
© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

Using General-Purpose Instead of Domain-Specific
Middleware Platforms for the Creation of an
Ambient Assisted Living System

Kristin Aleksandrova 1

1 Sofia University St. Kliment Ohridski, 15 Tsar Osvoboditel Blvd., Sofia, 1504, Bulgaria

Abstract
With the extended life expectancy, we have seen an increase in the load
put on each country’s healthcare system. This has increased funding for
technologies that could enable the autonomous living of elderly or disabled
people. Various such technologies exist, and they can be summarized under
the term of Ambient Assisted Living (AAL) Systems. The development of
such systems is currently done by private healthcare facilities or research
teams. It does not aim for commercial availability. There are several domain
specific middleware platforms like universAAL, but in this work, we argue
that general-purpose middleware platforms, like OpenRemote can be just
as effective in the creation of an AAL system and at times even more cost
effective. To illustrate that a prototype has been developed, that would be
further extended to confirm or reject our hypothesis.

Keywords
Ambient Assisted Living, elderly care, smart home

1.	 Introduction

One of the challenges for many countries is the delivery of healthcare ser-
vices, as currently personal care, nursing homes and hospitals prove to be both
expensive and unable to handle the estimated number of people in the upcoming
years. This is putting more focus on coming up with ways for elderly people to
live by themselves, with minimised assistance from caretakers, family, or doc-
tors. This is where Ambient Assisted Living (AAL) Systems [1] appears. Their
sole purpose is to improve the independence and quality of life of people in need
of assistance, whether that is in a nursing home or in their own home environ-
ment. AAL systems have shown immense potential to improve the quality of life
of not just elderly people, but also of people with disabilities.

Information Systems & Grid Technologies: Fifteenth International Conference ISGT’2022, May 27–28, 2022, Sofia, Bulgaria
EMAIL: kristinia@uni-sofia.bg (K. Aleksandrova)

238

Looking at the current state of the AAL domain, certain system designs seem
to stand out, as they find applications in the resolution of a variety of problems,
posed by an AAL system [2]. Those designs implement data retention policies
and allow the further analysis of stored data. This allows the growth of a system
based on the end-user requirements, as in this specific area the desired software
may not be what was initially designed. In turn, this poses the question of data
harmonization and integration between various sensors, acting as data sources,
control and input devices and notification receiving devices, all of which could
be cloud or on-premises. Not to mention that for many systems it is crucial that
the data sources are flexible. Meaning in one case we can use sources like room
temperature and light levels and in another case. We would use motion detection
sensors to track movement in the house. In both situations, we would then be
able to apply the same principles, like predefined and custom rules, based on the
source data, and machine learning algorithms looking for patterns.

This type of architecture is best defined and realized with the help of a mid-
dleware. Usually packaged as a platform [3], this is the central piece when con-
necting devices and scenarios to create a holistic AAL system. One thing to note
here is that there are AAL specific middleware platforms and open-source ones
that hold no domain knowledge for the needs of an elderly person. In this work,
we will look at both options and consider the best approach for the creation of an
AAL system. It is based also on the cost-functionality trade off.

2.	 Selecting middleware

As we already mentioned there is a significant differentiation between do-
main aware AAL middleware platforms and their open-source general-purpose
counterparts. In this section, we will take two prominent examples of each type,
UniversAAL and OpenRemote and illustrate parts of a much larger analysis on an
optimal middleware, to be adopted for the creation of an AAL system.

2.1.	 Reference scenario
The foundation of AAL systems is the core idea of assisting elderly people in

their daily lives, in turn silently and unobtrusively increasing their quality of life,
independence and the visibility of their physical and mental state to their families
of caretakers [4]. That on its own is proving to be a very broad mission statement,
and in the real world, the vast difference in the application and target user groups
of AAL systems illustrates that. Therefore, it is necessary that we take the time
and define the target persona for the prototype that would be the result of this
work. In addition, we need to define the exact challenges said persona will have
and potential ways we will introduce to resolve them.

