
Constrained Default Logic Programming
Shutao Zhang1, Zhizheng Zhang1 and Jun Shen1

1Southeast University, School of Computer Science and Engineering, Nanjing, Jiangsu, China

Abstract
This paper develops a new formalism CDLP by combining ASP and constrained default logic to facilitate
modeling questions with incomplete information, such that both Reiter’s defaults and constraint defaults
can be represented directly. After that, a method to split the CDLP programs is proposed by extending the
notion of splitting sets to accommodate its property of constraint nonmonotonicity. Finally, we design a
primary algorithm for solving the CDLP programs.

Keywords
answer set programming, constrained default logic, logic program splitting

1. Introduction

Answer Set Programming (ASP) [1, 2, 3, 4, 5] and Default Logic (DL) [6, 7] are two well-
known paradigms for knowledge representation and nonmonotonic reasoning with incomplete
information. Negation as failure represents incomplete information in ASP programs based on
the stable model semantics of logic programs. In default logic, default rules extend the classical
first-order logic to model some cases without complete information. ASP and DL have been
widely researched for the last decades, and several variants have been developed [8, 7]. For
example, Epistemic Logic Program [9], P-log [10], and LPMLN [11] are extensions for ASP.
Justified Default Logic [12], Rational Default Logic [13], Disjunctive Default Logic [14], and
Constraint default logic [15] are variants of Reiter’s default logic.

The relationship between ASP and DL has attracted much attention and related studies [16, 5,
17]. Some focus on converting default rules in Reiter’s DL to ASP rules. Lifschitz [16] proposed
translating a default rule into an ASP rule without disjunction and constraints. Gelfond et al. [5]
proposed a method to represent defaults in ASP programs with additional literals for abnormal
individuals. However, so far as we know, no ASP approach is proposed to represent defaults
defined in Reiter’s DL variants, which are considered to have some natural features such as joint
consistency. During our practice, we found that the domain specialists can hardly understand
some subtle features of ASP, for example, the usage of constraint rules, negation as failure,
and strong negations. The specialists believe that joint consistency is a natural property of the
description of their domain knowledge. As a result, they tend to use constraint rules to deny some
beliefs rather than a model filtering mechanism. We illustrate it by a Multi-sport Athlete problem
below.

15th Workshop on Answer Set Programming and Other Computing Paradigms July 31, 2022
" shutao_zhang@seu.edu.cn (S. Zhang); seu_zzz@seu.edu.cn (Z. Zhang); junshen@seu.edu.cn (J. Shen)
� 0000-0003-0853-9281 (S. Zhang); 0000-0001-9851-6184 (Z. Zhang); 0000-0002-7307-2887 (J. Shen)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:shutao_zhang@seu.edu.cn
mailto:seu_zzz@seu.edu.cn
mailto:junshen@seu.edu.cn
https://orcid.org/0000-0003-0853-9281
https://orcid.org/0000-0001-9851-6184
https://orcid.org/0000-0002-7307-2887
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

For example, an athlete plans to run both the marathon and the relay race in a game if possible.
It can be described by the following set 𝐷1 of default rules:{︂

: 𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛

𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑚
,

: 𝑟𝑒𝑙𝑎𝑦

𝑟𝑒𝑙𝑎𝑦

}︂
The default theory (𝐷1, ∅) has a consistent extension 𝑇ℎ({𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛, 𝑟𝑒𝑙𝑎𝑦}). The following
ASP program Π1 is obtained from 𝐷1 by the translation in [18] and [17].

𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛← ¬ ∼ 𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛. (𝑟1)

𝑟𝑒𝑙𝑎𝑦 ← ¬ ∼ 𝑟𝑒𝑙𝑎𝑦. (𝑟2)

Π1 has a unique answer set {𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛, 𝑟𝑒𝑙𝑎𝑦}. However, this method leads to the non-existence
of stable models if the inconsistency is not explicitly declared by strong negations [19]1. For
example, assume the athlete has been informed that “The marathon and the relay race are
scheduled simultaneously. Hence, he can not run both of them.” Then we naturally add a formula
into the default theory (𝐷1,𝑊1) such that 𝑊1 = {𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛 ∧ 𝑟𝑒𝑙𝑎𝑦 ⊃ ⊥}. Similarly, we
add a new constraint rule 𝑟𝑐 :← 𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛, 𝑟𝑒𝑙𝑎𝑦. into the program Π1. The classical default
theory (𝐷1,𝑊1) has no consistent extensions, and the corresponding ASP program Π1 ∪ {𝑟𝑐} is
unsatisfiable. An alternative method for ASP modeling is adding the Closed World Assumption
(CWA) rules. For example, the additional rules for CWA of Π1 are

