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Abstract
Spatial reasoning poses a particular challenge for intelligent agents and is at the same time a prerequisite for their successful
interaction and communication in the physical world. One such reasoning task is to describe the position of a target
object with respect to the intrinsic orientation of some reference object via relative directions. In this paper, we introduce
GRiD-A-3D, a novel diagnostic visual question-answering (VQA) dataset based on abstract objects. Our dataset allows for a
fine-grained analysis of end-to-end VQA models’ capabilities to ground relative directions. At the same time, model training
requires considerably fewer computational resources compared with existing datasets, yet yields a comparable or even higher
performance. Along with the new dataset, we provide a thorough evaluation based on two widely known end-to-end VQA
architectures trained on GRiD-A-3D. We demonstrate that within a few epochs, the subtasks required to reason over relative
directions, such as recognizing and locating objects in a scene and estimating their intrinsic orientations, are learned in the
order in which relative directions are intuitively processed.

1. Introduction
Reasoning to solve complex spatial tasks like grounding
directional relations in an intrinsic frame of reference
can be decomposed into a set of subtasks that are hier-
archically organized. Consider two objects 𝑜1 and 𝑜2 in
an image, where each of the objects has a clear front
side and orientation. Learning to answer whether the
triple (𝑜1, 𝑟, 𝑜2) holds for a given directional relation 𝑟
in a frame of reference that is intrinsic to 𝑜2 spans the
following stages (see Fig. 1 for an example):

1. Both the target object and the reference object
have to be recognized in the image (existence
prediction). In other words, an agent must ini-
tially be capable of answering questions such as
“Is 𝑜1 in the image?” or “Is 𝑜2 in the image?”.

2. Next, the object’s pose that defines the relative
relation has to be discerned, enabling an agent to
successfully respond to questions such as “What
is the cardinal direction of 𝑜2?” (orientation
prediction).

3. Predicting the directional relation using the in-
trinsic frame of reference is learned by combin-
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Figure 1: Example of grounding relative directions, e.g., con-
sidering the green arrow’s perspective, the yellow arrow is on
the left in front of it.

ing the two preceding competencies, allowing an
agent to answer a question similar to “What is the
relation between 𝑜1 and 𝑜2 from the perspective
of 𝑜2?” (relation prediction). Likewise, predict-
ing which target object is in a specific relation to
some reference object (link prediction) can be
answered, e.g., “Taking 𝑜2’s perspective, which
object is in relation 𝑟 to it?”.

4. Based on all previous stages, an agent can deter-
mine whether a specific directional relationship
exists between the two objects (triple classifica-
tion), thus successfully providing an answer to a
question like “From 𝑜2’s perspective, is 𝑜1 left of
𝑜2?”.

In previous work [1], we showed that enabling a VQA

mailto:kyra.ahrens@uni-hamburg.de
mailto:matthias.kerzel@uni-hamburg.de
mailto:jae.hee.lee@uni-hamburg.de
mailto:cornelius.weber@uni-hamburg.de
mailto:stefan.wermter@uni-hamburg.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 2: Top: Image from the GRiD-A-3D dataset. Bottom:
Assumed hierarchy of spatial reasoning tasks to answer dif-
ferent question of the abstract GRiD-A-3D dataset. Arrows
indicate a chronological dependency of tasks, e.g., in order
to determine the orientation of an object, it first has to be
recognized.

architecture to reason about relative directions is viable,
provided that all of the learning stages listed above are
encapsulated in corresponding subtasks as summarized
in Fig. 2. Beyond that, the following two observations
were made: First, the subtasks that are found earlier in
the chronology of learning stages are also learned earlier
by the models, and second, this behavior is consistent
for different neural end-to-end models. However, these
findings are based on experiments involving images with
3D models of real objects, that may introduce a poten-

tial bias that confounds the analysis of reasoning about
relative directions.