239

To start off, let us define an elderly person’s autonomy. With age, many daily
tasks prove to be a challenge or a life-threatening situation. For example, the lead
cause of concern for elderly people living alone is undetected falls [5]. As the conse-
quences can be dire and it is crucial, that a fall is recognized as soon as possible and
the relevant authorities are notified, so we can mitigate the consequences. There-
fore, even when we talk about elderly people living independently, we are taking
into account that either there may be one or several persons, direct family members,
neighbors or government provided help that are interested in said person’s wellbe-
ing and therefore regularly check up on them. The occurrence of this visitation var-
ies from individual to individual but would generally be within once a day to once a
week. In this work, we often refer to this concerned individual, as a caretaker.

Concerning what a caretaker would need to be monitoring, there are some
straightforward questions and metrics to be taken into account:

•	 Does the monitored person take their medication based on a pre-defined,
approved schedule? – In many cases the person can be confused, whether they
have taken the needed dosage of their prescribed medication; there are two
potential downfalls of this. In one case, the person decides not to take any more
medication and therefore disrupts the medication effect, which in dementia
patients, for example, could intensify the severity of their symptoms and in
turn lead to more confusion about medication and general activities. This is a
vicious cycle to that needs to be identified and interrupted by the caretaker, as
they notice the increasing symptomatic. Alternatively, the other case would be
that the person decides to take their medications again, to be on the safe side.
Unfortunately, we cannot be sure that this would happen only once per missed
dose. An elderly person could overdose on the prescribed medication within a
few days or in mild cases over the course of several months. This could have
severe consequences, again it would be the caretaker’s responsibility to iden-
tify and address the issue, as no one else has a similar level of visibility of the
mental and physical state of the elderly person.
•	 Is the monitored person following a regular meal plan? – This question
poses similar concerns as the previous one, the person could be confused,
whether or not they have eaten, what was in their fridge prior to meal-time and
now. Naturally, this means similar repercussions to the previous concern. The
elderly person can skip meals, causing weight loss and in turn, their moods,
energy and immune system will be affected, or this could lead to overeating
with the corresponding weight gain that could lead to complications in existing
illness or lead to new ones. One example risk group would be elderly diabetics.
•	 In case they are cooking, are all heat-generating appliances stopped after
use? – No further elaboration is needed here, as this could cause burn inju-
ries, if the elderly person is distracted or in the worst-case scenario a home
fire, that could put them, their family and neighbors at risk.

240

•	 Are they sleeping an adequate amount of time? – One common concern
of elderly people is the lack of sleep. In most cases, this is a natural response
to age and the different lifestyle, they have now adopted. If an AAL system
is capable of monitoring their times of falling asleep and waking up, these
concerns can be mitigated and most importantly, in case a real issue exists
the system would not be biased and would be able to recognize it.
•	 General monitoring of activities of daily living and more…
These concerns, that can be easily addressed and improved with the AAL

system, we have in mind are especially relevant for lightweight cases of dementia
patients [6]. This also why in this prototype, they will be the main target audience
and recipient of the AAL system monitoring and assistance functionalities.

2.2.	 Definition of comparison criteria and applying it to AAL candidates
Looking at the reference scenario, we can naturally derive the following cri-

teria, many of which are also identified in similar research [7], [8], [9]:
1.	 Customization – measures the platform provided functionalities for cre-
ating a custom AAL system and supporting custom created devices.
2.	 Extensibility – measures the extensibility of an AAL system, created on
said platform, regarding the addition of new supported scenarios and new
devises and sensors.
3.	 Support of notification channels – the AAL system needs mechanisms to
communicate with the users and especially the person’s caretaker.
4.	 Security and Identity management – the AAL system has a multitude of
personas related to each elderly person, we need to be able to model those
personas with their access levels.
5.	 Data Persistence – in our prototype we aim to provide additional in-
sights in a person’s wellbeing based on derived insights from historical data,
this requires sensor data to be securely collected and stored.
6.	 Scheduling and automation – it is important that when certain criteria
are met it is possible to automate a response from the system.
7.	 User-defined rules and triggers – to have a fully functioning system, we
need to be able to provide user-defined rules describing the person, being
monitored, as everyone has their own habits and behaviors.
8.	 Data processing and ML algorithms training – to be able to derive in-
sights on historical data, we require the system to support said data process-
ing and model training.
9.	 Cost optimization – the overall solution must not be too expensive to
install and maintain, including the types of devices it works on or we risk no
future adoption.
In the next subsections, we will consider how the two prominent candidates

