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Abstract

Discovering patterns for classification of sequential data is of key importance for a variety of fields, ranging from genomics
to fraud detection. In this short paper, we propose a differentiable method to discover both local and global patterns for
rule-based binary classification. Key to this end-to-end differentiable approach is that the patterns used in the rules are

learned alongside the rules themselves.

Sequence classification using rules composed of “classi-
fication relevant patterns” is a problem that has received
considerable attention in statistical machine learning and
data mining due to its applications in e.g. speech pro-
cessing, fraud detection or genomics. There exists a wide
literature that combines (un)supervised pattern mining
techniques with sequence classification. Sequential pat-
tern mining has focused to a great extent on mining
frequent symbolic subsequences [1]. In feature-based
classification, there are two approaches for capturing the
sequential nature of features available for classification:
either through preprocessing or learned simultaneously
with the classification task itself. The present work ex-
tends an existing literature that learns classification rules
over sequential data [2, 3] with a differentiable approach
that builds on top of similar methods for binary tabular
data [4, 5]. The novelty of our work lies in using learned
patterns as atoms in a rule-based classifier for sequential
data.

In this paper, we propose a differentiable rule learning
classification model for sequential data where the con-
ditions are composed of sequence-dependent patterns
that are discovered alongside the classification task itself.
More precisely, we aim at learning a rule of the following
structure: if pattern then class = 1 else class = 0. In par-
ticular we consider two types of patterns: local and global
patterns as introduced in [6]. A local pattern describes a
subsequence at a specific position in the sequence while a
global pattern is invariant to the location in the sequence
(see Figure 1 for an example).

Model The base rule model (Figure 1) we invoke is
composed of two consecutive layers that respectively
mimic logical AND and OR operators (inspired by the
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rule learning modules in [4, 5]. The AND layer takes
binary features (which are atomic boolean formulae) as
input and its output is used as input by the OR layer. The
output of the OR layer is mapped to the classification la-
bel y;. These two layers are defined with binary weights
that select the nodes which are included in the respective
boolean expression (conjunction or disjunction). In other
words, this network implements the evaluation of a DNF.
This model has a direct equivalence with a binary classifi-
cation rule like if (AAB)VC then class = 1 else class = 0,
where A, B and C are binary input features (atoms in
logical terms) .

In this paper, we apply the base rule model as a 1D-
convolutional window of fixed length over a sequence
and retrieve all outputs as input for an additional disjunc-
tive layer which we refer to as the Conv-OR layer. The
base rule model learns a boolean expression over the win-
dow size length and the Conv-OR layer indicates where
along the sequence that logical expression is valid. If
the evaluation of the logical expression is valid all along
the sequence then it can be described as a global pattern,
otherwise the learned pattern represents a local pattern.

Expressivity With this approach, different sequence-
dependent expressions can be extracted and their nature
depends on the learned weights of the Conv-OR layer
(Figure 1).

« If all the weights of the Conv-OR layer are ac-
tivated (i.e. equal to 1), the logical expression
learned by the base model is valid in all the se-
quence: a global pattern is learned.

« If only some of the weight of the Conv-OR layer
are activated, the logical expression learned by
the base model is valid only in the window associ-
ated to that weight: a local pattern is learned. The

!A natural extension of this architecture for sequential data would
be to extend this base rule model with an explicit recursion of the
base rule model, similar to a RNN. This approach was tested but
faced the same limitations as any classical RNNG, i.e., vanishing
gradients and only captures short-term dependencies.
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Figure 1: Architecture of the model with an example on a sequence of letters. The base rule model is applied as 1D-convolutional
window over the sequence. The resulting boolean values are given as input of the Conv-OR layer which indicates through its
activated weights where along the sequence the expression learned by the base model is true. The output of the Conv-OR
layer is mapped to the label of the sequence y;. For local patterns, the base model expression needs to be shifted accordingly

to the Conv-OR Layer weights.

base model logical expression is modified accord-
ingly to match that shift (see example in Figure 1
with a shift of 3 sequential steps).

The obtained weights thus translate to rules with the
following grammar:

rule —
expr —

if expr then class = 1 else class = 0
local pattern | global pattern | sequence prop

We introduce ¢, the position when the last observation
in a sequence was made. With ¢ being our reference, in a
sequence of size N € N, t — ¢ refers to the moment of the
i observation before t (0 < i < N —1). 4, B,C and
D are toy binary input features, for simplicity of the ex-
ample those features can not be activated simultaneously
at the same position ¢ in the sequence but the method is
still valid for complex symbolic sequences [7].

With those definitions, we list below examples of dif-
ferent sequence-dependent atoms that can be expressed
with the proposed architecture (See Figure 1):

local pattern is a boolean expression composed of
atoms that are TRUE at a specific position, for
example A at t-15.

global pattern is an expression describing the pres-
ence of a pattern anywhere in the sequence, for
example B-D in sequence, where “—" sign
refers to “followed by" in global patterns.

global pattern over window B-*-D in window

[t-6; t-3]

condition on sequence property is a condition on
the sequence length for example 4 < length
of sequence < 6 (not shown on the figure but
it corresponds to a specific case where the base
model has learned an empty rule.)

Those expressions could then be used as input to another
AND/OR layer model for instance, for extending the rule
complexity.

Sparsity Requirements In order to learn those ex-
pressions, especially the global ones, the model needs
to generalize without observing all possible instances at
training time. The first requirement for that matter is
sparsity in the base model. The approach taken follows
a sparsify-during-training method [8] and dynamically



enforce sparsity in weights from 0% to 100% [9]. The
model with the highest prediction accuracy on validation
dataset and the highest sparsity is kept.

Preliminary results Experiments with synthetic toy
examples containing ground-truth patterns as those ex-
pressed in Figure 1 can be discovered from moderately
small samples sizes (See Appendix A for details). Varia-
tions and extensions of these pattern have shown promis-
ing results and further tests need to be pursued to scope
the range of discoverable patterns with this approach.

Limitations There are limitations to this architecture.
The main one being that the window size is fixed and that
it limits the size of the patterns that can be found. There is
a trade-off between the maximum size of patterns and the
training complexity that has to be further investigated.

Conclusion To conclude, we presented a 1D-
convolutional neural architecture to discover local and
global patterns in sequences while learning binary clas-
sification rules. This architecture is fully differentiable
and requires sparsity that is enforced dynamically. Its
main limitation is its dependence to the window size
parameter. Further work will consist in integrating
this block into more complex architectures to augment
the expressivity of the learned rules. Moreover, the
algorithm will be tested on concrete datasets such as
UCI splice dataset or E. Coli promoter gene sequences
dataset [10] to demonstrate its ability to discover rules
with learned non-trivial patterns.
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A. Experiments with toy examples

The model is tested on toy synthetic datasets that are
generated to fit the rules presented in Figure 3. Datasets
are composed of 10000 sequences from which 10% is used
for validation and an other 10% for testing; the rest being
used for training (batch of 100). We used Adam optimizer
with a learning rate set to 0.1. In this setup, we obtain
100% accuracy in 8 out of 10 training of 200 epochs.
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