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Abstract
Traffic flow prediction plays a critical role in improving the quality, security, and efficiency of Intelligent Transportation
Systems (ITS). Accurate prediction requires modeling spatial and temporal characteristics simultaneously. Existing works
usually extract the spatial features by CNN-based modules and temporal features by RNN-based modules. However, the CNN-
based modules are locally biased, performing poorly in global spatial dependencies; and the RNN-based modules concentrate
on learning the high-level temporal dynamics (e.g., periodicity), and fail to consider the numerical closeness between future
data and historical observations as a strong prior knowledge for the prediction. To alleviate these limitations, we propose a
Spatial-temporal Transformer Network with Self-supervised Learning (ST-TSNet). ST-TSNet uses a Pre-Conv Block and vision
transformer to learn the spatial dependencies in both local and global contexts. Furthermore, a skip connection from the
input of historical records to the output prediction is introduced to utilize similar patterns to improve the prediction results.
Finally, a self-supervised strategy called stochastic augmentation is proposed to explore spatial-temporal representations
from massive traffic data to benefit the prediction task. Experiments on two datasets, TaxiBJ and TaxiNYC, demonstrate the
effectiveness of ST-TSNet. The codes is available at https://github.com/pengzhangzhi/spatial-temporal-transformer.

1. Introduction
Traffic flow prediction is a build block in Intelligent Trans-
portation Systems (ITS), which is essential for providing
high-quality traffic service. An accurate prediction of
future traffic flow data depends on modeling the spatial-
temporal information from the previous observations.
This problem can be considered from the spatial and tem-
poral perspectives. From the spatial perspective, learn-
ing the local spatial correlations is essential since traffic
volume is most influenced by its nearest neighbors. How-
ever, in real-world scenarios, two distant regions may be
strongly correlated in their traffic distributions as they
feature the similar functionality (e.g., transportation hub).
Most of existing works [1, 2, 3] adopt the convolutional
layers as their backbone to extract the spatial features,
which may introduce short-range bias due to their small
receptive field. These methods perform well in extract-
ing local context while hindering in global dependencies.
Recently, Vision transformer (ViT) [4] has shown impres-
sive performance in computer vision, due to its innate
power at extracting non-local features. We are motivated
to apply ViT to learn the long-range spatial dependencies.

From the temporal perspective, many works have been
proposed to extract complex temporal patterns, e.g., daily
and weekly periodicity [1, 2]. However, we argue that
a simple temporal characteristic: temporal similarity is
overlooked. Traffic flow data are generally smooth with
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few abrupt changes, showing many similarities in adja-
cent frames. As depicted in the time series of Fig.1, the
ratio of current traffic flow to the previous one (shown
in blue line) floats up and down within a fixed ratio of
1 as the traffic flow (shown in orange line) periodically
evolves. This means that adjacent traffic flow snapshots
have a close value and exhibit similar distribution. Thus,
an intuitive idea is to use historical observations as the
base prediction for future data. Such motivation provides
a prior knowledge that forces the model to predict the fu-
ture data partially based on the original historical records
instead of completely depending on the extracted tempo-
ral patterns. However, such similarity is overlooked in
existing methods [5, 2], as they process the historical data
for high-order temporal characteristics (e.g., periodicity),
distorting the numerical similarity.

With the rapid growth of traffic sensors deployed, a
massive amount of traffic flow data is collected but not
fully utilized. Similarly, in the field of natural language
processing (NLP), TB-level unlabel corpus are collected
but relatively fewer label data is available for various
language tasks. The gap , however, in NLP is successfully
alleviated by self-supervised learning [6], where unlabel
data are utilized to learn language representations and
then transferred to facilitate downstream tasks. While
in the field of traffic flow prediction, current training
algorithms are supervised learning, where the histori-
cal records are regarded as input and the traffic data in
the next timestamp is served as label. No effective un-
supervised learning algorithms are proposed to learn
spatial-temporal representations to facilitate the traffic
flow prediction task.

Driven by these analyses, we propose a novel frame-
work called Spatial-temporal Transformer Network with
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Figure 1: The overall architecture of Spatial-temporal Transformer Network with Self-supervised Learning (ST-TSNet). The
three time axes illustrate our pre-training strategy. The time series at the bottom shows the periodicity of traffic flow data; the
blue line denotes the ratio, and the orange line denotes the normalized traffic flow observations. The figure reveals that as the
traffic flow periodically changes, the ratio floats up and down from a fixed value 1.