abide by said criteria and come to a decision on which to base the target prototype.

241

2.2.1.	 UniversAAL
UniversAAL [10] is an open-source IoT platform that originally was de-

veloped as part of an EU-funded research project. As shown by the name, this
middleware was designed to assist the development of AAL applications and in
turn the growth of the field [11]. As such, it is currently published under Apache
GPL license. UniversAAL is written as a distributed middleware in Java using
the OSGi. It provides a skeleton of modules and concepts, upon which you can
build a productive system. With universAAL it is possible to model a variety of
scenarios and ensure their interconnectivity, including a variety of different user
interfaces, which also ensures a high extensibility, as also required by our second
criteria. All of this is possible due to the multi-level conceptualization that is
implemented in universAAL. This in turn makes the process for building applica-
tions dependent on the progress made in understanding the foundational concepts
in the platform. The ramp-up process on this platform is not a quick and simple
one, and it is worth to mention, that without previous knowledge on the platform,
any prototype’s initial version will be delayed.

Additionally, the number of supported devices is extended regularly, and the
most prominent communication protocols are utilized. In that sense, the cost of
adding and removing devices in an already developed system is very low. As
with other systems that offer this level of device supportability, it is possible to
create and use custom devices for our system. The only requirement for their
seamless integration into universAAL is the support of one of the communica-
tion standards KNX, ZigBee or FS20 [12]. Technically the middleware does not
communicate directly with the devices with specific protocols; instead, we utilize
the Context Bus. As part of the application, we develop Context Providers, which
gather information about devices state. Either this is done directly or as appli-
cations that combine contextual information to derive a custom reading. That
input is used by Context Publishers, which are applications that send data over
the Context Bus, transformed as a Context Event, to fit the ontological models
in place. For example, upon turning on the kitchen light, the Context Provider,
which is measuring the brightness in the room will create a Context Event with
the <subject, predicate, object> format, in this case <KitchenLight, hasValue,
100>. This event would then be published via the Context Publisher to the Con-
text Bus and then consumed in the main application. Understanding these types
of concepts and how to implement properly them, is one of the main hurdles in
the prototype development, based on this middleware, as other options while not
as powerful in the implementation, have a simpler structure for development and
device onboarding.

UniversAAL reuses most of the underlying systems security, provided by Java
and OSGi, and builds additional functionality to ensure confidentiality and integrity

242

as a primary focus [13. User sessions can be two types, the classic sense of a device
bound session or location-bound sessions, that are valid for a predefined location
for the user and includes all devices there. It is also possible do model specific
user roles and permissions for restricted access to certain functionalities, as well
as consent management, the latter is crucial if we would like to create a prototype
abiding by European Union’s regulations for data protection [14], that operates on
the premise of actively given consent by its users. Additionally, the universAAL
platform offers encryption for secure service-to-service communication and node
authentication. This is achieved by grouping services in uSpaces and provisioning a
key per service to allow secure communication with the other services in the group.