∼ 𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛← ¬𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛. (𝑟3)

∼ 𝑟𝑒𝑙𝑎𝑦 ← ¬𝑟𝑒𝑙𝑎𝑦. (𝑟4)

However, the knowledge in 𝑟3 and 𝑟4 is beyond the original description of this problem, and it is
hard for programmers to determine if the closed-world assumption is appropriate for the scenario.
In summary, constraints in ASP programs are aimed at filtering models. Before filtering, the
other rules must generate the desired models in this program, which may lead to extra work and
unexpected results for programmers.

This paper introduces an extension of ASP, CDLP (Constrained Default Logic Programming),
such that constrained defaults can be handled in logic programming. Specifically, a new unary
operator C is added to ASP to represent defaults, such that C𝑙 intuitively means 𝑙 is assumed to be
consistent. By a new operator C of assumption, we can create new desired models with constraint
rules while the rest constraints can still work as filters. The rest of this paper is organized as
follows. Firstly, we introduce the syntax and semantics of CDLP in Section 3. Secondly, we
investigate the splitting of CDLP programs in Section 4. We illustrate that the semantics of CDLP
has the property of constraint nonmonotonicity. To accommodate this property, we extend the
notion of splitting sets to CDLP programs and present the splitting theorem for CDLP. After that,
we propose a primary algorithm for solving CDLP programs using the generate-and-test approach
in Section 5. Then, we analyze the relationship between CDLP and constrained default logic in
Section 6. Finally, the related works of belief and assume operators are surveyed in Section 7.

1By abuse of notation, in this paper, we let ¬ and ∼ denote negation as failure and strong negation, respectively.

2. Preliminaries

2.1. Constrained Default Logic

Constrained default logic (CDL) [15] is a variant of Default Logic [6]. The primary motivation of
constrained default logic is to guarantee joint consistency of default justifications. A default rule
is of the form

𝛼 : 𝛽1, . . . , 𝛽𝑛
𝛾

(1)

where 𝛼, 𝛽1, . . . , 𝛽𝑛 and 𝛾 are first-order sentences. 𝛼 is called the prerequisite, 𝛽𝑖s the justifica-
tions, and 𝛾 the consequent.

Let (𝐷,𝑊) be a default theory, where 𝐷 is a set of defaults rules, 𝑊 a set of first-order
sentences. The constrained extension of (𝐷,𝑊) is a pair of set of sentences ⟨𝐸,𝐶⟩, where 𝐸
and 𝐶 can be obtained by

1. 𝐸0 = 𝐶0 = 𝑊 , and
2. for 𝑖 ≥ 0

• 𝐸𝑖+1 = 𝑇ℎ(𝐸𝑖) ∪ {𝛾|𝛼:𝛽1,...,𝛽𝑛

𝛾 ∈ 𝐷,𝛼 ∈ 𝐸𝑖, 𝐶 ∪ {𝛽1, . . . , 𝛽𝑛, 𝛾} ⊬ ⊥}
• 𝐶𝑖+1 = 𝑇ℎ(𝐶𝑖)∪{𝛾 ∧𝛽1∧ · · · ∧𝛽𝑛|𝛼:𝛽1,...,𝛽𝑛

𝛾 ∈ 𝐷,𝛼 ∈ 𝐸𝑖, 𝐶 ∪{𝛽1, . . . , 𝛽𝑛, 𝛾} ⊬
⊥}

3. ⟨𝐸,𝐶⟩ = ⟨⋃︀∞
𝑖=0𝐸𝑖,

⋃︀∞
𝑖=0𝐶𝑖⟩.

For a default rule 𝛼:𝛽1,...,𝛽𝑛

𝛾 ∈ 𝐷 and a constrained extension ⟨𝐸,𝐶⟩, if 𝛼 ∈ 𝐸, and
𝛾, 𝛽1, . . . , 𝛽𝑛 ∈ 𝐶, then 𝛾 ∈ 𝐸. As a result, 𝐸 is the set of consequences of reasoning, 𝐶
is the corresponding set containing all justifications that support 𝐸.