Self-supervised Learning (ST-TSNet). ST-TSNet consists
of a Pre-Conv Block and ViT for learning spatial cor-
relations in both local and global contexts. In addition,
we directly connect the historical data to the output to
make full use of the historical data as the base predictions.
Lastly, a self-supervised task named stochastic augmen-
tation is proposed to pre-train our ST-TSNet to learn
spatial-temporal representations and fine-tune them to
benefit the prediction task.

The contributions of this work are summarized as fol-
lows.

• We propose a novel framework Spatial-temporal
Transformer Network with Self-supervised Learn-
ing (ST-TSNet) to capture spatial-temporal fea-
tures.

• We employ a simple yet effective skip connection
strategy, plugged into ST-TSNet, to make full use
of the temporal similarities in traffic flow data.

• We introduce self-supervised learning to our
framework and design a pre-training task
called stochastic augmentation to explore spatial-
temporal features to boost traffic flow prediction
task.

• We conduct extensive experiments on two bench-
marks (TaxiBJ and TaxiNYC) to evaluate the ef-
fectiveness of our methods and the results show
that our ST-TSNet outperforms state-of-the-art
methods.

2. Related Work
Traffic Flow Prediction. There are two types of flow
data in the traffic flow prediction task: grid-like raster
data and graph data and thus two distinct paradigms are
derived for the two types of data [7]. In our work, we
focus on raster data. Existing mainstream traffic predic-
tion methods for raster data fall into one of the following
classes: statistical methods or deep learning methods.
Statistical methods include auto-regressive integrated
moving average (ARIMA) [8], Kalman filtering [9] and
historical average. These methods often require strong
and trivial theoretical assumptions, which may violate
the nonlinearity of traffic flow data, thus having poor
performance in the real world. Recent advances have
witnessed the impressive capacity of deep learning to
extract nonlinear features from big data [10]. Many re-
searchers are inspired to apply deep learning to handle
traffic flow prediction task. Existing deep learning meth-
ods are based on convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) [11]. ST-ResNet
[1] first employs the CNNs with residual connections to
learn the spatial dependencies and construct historical
data into different branches according to the temporal
semantics to learn temporal features. Similar ideas are
adopted by subsequent works [2, 12] in which 3D convo-
lution is used to learn the spatial-temporal dependencies.
Moreover, RNN-based models [13, 14] are inspired to
use convolutional layer to capture spatial features and



sequential hierarchy (e.g., LSTM and GRU) to extract
temporal patterns. However, these methods are time-
consuming as they make predictions step by step and
may suffer gradient vanishing or explosion when captur-
ing long-range sequences [15]. To alleviate the problems,
[15, 16] discard the recurrent chain structure and employ
Multiplicative Cascade Unit (CMU) with autoencoders
while preserving the convolutional layers for learning
spatial features. The methods used by existing works can
be considered from spatial and sequential perspectives.
From the spatial perspective, convolutional layers are the
mainstream, including 2D and 3D convolution. From the
sequential perspective, there are many choices, including
RNN, GRU, LSTM and CMU. Most existing works are
a combination of these methods. In summary, existing
methods that based on CNNs suffer from short-range
bias as the small receptive field limits their capacity to
extract global dependencies.
Self-supervised Learning. Self-supervised learning
is a great way to extract training signals from massive
amounts of unlabelled data and to learn general represen-
tation to facilitate downstream tasks which the labelled
data are limited. To generate supervision information
from data, a general strategy is to define pre-training
tasks for models [17, 18] to learn semantic representa-
tions, and then transfer them to downstream tasks to
improve performance and robustness. Many works in
computer vision have defined various tasks based on
heuristic methods[19, 20]. For example, [21] learns vi-
sual representations by predicting the image rotations.
In natural language processing (NLP), masked language
modeling, e.g., Bert [6] have shown to be excellent for
pre-training language models. These methods mask a
portion of the input sequence and train models to predict
the missing content with the rest. Such methods are effec-
tive for learning semantic correlations of elements within
a sequence, e.g., sentence. The traffic flow data can also
be viewed as a sequence temporally, while the effective-
ness of self-supervised learning remains unexplored in
traffic flow prediction task.