Data persistency in universAAL is both restrictive and promising for the de-
velopment of machine learning models on top of. This is because, as we illustrat-
ed before, data is stored as Context Events, or in other words as instances of the
ontology model. If we go for any ontology-based algorithm that is perfect as there
is no data processing required and the data access and storage is optimized for
this type of algorithm. However, if we would like to rely alternative algorithms,
like neural networks, it will be out of the question to transform large volumes of
data, as we have neither the time, the space, nor the processing power for such a
costly operation. Alternatively, we can modify each Context provider, to record
his or her data not only as a Context Event, but also as an entry in a database. This
defeats the purpose and optimization of the universAAL platform, not to mention
it introduces double maintenance of data. It transposes to all operations. It could
lead to inconsistencies. At present, we possess no information on the performance
of each type of model. In addition, do not process what would be a preferable
option. In case, we decide on an ontology-based approach universAAL would be
the most likely choice.

One of the main benefits of choosing universAAL undoubtedly is its focus
specifically on assisting the creation of AAL applications. This includes the al-
ready created ontologies, describing daily activities, devices, rooms, etc. with
their relationships. Considering our goal of creating a machine-learning algo-
rithm, that aims to enhance an AAL system with insights and potential rules,
triggering actions based on those insights, those ontologies could be immensely
helpful. Of course, with the AAL use case in mind the security aspect of the
platform covers precisely what we defined with the added bonus of authorization
options for people who find difficulty relying on basic authentication, namely
the location-based authorization for devices. However, we cannot overlook the
effort needed to understand all the concepts required developing an application
based on the universal. This is coupled with the volume of the development. It
is a significant part in the high cost for installation and maintenance. A working
prototype would take more time and expertise then the previous options to be
developed and customized across different users.

243

2.2.2.	 OpenRemote
OpenRemote2 is an open source IoT platform that prioritizes offering a sim-

plified approach to connecting different sensors and devices in a network, that
then can be managed via mobile or web applications. The platform is developed
following a micro service-like architecture, with each component being hosted
in its own Docker container. There is a main manager application, which is the
central component that ties the platform together, the database is PostgreSQL and
security is handled by Keycloak3.

The manager component also implements and handles the user interface.
It is quite straightforward; there are four main screens, which highlight most of
the provided functionality. The map shows the location of each device and is an
interactive way to check the value of each one. Devices and sensors are referred
to as assets and can be configured in the asset screen, where also different online
agents can be configured to provide input to the system. There is also the possibil-
ity to create custom rules in several ways. Lastly, the insights tab shows a custom
dashboard of metrics and analytics, aggregated to a desired level. Due to the dis-
tributed nature of the platform, in order to modify the application and add custom
functionality, it is not needed to modify the source code. There is a convention de-
fined, upon which by providing a few modifying files in a structured manner and
customizing the Docker compose file, the application’s behavior is modified and
customized. This would significantly reduce the initial costs for development and
the costs for customizing the application for each user, as we would need to show
a customized location for example, and the costs for installation and distribution.

By the same logic, we can also handle extensibility. The easy way to provide
modifications leads to the possibility of adding additional functionality as an ad-
ditional container. Or by modeling and modifying the existing ones, for example
according to the development guides provided by the platform, there are several
alternative behaviors available, and the choice can be made in the docker com-
pose file, that controls the provisioning of the containers. In addition, there are
predefined device types, which allow a plug-and-play compatibility, as for every-
thing else a wide range of protocols are supported, like Bluetooth Mesh, HTTP,
KNX, LoRa, MQTT, SNMP, TCP, UDP, Velbus, Websocket, Z-Wave, etc.

We already mentioned the available functionality for creating user-provided
rules. The main benefit in OpenRemote’s approach is the usability of the solution
by people with different technical background. There are human readable rules of
the type when then, which use the preconfigured assets to create simple actions or
notifications. This can be very easily used by the family or caretaker of the assisted
person to quickly define the risky and potentially dangerous situations or behaviors
and take measures to prevent them. Additionally, rules can be defined as a Flow

2  https://openremote.io
3  https://www.keycloak.org

244

model, which includes aggregating data from several assets, performing operations
on it and as a result modifying the state of a different asset. For example, we can
create a flow model, that takes the temperature in every room of the house and
sends a notification to the caretaker, when the aggregated home temperature falls or
raises with more than 3 degrees, as this could be pointing to a forgotten open win-
dow, or running kitchen appliance, depending on where those sensors are situated.
Talking about notifications, the out-of-the-box supported method is notification via
mail or by sending alerts to the connected mobile application, the latter of which
would require that we expose some parts of the system to the internet.