In the present work, we introduce GRiD-A-3D, a novel
and simplified diagnostic VQA dataset, which allows for
a more efficient and targeted analysis of the correspond-
ing reasoning process by removing possible biases from
using real-world objects. Subsequently, we report the per-
formance of the two established end-to-end VQA models
MAC [2] and FiLM [3] on this dataset. With our ex-
periments, we show that, when trained on GRiD-A-3D,
both models depict a similar qualitative learning behavior
compared with their replica trained on the more com-
plex non-abstract GRiD-3D [1] dataset. At the same time,
training converges up to three times faster, thus allowing
more efficient neural experiments.

We summarize the contributions made in this paper
as follows:

• We complement our GRiD-3D benchmark suite1

with a novel GRiD-A-3D (Grounding Relative
Directions with Abstract objects in 3D) dataset
that enables a faster and less biased evaluation
of spatial reasoning behavior in VQA compared
with the original GRiD-3D dataset.

• We verify our previous research findings with the
new dataset, thus underpinning our hypothesis
that multi-task learning enables neural models to
learn to ground relative directions in VQA.

• Furthermore, we add evidence to our hypothesis
that during multi-task learning, spatial reason-
ing abilities of a neural model develop along the
intuitive order of corresponding subtasks, thus
forming an implicit curriculum.

2. Related Work
Aiming to provide a suitable setup to assess the reasoning
capabilities of neural models on vision-language tasks,
diagnostic datasets have been introduced [4, 5]. One
of the major advantages of such datasets is that they
provide structured and tightly controlled scenes to pre-
vent models from circumventing reasoning by exploiting
conditional biases that commonly arise with real-world
images. A particular advantage of diagnostic datasets
based on synthetic images is that their generation pro-
cess is scalable, customizable, and therefore allows for a
more fine-grained performance analysis.

The vast majority of diagnostic VQA datasets is limited
to spatial reasoning tasks based on the absolute frame of
reference, i.e., object positions are relative to the viewer

1https://github.com/knowledgetechnologyuhh/grid-3d

https://github.com/knowledgetechnologyuhh/grid-3d


Figure 3: Common challenges in grounding relative directions
arising with real objects, exemplified by objects from the orig-
inal GRiD-3D dataset. Top left: Occlusion due to variability
in heights and shapes of objects. Bottom left: Symmetry of
objects impairs the detection of their front sides. Top/bottom
right: Replica of the images on the left using abstract objects
from the GRiD-A-3D dataset.

of the image. Yet taking into account more realistic sce-
narios such as multi-agent dialogue in a situated envi-
ronment, understanding relative directions is a prerequi-
site for meaningful communication. As a consequence,
early models to learn symbolic reasoning with relative
directions have been proposed [6, 7, 8]. However, they
inherently assume the availability of scene annotations
in terms of object labels and spatial relations instead of
requiring a model to infer such information implicitly.

An early synthetic dataset providing a test bed for
grounding relative directions is Rel3D [9]. Since Rel3D
is restricted to two objects per scene and one single task,
i.e., binary prediction of (object1, relation, object2) triples,
GRiD-3D [1] was introduced, which combines the advan-
tage of a rich number of tasks and questions as found in
traditional synthetic VQA datasets with the challenge of
grounding relative directions.

GRiD-3D is the first-of-its-kind to target multi-task
learning of relative directions in a controlled setting.
With this dataset, it was shown that, before learning
how to answer the question whether a triple (object1,
relation, object2) holds, neural end-to-end VQA models
rely on an implicit curriculum of related subtasks such
as object detection, orientation estimation, and relation
prediction [1]. Objects in GRiD-3D cover a variety of cate-
gories, ranging from humanoids and animals to furniture
and vehicles. Naturally, such objects differ in terms of
proportions, complexity, and, most importantly, symme-
try, which can be a crucial determinant of how easily a
neural network can infer their orientation (and perform
associated tasks).