The difference between CDL and Reiter’s DL is that CDL requires joint consistency, while it is
not necessary for Reiter’s default theories. It means that in a classical default theory, two applied
default rules to a consistent extension may have contradicted justifications, and the justification
of an applied default rule should be consistent with the result of reasoning. In a word, in a
constrained default theory, the set of formulas in 𝑊 , all justifications and consequents of applied
rules to a constrained extension should be consistent, i.e.

𝑊 ∪ {𝛾, 𝛽1, . . . , 𝛽𝑛|
𝛼 : 𝛽1, . . . , 𝛽𝑛

𝛾
is applied to (𝐸,𝐶)} ⊬ ⊥

For example, consider the default theory (𝐷1,𝑊1) in Section 1 as a constrained default theory.
Since applying both default rules in 𝐷1 would cause inconsistency, (𝐷1,𝑊1) has two CDL
extensions, ⟨𝑇ℎ({𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛}), 𝑇ℎ({𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛})⟩ and ⟨𝑇ℎ({𝑟𝑒𝑙𝑎𝑦}), 𝑇ℎ({𝑟𝑒𝑙𝑎𝑦})⟩, which
is precisely the result we expected for this problem.

2.2. Answer Set Programming

An ASP program [2] is a collection of rules of the form

𝑙1| . . . |𝑙𝑘 ← 𝑙𝑘+1, . . . , 𝑙𝑚,¬𝑙𝑚+1, . . . ,¬𝑙𝑛. (2)

where 𝑙𝑖s (1 ≤ 𝑖 ≤ 𝑛) are ground literals, ¬ is the operator of negation as failure, | is the operator
of epistemic disjunction. Intuitively, ¬𝑙 means “it is not believed that 𝑙 is true,” and 𝑙1|𝑙2 means
“𝑙1 is believed to be true or 𝑙2 is believed to be true”. The left side of a rule 𝑟 is called the head of
𝑟, and the right side is called the body of 𝑟. An ASP rule is called a fact if its body is empty and a
constraint if its head is empty.

A constraint rule 𝑟𝑐 means that the literals in 𝑏𝑜𝑑𝑦(𝑟𝑐) can not be satisfied by a model at the
same time. For example, “there is no penguin that is capable of flying” means an entity can not
be a penguin while it can fly, which can be represented by the following rule.

← 𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑋), 𝑓 𝑙𝑦(𝑋).

There are three possible causes of inconsistency in an ASP program [20, 21]:

1. constraint rules, which may eliminate all stable models of the program;
2. incoherence, which means every stable model contains at least a pair of opposite literals of

the form 𝑝 and ∼ 𝑝;
3. odd loops, which means a loop in the dependency graph with an odd number of NAF on

the edges that no consistent stable model can satisfy all rules in this loop.

The constraints can be used to eliminate strong negations in an ASP program. For an ASP
program Π, a literal ∼ 𝑙 can be eliminated by following steps:

1. replace all occurrences of ∼ 𝑙 with a new literal 𝑙−,
2. adding the following constraint 𝑟𝑐 into program Π

← 𝑙, 𝑙−.

An odd loop of negations [22] that depends on no other rules can also represent inconsistency
and can be transformed into constraint rules [5]. For example, the following rules

𝑝← ¬𝑞, 𝑠.
𝑞 ← ¬𝑢, 𝑡.
𝑢← ¬𝑝.

are equivalent to {← ¬𝑝,¬𝑞,¬𝑢, 𝑠, 𝑡.}.

3. Constrained Default Logic Programming

A CDLP program is a finite collection of rules of the form

𝑙1| . . . |𝑙𝑘 ← 𝑒1, . . . , 𝑒𝑚, 𝑑1, . . . , 𝑑𝑛. (3)

where 𝑙𝑖s are classical literals with or without strong negations, 𝑒𝑖s are extended literals of the
form 𝑙 or ¬𝑙, 𝑑𝑖s are default literals of the form C𝑒 or ¬C𝑒. The body of a rule 𝑟, denoted by
𝑏𝑜𝑑𝑦(𝑟), is defined as

⋃︀
𝑒𝑖 ∪

⋃︀
𝑑𝑖, while the head of 𝑟, denoted by ℎ𝑒𝑎𝑑(𝑟), is defined as

⋃︀
𝑙𝑖.