Security in OpenRemote is based on Keycloak. It allows for multi-tenant
authentication. While this was not in our initial criteria, this is a very interesting
functionality to consider, as it would allow to provide one central server for the
system for several households in close proximity, as this would reduce the cost
of hardware for processing and in turn the cost of installation. In all cases, we are
treating fully cloud applications as the least favorable option, due to the higher
risk of comptonization of the data security and privacy. In addition, we have the
standard TLS/SSL communication by a HAProxy-based reverse proxy. Lastly, as
we defined in the criteria, it is also possible to create different roles, with the cor-
responding to the persona access levels.

As we already mentioned, the database that this solution is relying on is Post-
greSQL. It is its own Docker container and the stored data is available in a dedicat-
ed volume. This makes the data backup, restore, and move very easy, as it relies on
the underlying Docker functionality. The relational database allows us flexibility,
when implementing different machine learning functionalities, as it is not restric-
tive towards the approach we could use. As for the algorithms themselves, a good
option would be the creation of a separate Docker container in the same virtual
network, to service the training and answer on predictions via API calls.

To summarize, OpenRemote is satisfying a good portion of the defined cri-
teria and is showing a lot of potential for customization and extensibility. The
costs for development and maintenance are significantly lower, than the previous
options. The main downside now is the supportability of notification channels, as
now we can send emails or notification, if we create a dedicated application for
our system. One way to go around this issue would be to involve an additional
software product that then dispatches the alert to the target notification channel
based on the received email.

2.2.3.	 Conclusion – candidate selection
As a summary, we see that the universAAL platform relies much more on

homegrown resolutions to different problems, like security. While tailored closer to
the AAL domain model, the question of the supportability of those models arises;
additionally we have always the concern if the current implementation follows the

245

state-of-the-art of the field. One way to be reassured of that is to have a decent
sized development community of the open-source solution that regularly uses and
maintains the original repository. In this case, universAAL is at a disadvantage, as
OpenRemote has much wider adoption, due to its open range of applications.

Additionally, the entry barrier of universAAL is quite high, with the range
of homegrown concepts and abstractions, it takes significant time to familiar-
ize yourself with the concepts and start the development of a solution. In turn,
this means high cost and effort for the initial implementation, any further exten-
sions, the maintenance and supportability of the end solution and the long-term
approach for the solution. On the other hand, OpenRemote has a simplified ap-
proach to development and distribution, essentially running as a docker container
and reducing all regular maintenance operations for the system availability, back-
ups and OS supportability, to operations on Docker containers.

Both universAAL and OpenRemote have their significant advantages and
costs optimizations and are acceptable candidates for the creation of an AAL
system. However, we cannot ignore the high effort and costs, required by uni-
versAAL, as the goal of this work is the creation of a prototype, in an optimal
trade-off between functionality and costs. In that sense, OpenRemote fully facili-
tates the desired scenario and provides opportunities for further development and
extension, at a reasonable trade-off. Therefore, in this work we will build a proto-
type based on OpenRemote that would exemplify the functionality and potential
of this type of systems.

3.	 Prototype development

As we already mentioned, OpenRemote is easily extendable, as it is Docker
based. To start, we can pull and run the system as Docker containers. There are
four in total. Afterwards, a significant level of customization can be done via the
Docker-compose file that contains the information for the container provisioning.
Modifications are declared, according to the following folder structure:

deployment
|-- manager
| |-- app
| | +-- images
| | |-- manager_config.json
|-- map
| |-- mapdata.mbtiles
| |-- mapsettings.json

Where, the manager_config.json contains all the modifications to the styl-
ing of the UI, all colors, fonts and logos can be changed via this file, and images

246

are stored in the adjacent images folder. Additionally, the styling can be changes
based on the realm in which we are currently working, in turn creating higher
customization between users of the same instance of the system.