In this work, we aim to provide a variation of the origi-
nal dataset that ensures the elimination of such potential
distortions (see Fig. 3 for examples), enabling a model

to more quickly learn how to ground relative directions,
which may be of particular value for few-shot, trans-
fer, and curriculum learning scenarios. Accordingly, we
extend the GRiD-3D benchmark suite towards another
diagnostic VQA dataset with abstract objects.

3. GRiD-A-3D Abstract VQA
Dataset

With the introduction of the GRiD-3D dataset [1], we
could show that neural VQA models are capable of
grounding relative directions by implicitly deriving a
curriculum of subtasks. In order to further generalize the
previous findings, we extend our GRiD-3D suite towards
a diagnostic dataset based on abstract objects whose car-
dinal direction is indicated by colored arrows.

Overview and statistics With our new GRiD-A-3D
dataset, we address the following six tasks: Existence
Prediction, Orientation Prediction, Link Prediction, Relation
Prediction, Counting, and Triple Classification. All 8 000 ren-
dered images are split without overlap into 6 400 for train-
ing, 800 for validation, and 800 for testing. The 432 948
corresponding input questions follow largely the same
80:10:10 ratio, yielding 346 984, 43 393, and 42 571 ques-
tions for each set, respectively. The GRiD-A-3D dataset
has an order of magnitude comparable with the GRiD-3D
dataset, both in terms of image and question counts.

Figure 4: The six abstract
objects used in
the GRiD-A-3D
dataset.

Image generation For
each image, we generate a
scene by randomly placing
three to five distinct objects
onto a plane and render the
corresponding image with
480x320 pixel resolution via
Blender.2 We choose a con-
sistent lighting setup across
all images, add shadows to
each object, and restrict the
image generation to a fixed
camera angle, thus obtaining
one image per scene.

Our object set comprises gray-coloured polygonal
prisms approximating a cylinder shape, each marked
with an arrow in one of the six different colours: three
primary colours (red, blue, and green) and three additive
secondary colours (yellow, cyan, and magenta). The tip
of each arrow depicts the object’s front side, allowing
for distinct relative directions between objects in the im-
age. An overview of all six objects can be found in Fig. 4.

2https://www.blender.org/
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Note that the overall object count in the original GRiD-
3D dataset is 28, whereas GRiD-A-3D is restricted to six
different objects.

(a) FiLM (b) MAC

Figure 5: Neural end-to-end VQA models FiLM and MAC
used for our experiments. The generic units (here colored in
orange and blue, respectively) control how the question and
image features are being processed.

Question generation In addition to rendering the im-
ages from our sampled scenes, we obtain scene graphs
equipped with ground truth information such as absolute
position, orientation, and relative directions of objects,
that we use to generate questions related to the six tasks
contained in GRiD-A-3D. Our question generation builds
upon the framework provided with CLEVR [4], whose
question templates, synonym, and metadata files we tai-
lor to our dataset. Likewise, our question generation
pipeline is expressed as a template-based functional pro-
gram executed on each scene graph.

We follow the depth-first search strategy to determine
and instantiate question-answer pairs that comply with
the scene information and can therefore be considered
valid. We set additional constraints to make sure that an-
swers are uniformly distributed for each task. To ensure
a wide variety of natural language questions, we sample
from a rich set of differently phrased question templates
for each reasoning task and randomly omit utterances or
replace words with suitable synonyms.

4. Evaluations
For our experiments, we train MAC [2] and FiLM [3], two
state-of-the-art neural end-to-end VQA architectures, on
our new GRiD-A-3D dataset (cf. Fig. 5). Both architectures
take raw RGB images and plain text question-answer
pairs as input for training. Image features are extracted
by a pretrained ResNet101 [10] for both models, while
questions are encoded by a GRU [11] (FiLM) or a bidi-
rectional LSTM [12] (MAC), respectively. Subsequently,

image and question features are fed to special neural
units called residual blocks (FiLM) or MAC cells (MAC).
A chain of such units provides the core of the reasoning
process.