For a CDLP program Π, we use 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠(Π) to denote the set of all default literals of the form

C𝑒 in the language of Π, and 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(Π) to denote the set of classical literals that occur in Π, i.e.
𝑙 ∈ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙(Π) iff. ∃𝑟 ∈ Π such that {𝑙,¬𝑙,C𝑙,¬C𝑙,C¬𝑙,¬C¬𝑙} ∩ 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅. The default
literals provide an approach to express the constrained default theories in ASP programs.

Example 1 illustrates that default literals can be falsified by the inconsistency of both incoher-
ence and constraints.

Example 1. Consider following ASP rules with defaults.

𝑓𝑙𝑦(𝑋)← 𝑏𝑖𝑟𝑑(𝑋),C𝑓𝑙𝑦(𝑋). (𝑟1)

∼ 𝑓𝑙𝑦(𝑋)← 𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑋). (𝑟2)

← 𝑓𝑙𝑦(𝑋), 𝑜𝑠𝑡𝑟𝑖𝑐ℎ(𝑋). (𝑟3)

Intuitively speaking, rules 𝑟2 and 𝑟3 are two different ways to represent the negation of default
literals C𝑓𝑙𝑦(𝑋) with strong negations and constraints, respectively. Consider an instance
𝑡𝑤𝑒𝑒𝑡𝑦 of 𝑝𝑒𝑛𝑔𝑢𝑖𝑛 and 𝑏𝑖𝑟𝑑, rule 𝑟2 generates ∼ 𝑓𝑙𝑦(𝑡𝑤𝑒𝑒𝑡𝑦), and will cause inconsistency if
C𝑓𝑙𝑦(𝑡𝑤𝑒𝑒𝑡𝑦) is true. Additionally, consider an instance 𝑝𝑙𝑢𝑐𝑘𝑦 of 𝑜𝑠𝑡𝑟𝑖𝑐ℎ and 𝑏𝑖𝑟𝑑, the con-
straint rule 𝑟3 forbids any model containing 𝑓𝑙𝑦(𝑝𝑙𝑢𝑐𝑘𝑦); thus C𝑓𝑙𝑦(𝑝𝑙𝑢𝑐𝑘𝑦) will cause incon-
sistency. As a result, both C𝑓𝑙𝑦(𝑡𝑤𝑒𝑒𝑡𝑦) and C𝑓𝑙𝑦(𝑝𝑙𝑢𝑐𝑘𝑦) are falsified, and both 𝑓𝑙𝑦(𝑡𝑤𝑒𝑒𝑡𝑦)
and 𝑓𝑙𝑦(𝑝𝑙𝑢𝑐𝑘𝑦) are false in the models of this program.

The satisfiability of a CDLP program is defined as follows.

Definition 1 (Satisfiability). A default interpretation of program Π is a pair of consistent literal
sets ⟨𝑋,𝑌 ⟩, where 𝑋 ⊆ 𝑌 ⊆ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(Π). Let ⟨𝑋,𝑌 ⟩ be a default interpretation of Π,

• ⟨𝑋,𝑌 ⟩ |= 𝑙 iff 𝑙 ∈ 𝑋 where 𝑙 is a literal;
• ⟨𝑋,𝑌 ⟩ |= ¬𝑒 iff 𝑋 ⊭ 𝑒 where 𝑒 is an extended literal;
• ⟨𝑋,𝑌 ⟩ |= C𝑙 iff 𝑙 ∈ 𝑌 ;
• ⟨𝑋,𝑌 ⟩ |= C¬𝑒 iff 𝑌 ⊭ 𝑒;
• ⟨𝑋,𝑌 ⟩ |= ¬C𝑒 iff ⟨𝑋,𝑌 ⟩ ⊭ C𝑒;
• ⟨𝑋,𝑌 ⟩ |= 𝑟 iff ∃𝑒 ∈ ℎ𝑒𝑎𝑑(𝑟) : ⟨𝑋,𝑌 ⟩ |= 𝑒 or ∃𝜑 ∈ 𝑏𝑜𝑑𝑦(𝑟) : ⟨𝑋,𝑌 ⟩ ⊭ 𝜑, where 𝑟 is a

rule in Π, 𝑒 is an extended literal in the head of 𝑟, 𝜑 is an extended literal or default literal;
• ⟨𝑋,𝑌 ⟩ |= Π iff ∀𝑟 ∈ Π : ⟨𝑋,𝑌 ⟩ |= 𝑟.