3. Methods

3.1. Problem Formulation
We partition a city into an image-like grid map according
the longitude and latitude, as shown in the traffic flow
map of Fig.1, where each grid denotes a region. The
value of a grid denotes the traffic flow (inflow or outflow).
The device deployed at a region will periodically record
the number of people arriving at and departing from
the location to collect the inflow and outflow. The
traffic flow map of the entire city at time 𝑡 is noted
as xt ∈ R2×𝐻×𝑊 , where 2 refers to the inflow and

outflow, and H and W denote the number of rows and
columns of the grid map, respectively. The purpose of
traffic flow prediction is to predict 𝑥𝑛 given historical
traffic flow records 𝑋ℎ𝑖𝑠 = {x𝑡 | 𝑡 = 0, . . . , 𝑛− 1}. As
shown in Fig.1, the historical data is summarized into
two categories in the time axis: Closeness sequence
𝑋𝑐𝑙𝑜𝑠𝑒 = {𝑋𝑛−1, 𝑋𝑛−2, · · · , 𝑋𝑛−(𝑑𝑐−1), 𝑋𝑛−𝑑𝑐} ∈
R2×𝑑𝑐×𝐻×𝑊 is a concatenation of recent his-
torical data where 𝑑𝑐 is the length of close-
ness sequence. Trend sequence 𝑋𝑡𝑟𝑒𝑛𝑑 =
{𝑋𝑛−𝐿𝑤𝑒𝑒𝑘 , 𝑋𝑛−2·𝐿𝑤𝑒𝑒𝑘 , · · · , 𝑋𝑛−𝑑𝑡·𝐿𝑤𝑒𝑒𝑘} ∈
R2×𝑑𝑡×𝐻×𝑊 is a concatenation of periodic historical
data from the past few weeks, where 𝑑𝑡 is the length of
trend sequence, 𝐿𝑤𝑒𝑒𝑘 is the number of intervals within
a week.

3.2. Spatial-temporal Transformer
Network

Overall, we employ a symmetric structure for handling
the trend data 𝑋𝑡𝑟𝑒𝑛𝑑 and and the closeness data 𝑋𝑐𝑙𝑜𝑠𝑒:
a Pre-Conv Block followed by a ViT with two shortcuts
(i.e., two blue lines shown in Fig.1) from the input to the
fusion layer. In the end, fusion layer adaptively merges
four components (two residual components 𝑋̂𝑟𝑐 and 𝑋̂𝑟𝑡,
two outputs 𝑋̂𝑐𝑙𝑜𝑠𝑒 and 𝑋̂𝑡𝑟𝑒𝑛𝑑) to generate prediction
𝑥̂𝑛.
Pre-Conv Block. The traffic flow in a region is highly
relevant to its nearby regions. We design a Pre-Conv
Block for capturing such short-range dependencies. As
illustrated in Fig.1, Conv1 and Conv2 are the main con-
volutional layers to capture short-range dependencies.
Thus, we employ a small kernel size ( i.e., 3× 3) which
leads to the receptive field of 5. Such design ensures the
Pre-Conv Block only captures the local dependencies at
most in 5 × 5 regions. The short-range dependencies
are well-captured by the Pre-Conv Block while leaving
the long-range features to the vision transformer. In-
serting CNNs before ViT has shown to be effective in
strengthening the capacity of ViT [22]. Conv3 is the
residual shortcut, employing 64 kernels with size 1× 1,
which adds up to the main branch as a residual compo-
nent. Generally, we will use much more kernels (e.g., 64)
than that in Conv4. By enlarging and then reducing the
number of channels, Pre-Conv Block can learn various
spatial-temporal dependencies and then refine them into
a compact feature map.
Vision transformer. We apply vision transformer (ViT)
[4] after the Pre-Conv Block to capture the global depen-
dencies, as shown in the right of Fig.1. ViT is comprised of
two main components: “Patchify” stem and transformer
encoder. “Patchify” stem spatially splits the input feature
map into non-overlap 𝑝× 𝑝 patches and linearly projects
patches into tokens. Each token contains the information
of a patch of regions. Then the tokens are fused with



learnable positional encoding to preserve the 2D posi-
tional information and fed into transformer encoder. The
encoder utilizes a multi-head self-attention mechanism to
model the long-range dependencies followed by a layer
normalization and residual connection (Add & Norm)
to the next sub-layer, where a Feed Forward Network
(FFN) and another Add & Norm are employed to further
process the tokens. Lastly, the tokens are averaged and
then linearly transformed to generating output:𝑋̂𝑐𝑙𝑜𝑠𝑒