The map folder holds the mbtiles-file, that is the map of the city or area we
would like to visualize and work against, the maps can be served by a separate
map container, when they are derived from raster images, for example a home’s
floor plan and is defined in a different manner. The mapsettings.json contains
information about the provided map, such as the levels of zoom we would like to
allow, the center point of the map, etc. Important to note is that similarly to the
styling, we can have a different central point for each realm, which allows us to
define a different household for each realm and focus on it in the starting screen,
based on the logged in user.

3.1.	 Architecture
OpenRemote’s architecture is based around the so-called Manager, that is

a headless Java application, that captures the current state of the system. The
specific scenario, in our case the various system capabilities for monitoring and
assistance of elderly people, are modeled via the manager and the different assets
with their attributes. This allows the initial modeling of a system that manages a
home and later-on extensions in the direction of wandering prevention or loca-
tion-based functionalities around a smart-aware city. Devices are connected to
the manager via Agents, which is the combined name for the interface to service
protocols, external APIs, and custom solutions (Figure 1).

Figure 1: OpenRemote architecture, part of the official OpenRemote documen-
tation

247

The frontend handles the creation and deployment of user interfaces, both
mobile and web-based ones. These interfaces are referred to as consoles, and dif-
ferent functionality and rules can be defined, based on the console, as out-of-the-
box geofencing and push notifications are implemented. OpenRemote supports
multitenancy and the frontend reflects that by supporting multi-tenant dashboards
and control panels.

On the more hands-on side, OpenRemote is distributed as a group of Docker
containers. One is the authorization container, named openremote_keycloack and
all authorization requests are handled by it, as expected there is a separate con-
tainer openremote_postgresql, where the database is. The corresponding volume
in Docker holds all the data and we can perform back-ups on a volume level. The
openremote_proxy, as suggested by the name handles the proxy and the openre-
mote_manager is responsible for the user interface of the system. All containers
are created in an isolated network, and communication between them is restricted.

3.2.	 Functionality
One functionality that we have adopted from the OpenRemote system is

the concept of realms. This is the human-readable visualization of multitenancy.
Each realm is essentially a different tenant that can have its own style, custom
map, assets, and users. As such, this prototype suggests one local instance of the
OpenRemote AAL-based system that could serve a whole neighborhood. This re-
duces the computational power needed for additional data processing of the data
and allows an anonymized analysis of the similar behaviors of people, as well as
the causes and effects of each behavior.

Currently the prototype is equipped with a custom map of Sofia. There are
several sources, which can provide a current vector map of a city with a free to
use license and one of them is Google Maps. In this case, that is the source of the
MBTILES map, which we are using. For example, in the test realm called Ivan’s
home, we are monitoring the household of Ivan and the specific use-cases he
has – monitoring medication intake and kitchen electrical appliances (Figure 2).

248

Figure 2: Sample realm – Ivan’s home in the first version of the prototype

To implement the two mentioned use cases, several assets need to be mod-
eled. To measure the medicine intake, we assume that the correct dosage of the
medication is measured and stored in a dedicated medication box by Ivan’s care-
taker. This is usually necessary on a weekly basis, afterwards twice a day, as
prescribed Ivan opens the box and takes the next dose of medication. In this case,
we have a sensor on the box that gives us information when it is opened. The
naïve resolution of the problem would be to send a notification each time the box
is opened. This would require Ivan’s caretaker to manually count and monitor the
number of times Ivan has taken his medication and the timeframe between doses
(Figure 3). Instead, in the prototype, we have created a groovy script, that moni-
tors the box’s sensor, and measures, how often is the box opened and does that
fit to the prescribed medicine schedule. In case that is not true Ivan’s caretaker is
notified. Additionally, the opening of the box for refiling, must not conflict with
the current calculation of taken dosages. To go around this, the current designed
process requests that the caretaker disables the Groovy rule doing the calculations
for the duration of the refilling and re-enables it afterwards.