We use existing PyTorch3 implementations of FiLM
and MAC with their default hyperparameters for the
published CLEVR [4] dataset evaluations, except for the
number of MAC cells that we reduce to four to prevent
overfitting. All experiments are run for 100 epochs and
repeated three times with different seeds to reduce the
impact of the random initialization of the models on the
results. Fig. 6 shows the mean and the standard deviation
of the evaluations.

We interpret our results in the following way: Existence
and Orientation Prediction are learned earlier than other
tasks. We explain this observation with the fact that these
tasks only require a model to focus on one single object.
For the most straightforward task of Existence Prediction,
we observe similar behavior for the two datasets: Both
converge to an accuracy of almost 100% at nearly the
same time. For the Orientation Prediction task, we observe
convergence to an accuracy of over 80% for both datasets.
Noticeably, the learning happens faster for the abstract
GRiD-A-3D dataset. The shorter learning time can be
attributed to the more unequivocal identification of front
and back sides of the abstract objects due to the lack
of symmetry related noise as shown in Fig. 3. The fact
that the accuracy on Orientation Prediction is capped at
about 85% can be explained by objects placed close to the
border between two cardinal directions, as such cases are
difficult for the models to learn and classify.

A similar learning behavior can be observed for the
more complex tasks of Relation Prediction, Triple Classifi-
cation and Link Prediction, where both models converge
faster when trained on GRiD-A-3D and also reach slightly
higher accuracy. Similarly to the results on the Orienta-
tion Prediction task, the main reason for these observa-
tions may lie in the facilitated learning conditions due to
the lack of front-back symmetries or strong occlusions
with the abstract objects. This effect is most pronounced
for Link Prediction, i.e., predicting which target object
is in a given relation to some reference object. We at-
tribute this observation to the smaller set of objects in
the GRiD-A-3D dataset.

Finally, we observe a mixed result for the Counting task:
While learning of both VQA models converges faster for
the GRiD-A-3D dataset, higher accuracy is reached for
the GRiD-3D dataset. We hypothesize that this higher
accuracy stems from the more diverse-looking objects
in the GRiD-3D dataset, facilitating the models to distin-
guish and thus count multiple objects in close proximity.

In summary, our results suggest the following two
facts: First, the abstract GRiD-A-3D dataset leads to faster

3https://pytorch.org/
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Figure 6: Multi-task learning results of FiLM (orange lines) and MAC (blue lines) on each of the six reasoning tasks of the
GRiD-A-3D dataset (solid lines) vs. training the same models on the original GRiD-3D dataset (dotted lines).

learning and can thus enable more computationally ef-
ficient experimentation while achieving comparable re-
sults to the original GRiD-3D dataset. Second, the results
support our assumption of a chronology of subtasks, as
Existence Prediction and Orientation Prediction are learned
before the models can reason about relative directions.

5. Conclusions
This work is an extension to previous work on grounding
relative directions with end-to-end neural VQA architec-
tures. We provide a comprehensive, simplified GRiD-
A-3D dataset with abstract objects that shows similar
behavior to the original GRiD-3D dataset when learned
by the two established VQA models FiLM and MAC. With
our experiments, we show that the learning of tasks that
focus on a single object like object recognition and ori-
entation prediction happens prior to learning to ground
relative directions and object counting.

The abstract nature of the dataset eliminates approxi-
mate front-back object symmetries that can have a nega-
tive impact on object orientation prediction and all rea-
soning tasks about directional relations that build upon it.
Furthermore, the simplification of the object set allows
for conducting experiments with a more comprehensive
dataset. In future work, this will allow us to conduct fast
pilot studies on curriculum and transfer learning based
on the intuitive dependency of the different spatial rea-
soning tasks on one another and the observed implicit

curriculum.
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