and 𝑋̂𝑡𝑟𝑒𝑛𝑑.
Skip Connection. Skip Connection are employed to
transfer similar patterns from the historical observations
to the output as the base prediction. To preserve the origi-
nal similar patterns in historical data, we directly connect
input 𝑋𝑐 and 𝑋𝑡 to the fusion layer, as shown in the blue
line of Fig.1. Before connecting, we aggregate histori-
cal input data in the time dimension to match the shape.
For two historical sequences 𝑋𝑐𝑙𝑜𝑠𝑒 ∈ R2×𝑑𝑐×𝐻×𝑊 and
𝑋𝑡𝑟𝑒𝑛𝑑 ∈ R2×𝑑𝑡×𝐻×𝑊 , we compute:

𝑋̂𝑟𝑐 = 𝑓(𝑋𝑐) ∈ R2×1×𝐻×𝑊 , (1)

𝑋̂𝑟𝑡 = 𝑓(𝑋𝑡) ∈ R2×1×𝐻×𝑊 , (2)

where 𝑋̂𝑟𝑐 and 𝑋̂𝑟𝑡 are the two residual compo-
nents. 𝑓(·) is an aggregation function R2×𝐷×𝐻×𝑊 →
R2×1×𝐻×𝑊 , where 𝐷 denotes the length of historical
data sequence. Here we use a summation function. Fi-
nally, the two residual components will be fused in the
fusion layer.
Fusion Layer. The degree of influence of the four compo-
nents (i.e., two outputs 𝑋̂𝑐𝑙𝑜𝑠𝑒, 𝑋̂𝑡𝑟𝑒𝑛𝑑 and two residual
components 𝑋̂𝑟𝑐, 𝑋̂𝑟𝑐) is different, and the influence
in different regions also varies. Therefore, to dynami-
cally calibrate their contributions, we follow [23] to use
a parametric-matrix-based fusion method, where the pa-
rameter matrices are learned from historical data. For-
mally,

𝑋̂𝑝𝑟𝑒𝑑 =𝑤𝑐 · 𝑋̂𝑐𝑙𝑜𝑠𝑒 + 𝑤𝑡 · 𝑋̂𝑡𝑟𝑒𝑛𝑑+

𝑤𝑟𝑐 · 𝑋̂𝑟𝑐 + 𝑤𝑟𝑡 · 𝑋̂𝑟𝑡,
(3)

where · denotes element-wise multiplication, 𝑤 is the
learnable parameter that measures the influence of each
component.

3.3. Self-supervised Learning with
Stochastic Augmentation

Our stochastic augmentation aims to pretrain our model
to learn general spatial-temporal features to facilitate the
prediction task. The pretraining strategy is conceptually
simple: we select a group of continuous traffic frames,
randomly sample a frame as the predicted target and use

Algorithm 1 The pre-training procedure with stochastic
augmentation.
Input: MASA model: 𝑓𝜃 , closeness data: 𝑋𝑐𝑙𝑜𝑠𝑒, trend

data: 𝑋𝑡𝑟𝑒𝑛𝑑, and predicted future data: 𝑥𝑛.
Output: pre-trained MASA model.
repeat

𝑋𝑔𝑟𝑜𝑢𝑝 ← 𝑋𝑐𝑙𝑜𝑠𝑒 ∪𝑋𝑡𝑟𝑒𝑛𝑑 ∪ 𝑥𝑛

target 𝛼← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑋𝑔𝑟𝑜𝑢𝑝)
Remaining snapshots Ω← 𝑋𝑔𝑟𝑜𝑢𝑝 − 𝛼

pre-trained data (Ω, 𝛼)
predictions 𝑦 ← 𝑓𝜃(Ω)
loss←𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑦, 𝛼)
𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝(𝑙𝑜𝑠𝑠)
update 𝑓𝜃

until stop criteria is met;