249

Figure 3: Rules for medicine dosage in the realm Ivan’s home

As also seen in Figure 3, in the current version of the prototype, all sensors
are virtual; this is again achieved via groovy scripts. This also allowed the mod-
eling of the second scenario – monitoring unattained kitchen appliances. This
is far from a trivial question and to illustrate that let us consider the following
example. Ivan goes into the kitchen around lunchtime and turns the oven on; he
prepares the meal and mind and after 20 minutes moves the dish into the oven.
Afterwards, he leaves the kitchen and the dish to cook for an hour. Compare
this scenario with the following: Ivan goes into the kitchen around lunchtime
and turns the oven on, he changes his mind meanwhile and prepares something
that requires no heat, and as such, he forgets the oven on and leaves the kitchen.
Recognizing the difference between those two cases and similar ones requires
detailed sensor data, analyzing where Ivan is relative to the kitchen, the time
that has been spent and most notably for the given example – has the oven door
been opened. Now consider the same two examples with the stove: there is no
door there to monitor, and in most cases, we have older appliances in elderly
people homes, that do not recognize if the stove is in use and the question of
additional sensors like heat, presence or pressure raises the cost of the solution.
In those cases, the cheapest approach is to interact with the user, i.e. to ask if he
is using the stove; is he forgotten it; etc.

4.	 Conclusion and future work

In conclusion, the first OpenRemote prototype was developed with a spe-
cific target persona in mind – elderly people that exhibit early stages of demen-
tia and as such have manageable symptoms, which allow them to continue to
live independently with some support by a caretaker. Without much develop-

250

ment effort, we were able to onboard several relevant scenarios for AAL sys-
tems. This is promising for the future development and growth of the system. It
definitely confirms our initial hypothesis, that we do not need a domain specific
AAL middleware platform to be able to create quickly a system that would
cover a wide range of scenarios in elderly care.

As mentioned in the previous section, currently the defined scenarios are
simulated with virtual sensors. The next step several homes from the CASAS4
dataset will be used to model different realms and homes with closer to real-life
sensors, this would also open the possibility to use the analytics dashboards,
that come with OpenRemote and start looking for data anomalies and potential
leads for behaviors that can be recognized with the help of an algorithm.

Similarly, as we already defined in section 2.1, where we described the
reference scenario, when talking about the daily life of an elderly person, there
are much more scenarios to be considered. Also many behaviors to be modeled,
not to mention each one differs from person to person and to truly grasp the po-
tential of such a prototype it is necessary that we extend and showcase as many
additional scenarios as possible.

Now the model differentiates between three types of users – the system ad-
ministrator, the elderly person and their caretaker. However, in the AAL domain
there are many different personas, including medical personnel, family mem-
bers, friends, neighbors, caretakers that may or may not have medical qualifica-
tions, etc. Each one of them interacts with the system in a different manner and
needs access to different resources. Obviously medical data is restricted to only
the responsible for the elderly person doctor and/or nurse. OpenRemote allows
the modeling of all those different personas and the restriction of read and write
access for each asset in the system. Naturally, this would be the next step in the
prototype evolution.

Lastly, the original idea behind the prototype creation was to employ ma-
chine-learning algorithms on the gathered data from the different devices and
sensors and to establish a baseline behavior for the individual, so that the sys-
tem can recognize outliers in the person’s behavior and provide timely notifica-
tions to the person’s caretakers. To do so we will create an additional Docker
container. It will act as a server, where the models are trained. Each new sensor
input, we would like to evaluate will be sent via an API to the server, where it
will be evaluated and the response will be returned to the OpenRemote manager
where a custom agent will record the prediction and if needed evoke the neces-
sary notification channels or reaction protocols.

4  http://casas.wsu.edu/datasets

251

5.	 Acknowledgements
The research of this author was supported by Project BG05M20P001-1.002-0011

“Centre of competence MIRACle – Mechatronics, Innovation, Robotics, Auto-
mation, Clean technologies” (https://miraclebg.com)5.

