑖+𝜏), 𝑧𝑖

)︀
|𝜏 ∈ Z3, 1 ≤ 𝑖 ≤ 𝑛

}︀
⊆ R3×𝐹 (1)

Where 𝜏 act like a Z3 vector that translate the point
cloud.

Material graph There are multiple ways to define
the graph of a material. Chemical bonds can be used
to build the set of edges, but generally, edges are built
from the atoms under a given threshold distance of from
the 𝑘 nearest neighbourhood [7]. The resulting graph is
a multi-graph because the local environment of an atom
can be on a translated point cloud near the border of the
lattice as depicted in Figure 2. As a result, an edge can

have multiple edges between a pair of nodes and between
a node with itself.

Figure 2: The periodic structure of a material is represented
as a lattice (in dotted lines). The multi-graph associated with
a material (blue arrow) can overlap on the adjacent repetition
of the lattice and a pair of nodes can be connected multiple
time.

Material deformation To tackle the crystalline sys-
tem generation problem, we should define action on the
geometry of the material. This action can be seen as an
action on the lattice of the material 𝜌 resulting in the
updated lattice 𝜌′ and action on the atomic positions 𝑥𝑖

resulting in the updated atomic position 𝑥′
𝑖.{︃

𝜌′ = 𝑔𝜌

𝑥′
𝑖 = [𝑥𝑖 + 𝑔𝑖]

. (2)

In this case, the goal is to predict the action 𝑔 ∈
GL3(R) on the lattice and the actions 𝑔𝑖 ∈ R3 on the
atomic position. The atomic positions are brought back
into the lattice of the crystal by truncation.

3. Method
Equivariance To obtain meaningful actions applied to
a material, we should satisfy the equivariance property.
Indeed, translations and rotations have no impact on the
material’s properties. Consequently, a machine learning
model acting on the material should not be dependent
on the orientation and position of the structure but only
be dependent on its geometry as shown in Figure 3.
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Figure 3: Equivariance between the action applied on the
material 𝑔 and the actions of translation and rotation group
ℎ ∈ R3 ∪ SO(3). 𝑀 and 𝑀 ′ denoting the original material
and the material after having applied the action 𝑔.



Actions on the lattice When 𝑔 acts on 𝑟ℎ𝑜 the lattice
of the crystal, we would restrain 𝑔 to the group of actions
deforming the structure. However, any matrix in R3×3

can be decomposed as a sum of a symmetric and an anti-
symmetric matrix. As we define the action of 𝑔 in GL(3),
the anti-symmetric part of the transformation can be
seen as a rotation. But as we discussed earlier, applying
rotations on a crystal doesn’t act on a material as the
rotated material is equivalent to the original material.
This is illustrated in Figure 4. Consequently, it is better
to restrain 𝑔 to GL(3)∖SO(3). In other words, to restrain
𝑔 to the subset of matrices of GL(3) that are symmetric.

Figure 4: The SO(2) group doesn’t act on the materials but
only rotates them without deformation.

Acting on the crystalline structure To act on both
the lattice and the atomic position, we can define actions
on the edge of the graph. These actions can be then
decomposed into a global action on the lattice of the
crystal and local action on the atomic position. In order
to define these actions, the contributions of all edges are
aggregated to compute the action on the lattice. To act
on the atomic positions, only the actions of the edges
connected to the node are taken into account.

4. Conclusion
Crystalline materials are difficult to process because of
the complexity and the variety of their chemistry, but also
because of their repetitive structure. However, materials
can be represented as graphs containing both chemical
and geometrical information about the structures. Con-
sequently, geometric machine learning techniques such
as graph neural networks can be used in a wide variety
of tasks including supervised and unsupervised learning.
But in order to enhance the generalization capability of
machine learning models, some properties such as the
symmetry of the actions on the lattice or the equivariance
can be beneficial.
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Figure 5: Actions defined on the edges of the graph can be
decomposed into action on the atomic positions and action
on the lattice of the crystalline material.
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