the rest to predict the target. Such scheme can be ex-
panded to three cases: (1) if the last frame is selected as
the target, then this is similar to supervised training, the
historical records are used to predict future data; (2) if the
earliest frame is the target, then future observations are
used to predict the past frame, as shown in the green axis
of Fig.1; (3) if any intermediate frame is selected as the
target, then the historical data and future observations
are used to predict present, as shown in the red axis of
Fig.1. Different from the downstream prediction task,
where input historical records and future data are paired
to be the training samples, our stochastic augmentation
produces several times more samples for pretraining by
randomly constructing input-target pairs. For example,
given a group of five frames, the supervised learning only
gives one training sample as stated in case (1). While our
stochastic augmentation paradigm yields five pretraining
samples (every frame in the group is selected to be the
target once), five times more samples than supervised
training. With the large amount of pretraining samples,
our models can explore useful spatial-temporal represen-
tations for the downstream prediction task. Specifically
for the traffic flow prediction task, we define the group
as the union of closeness data, trend data, and predicted
ground truth: 𝑋𝑔𝑟𝑜𝑢𝑝 = 𝑋𝑐𝑙𝑜𝑠𝑒 ∩ 𝑋𝑡𝑟𝑒𝑛𝑑 ∩ 𝑥𝑛. Then
we randomly sample one snapshot as the target 𝛼 and
the rest data Ω = 𝑋𝑔𝑟𝑜𝑢𝑝 − 𝛼 as the input, construct-
ing pre-training data (Ω, 𝛼) to pre-train our model. The
algorithm is depicted in Alg.1.

4. Experiments

4.1. Dataset and Evaluation
Dataset. Our experiments are based on two traffic flow
datasets: TaxiBJ and TaxiNYC. Additional external data



Table 1
Performance comparison of different methods on TaxiBJ and TaxiNYC.

Model
TaxiBJ TaxiNYC

RMSE MAPE (%) APE RMSE MAPE (%) APE
HA 40.93 30.96 6.77E+07 164.31 27.19 7.94E+05

ST-ResNet [23] 17.56±0.91 15.74±0.94 4.81E+07±3.03E+05 35.87±0.60 22.52±3.43 6.57E+05±1.00E+05
MST3D [12] 21.34±0.55 22.02±1.40 4.81E+07±3.03E+05 48.91±1.98 23.98±1.30 6,98E+05±1.34E+04
ST-3DNet [2] 17.29±0.42 15.64±0.52 3.43E+07±1.13E+06 41.62±3.44 25.75±6.11 7.52E+05±1.78E+05

3D-CLoST [14] 17.10±0.23 16.22±0.20 3.55E+07±4.39E+05 48.17±3.16 22.18±1.05 6.48E+05±3.08E+04
STAR [24] 16.25±0.40 15.40±0.62 3.38E+07±1.36E+06 36.44±0.88 25.36±5.24 7.41E+05±1.53E+05

PredCNN [15] 17.42±0.12 15.69±0.17 3.43E+07±3.76E+05 40.91±0.51 25.65±2.16 7.49E+05±6.32E+04
STREED-Net [16] 15.61±0.11 14.73±0.21 3.22E+07±4.51E+05 36.22±0.72 20.29±1.48 5.93E+05±4.31E+04
ST-TSNet (ours) 16.04±0.08 14.63±0.05 3.20E+07±1.05E+5 34.34±0.32 15.68±0.09 4.58E+05±2.52E+03

Table 2
Ablation study of sub-modules in ST-TSNet.

Variant
TaxiBJ TaxiNYC

RMSE MAPE (%) APE RMSE MAPE (%) APE
ViT 20.16 34.68 7.60E+07 51.82 96.52 2.12E+08

ViT + SC 17.12±0.35 15.56±0.29 3.41E+07±6.29E+05 57.45±5.39 22.99±2.59 6.71E+07±7.57E+05
PC + SC 19.17±0.05 29.16±1.14 6.39E+07±2.50E+06 37.36±0.32 49.24±1.94 1.08E+08±4.25E+06
ViT + PC 16.34±0.21 14.70±0.13 3.22E+07±2.86E+05 37.29±2.88 16.83±0.24 4.91E+07±7.11E+04

ViT + PC + SC 16.14±0.16 14.62±0.06 3.20E+07±1.38E+05 34.87±0.39 16.18±0.20 4.72E+07±5.71E+04
ViT + PC + SC + SA 16.07±0.06 14.68±0.08 3.22E+07±1.72E05 34.47±0.23 15.90±0.08 4.64E+07±2.43E+04

ST-TSNet (w Ext) 16.04±0.08 14.63±0.05 3.21E+07±1.05E+05 34.34±0.32 15.68±0.09 4.58E+07±2.52E+05

including DayOfWeek, Weekday/Weekend, holidays, and
meteorological data (i.e., temperature, wind speed, and
weather) are processed into a one-hot vector. There
are 20,016 constructed samples in TaxiBJ and 41,856 in
TaxiNYC.