6.	 References

[1]	 Queirós, Alexandra & Santos, Milton & Dias, Ana & Rocha, Nelson.
(2019). Ambient Assisted Living: Systems Characterization. 10.1007/978-
3-319-91226-4_3.

[2]	 Byrne, Caroline & Collier, Rem & O’Hare, Gregory. (2018). A Review and
Classification of Assisted Living Systems. Information. 9. 182. 10.3390/
info9070182.

[3]	 Toutsop, Otily & Kornegay, Kevin & Smith, Edmund. (2021). A Compara-
tive Analyses of Current IoT Middleware Platforms. 413–420. 10.1109/Fi-
Cloud49777.2021.00067.

[4]	 Zhang, Shuai & Nugent, Chris & Lundström, Jens & Sheng, Min. (2018).
Ambient Assisted Living for Improvement of Health and Quality of Life—
A Special Issue of the Journal of Informatics. Informatics. 5. 4. 10.3390/
informatics5010004.

[5]	 Yazar, Ahmet & Erden, Fatih & Cetin, A. (2014). Multi-sensor ambient as-
sisted living system for fall detection.

[6]	 YILMAZ, Özgün. (2019). An ambient assisted living system for dementia
patients. Turkish Journal of Electrical Engineering & Computer Sciences.
27. 2361-2378. 10.3906/elk-1806-124.

[7]	 Zentek, Tom & Yumusak, Can & Reichelt, Christian & Rashid, Asarnusch.
(2014). Which AAL Middleware Matches My Requirements? An Analysis
of Current Middleware Systems and a Framework for Decision-Support.
10.1007/978-3-319-11866-6_9.

[8]	 Amina El murabet, Anouar Abtoy, Abdellah Touhafi, Abderahim Tahiri,
Ambient Assisted living system’s models and architectures: A survey of the
state of the art, Journal of King Saud University – Computer and Informa-
tion Sciences, Volume 32, Issue 1, 2020, Pages 1–10, ISSN 1319-1578,
https://doi.org/10.1016/j.jksuci.2018.04.009.

[9]	 Phull, Rajjeet & Liscano, Ramiro & Mihailidis, Alex. (2016). Comparative
Analysis of Prominent Middleware Platforms in the Domain of Ambient
Assisted Living (AAL) for an Older Adults with Dementia (OAwD) Scenar-
io. Procedia Computer Science. 83. 537-544. 10.1016/j.procs.2016.04.252.

5  https://miraclebg.com

252

[10]	 Ram, Roni & Furfari, Francesco & Girolami, Michele & Ibáñez, Gema &
Lazaro, Juan & Mayer, Christopher & Prazak-Aram, Barbara & Zentek,
Tom & Tecnológicas, Soluciones & Salud, La & Bienestar, El. (2013). uni-
versAAL: Provisioning Platform for AAL Services. Advances in Intelligent
Systems and Computing. 219. 10.1007/978-3-319-00566-9_14.

[11]	 Gorman, J. & Mikalsen, Marius & Stav, Erlend & Walderhaug, Ståle.
(2010). universAAL – European Commission collaborative research
and development to develop an open architecture and platform for Am-
bient Assisted Living (AAL). Gerontechnology. 9. 183–184. 10.4017/
gt.2010.09.02.167.00.

[12]	 Jonas, Karl & Vogl, Bastian & Rademacher, Michael. (2017). Security
Mechanisms of wireless Building Automation Systems. 10.18418/978-3-
96043-044-5.

[13]	 Alejandro Medrano. (2017). Security Overview. https://github.com/univer-
sAAL/platform/wiki/Security-Overview Last accessed 07.04.2022.

[14]	 EU General Data Protection Regulation (GDPR): Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016 on the pro-
tection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation), OJ 2016 L 119/1.

[15]	 OpenRemote. (2021) Official Documentation. https://github.com/openre-
mote/openremote/wiki Last accessed 07.04.2022.