• TaxiBJ [23]: TaxiBJ is a citywide crowd flow
dataset collected every half hour in Beijing. Based
on the geographic area of Beijing, we partition
the Beijing city into 32× 32 regions.

• TaxiNYC [16]: TaxiNYC is the taxi trip record
dataset collected every one hour in New York
City. New York City is divided into 16×8 regions
based on the longitude and latitude1.

Evaluation Metric. Three metrics: Rooted Mean
Square Error (RMSE), Mean Absolute Percentage Error
(MAPE), and Absolute Percentage Error (APE) are used
to evaluate our proposed method. We follow previous
works that compute the metrics on traffic flow value
that is larger than 10 to ensure a fair comparison. We
conducted experiments ten times for reliable results and
presented the means and standard variances of the re-
sults.

4.2. Implementation Details
Min-Max normalization is applied in our experiments
to scale the data to range [−1, 1] and denormalize the

1The raw records are available at the NYC government website. A
processed version for experiments is available at github

predicted target back to the original value. We split the
last 28 days as the test set for both datasets, and the re-
maining are regarded as training data. During training,
we select 90% of the training data for training models
and the remaining 10% is the validation set to early-stop
our training algorithm. Our model is implemented and
trained by PyTorch. We use Adam [25] as the optimizer
with a learning rate of 0.001 for TaxiBJ and 0.005 for
TaxiNYC. Cosine learning rate decay is employed to ad-
just the learning rate at each iteration. The batch size is
128 for both TaxiBJ and TaxiNYC. We run our model for
600 epochs on TaxiBJ and 800 epochs on TaxiNYC. Our
ViT has two blocks, and the patch size is set to (8, 8); the
token dimension is set to 128; the number of attention
heads is 2; the size of FFN is 512.

4.3. Quantitative Comparison
Table 1 shows the comparing results against the state-
of-the-art methods. We compare our ST-TSNet with the
following baselines: HA, ST-ResNet [23], MST3D [12],
ST-3DNet [2], 3D-CLoST [14], STAR [24], and PredCNN
[15]. The results of the baselines are from [16].

On TaxiBJ, our method exceeds the SOTA STREED-
Net in terms of MAPE and APE and achieves comparable
results in RMSE. While on TaxiNYC, our method sig-
nificantly outperforms the SOTA ST-ResNet across all
metrics by a fair margin (1.53 RMSE, 4.61 MAPE, and
1.35E+05 APE improvement).

ST-TSNet has a more significant performance improve-
ment on TaxiNYC than TaxiBJ. The possible reason of

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/UNIMIBInside/Smart-Mobility-Prediction/tree/master/data/TaxiNYC
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Figure 2: Qualitative analysis of our methods. (a) comparing the predicted results of each method at different time slots.
(b) visualizing a prediction sample for each method and (e) showing the absolute errors of these predictions. (c) illustrating
the self-attention scores of four corner patches (the pentagram-marked) for other patches and revealing that they attend to
remote patches (brighter color) for long-range spatial dependencies. (d) visualizing the inflow and outflow weight of the two
residual components in the fusion layer; high-flow regions usually have a higher weight.

the improvement is that the amount of data of TaxiNYC
is twice that of TaxiBJ (41,856 vs. 20,016), which sig-
nificantly facilitates the pre-training. This result prove
the effectiveness of the self-supervised learning module
proposed in our method. STREED-Net and STAR have
impressive performance on TaxiBJ against other base-
lines due to the simple single-branch design. However,
such simple architecture performs worse than ours in
a larger dataset TaxiNYC (1.88 RMSE higher than our
ST-TSNet) as there are rich spatial-temporal information
that a single-branch structure can not extract effectively.
Although STREED-Net and PredCNN both introduce cas-
cading hierarchical structure in their backbone, STREED-
Net has better performance than PredCNN. The reason
is that STREED-Net additionally introduces channel and
spatial attention mechanisms to dynamically refine the
learned features to generate predictions. Nevertheless,
the cascading hierarchical structure still suffers from
short-range bias as it only allows distant snapshots to
interact at higher layers. ST-ResNet, STAR, and Pred-
CNN introduce a 2D convolutional layer, and MST3D,
ST-3DNet, and 3D-CloST employ 3D convolution. The
3D convolutional layer is better than the 2D counterparts
as it can additionally capture temporal features, while
2D convolutions are restricted to only capture spatial
features. However, they all suffer from short-range bias
due to the small receptive field of convolution. More-
over, they do not introduce the skip connection and any
additional pre-training strategies, resulting in inferior
performance.

4.4. Qualitative Analysis
We offer four intuitive visualizations of proposed meth-
ods to explain their behaviors in Fig.2. Fig.2 (a) compares

the predictions of each method at different time intervals.
The magnified subplot reveals that our method has better
accuracy in predicting the peak. Fig.2 (b) spatially visu-
alizes a prediction sample of each method, and Fig.2 (e)
displays the absolute errors of these predictions, demon-
strating that our ST-TSNet has lower prediction errors
than baselines. Fig.2 (c) shows the self-attention map for
four reference patches. The visualizations are produced
by attention scores computed via query-key product in
the ViT. We use the pentagram-marked regions as query,
and show which patch (region) they attend to. The four
corner patches usually attend to remote regions (brighter
color meaning higher attention scores) while caring less
about their neighbors. The reason is that the short-range
features are perfectly captured and encoded into tokens
by Pre-Conv Block, resulting in the ViT focusing more on
the long-range features. Fig.2 (d) visualizes the weights of
inflow and outflow of two residual components. Combin-
ing the ground truth in Fig.2 (c), we observe that although
the weights vary in different regions and differ from in-
flow to outflow, they tend to concentrate on the regions
with higher traffic flow. The reason is that these regions
show a more regular time series, having more similar
patterns in residual components.

4.5. Ablation Study
To verify the effectiveness of proposed methods, we de-
sign a list of variants by appending modules step by step
and comparing them on TaxiBJ and TaxiNYC. The basic
variant is Vision transformer (ViT). We separately append
skip connection (SC), Pre-Conv Block (PC), and stochas-
tic argumentation pre-training (SA) to ViT to construct
other variants. We further consider the external factors
on our ST-TSNet (ST-TSNet (w Ext)). We use an external



module (two-layer multilayer perceptron) to model the
external features according to [5]. The external data is
transformed and added together with the main output to
yield prediction.

The results in Table 2 show that: 1) the full version
of the our methods (i.e., ST-TSNet (w Ext)) achieves the
best performance. 2) Adding each module step by step
will progressively improve the performance. It suggests
that each module is an indispensable component for our
ST-TSNet.

We additionally study the strategy of the skip con-
nection by introducing a new residual component: the
Pre-Conv Block output 𝑌𝑐𝑜𝑛𝑣 . We investigate two con-
nection strategies: additionally and solely connect 𝑌𝑐𝑜𝑛𝑣

to the fusion layer. Results show that the two strategies
degrade performance (1.66 and 1.35 RMSE degradation),
suggesting that the 𝑌𝑐𝑜𝑛𝑣 is harmful for prediction. The
performance degradation may be caused by the convolu-
tional operations in Pre-Conv Block disrupt the semantic
information in historical data (e.g., traffic distributions),
resulting in the 𝑌𝑐𝑜𝑛𝑣 and predicted target have different
distributions. In contrast, the historical records ( 𝑥𝑡𝑟𝑒𝑛𝑑

and 𝑥𝑐𝑙𝑜𝑠𝑒) and the predicted target are collected from
the same distribution and temporally correlated. Thus
the historical records share similar patterns with the pre-
dicted target that can directly contribute to the prediction,
while the 𝑌𝑐𝑜𝑛𝑣 confuses the model.

5. Conclusion
In this paper, we present a novel traffic prediction frame-
work, spatial-temporal Transformer Network with Self-
supervised Learning (ST-TSNet) for learning spatial-
temporal features. ST-TSNet is equipped with Pre-Conv
Block and ViT to capture local and spatial dependencies.
In addition, we observe the similarity in traffic flow data,
which enables us to take advantage of the historical data
as the base prediction for the future. Finally, we propose
a pretext task named stochastic argumentation to enable
models to further explore spatial-temporal representa-
tions under limited data. Experiments on two datasets
demonstrate the superiority of our proposed methods.
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