A default interpretation of a CDLP program contains two parts 𝑋 and 𝑌 , where 𝑋 is the
consequence of reasoning, and 𝑌 contains all the assumptions that 𝑋 is based on.

Example 2. Consider following program Π2.

𝑝← 𝑠. (𝑟1)

𝑞 ← C𝑠. (𝑟2)

The assumption of 𝑠 will not cause inconsistency because it does not mean 𝑠 is proved. Thus a
model of Π2 that satisfies C𝑠 does not necessarily satisfy 𝑠. A default interpretation of Π2 is
𝑀 = ⟨{𝑞}, {𝑞, 𝑠}⟩, and 𝑀 |= C𝑟 while 𝑀 ⊭ 𝑠.

𝑑 ⟨𝑋,𝑌 ⟩ |= 𝑑 ⟨𝑋,𝑌 ⟩ ⊭ 𝑑

C𝑙 remove 𝑑 delete the rule
C¬𝑙 remove 𝑑 delete the rule
¬C𝑙 replace 𝑑 with ¬𝑙 delete the rule
¬C¬𝑙 replace 𝑑 with 𝑙 delete the rule

Table 1
Obtain Π𝑀

𝑋 from Π by eliminating default literals in Π, where 𝑙 ∈ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(Π) .

With the definition of satisfiability, we can define the semantics of ASP programs with defaults
as follows.

Definition 2 (Default Reduct). Let Π be an ASP program with defaults, 𝑀 = ⟨𝑋,𝑌 ⟩ be a
default interpretation of Π. The default reduct of Π w.r.t ⟨𝑋,𝑌 ⟩ is a pair of ASP programs Π𝑀 =
⟨Π𝑀

𝑋 ,Π𝑀
𝑌 ⟩, where Π𝑀

𝑋 is obtained from Π by eliminating all default literals as Table 1, and Π𝑀
𝑌

is obtained from Π𝑀
𝑋 by adding fact rules for every literal in 𝑌 , i.e., Π𝑀

𝑌 = Π𝑀
𝑋 ∪ {𝑙.|𝑙 ∈ 𝑌 }.

For a default interpretation 𝑀 = ⟨𝑋,𝑌 ⟩ of Π, Π𝑋
𝑀 and Π𝑌

𝑀 are two ASP programs without
defaults, while Π𝑀

𝑋 eliminates all default literals according to the assumptions in 𝑌 . As a result,
a consequence ⟨𝑋,𝑌 ⟩ of program Π, or a default model, should be a default interpretation that
𝑋 is concluded by Π𝑀

𝑋 , and Π𝑀
𝑌 is satisfiable.

Definition 3 (Default Models). Consider a CDLP program Π, a default interpretation 𝑀 =
⟨𝑋,𝑌 ⟩, Φ(𝑌,Π) be a set of default literals of the form C𝑒 in Π that is satisfied by 𝑌 , i.e.,
Φ(𝑌,Π) = {C𝑒|C𝑒 ∈ 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠(Π), 𝑌 |= C𝑒}. ⟨𝑋,𝑌 ⟩ is a default model of Π iff. it satisfies
the following conditions.

1. 𝑋 is an answer set of Π𝑀
𝑋 ,

2. Π𝑀
𝑌 is satisfiable,

3. 𝑌 = 𝑋 ∪ {𝑙|C𝑙 ∈ Φ(𝑌,Π)},
4. ∄⟨𝑋 ′, 𝑌 ′⟩ ∈ 𝐷𝑀(Π) s.t. Φ(𝑌,Π) ⊊ Φ(𝑌 ′,Π), where 𝐷𝑀(Π) denotes the set of all

default models of Π.

The first condition of Definition 3 means 𝑋 is a minimal model w.r.t the assumption 𝑌 . The
second condition means 𝑌 is consistent with Π𝑀

𝑋 . Additionally, the third and fourth conditions
mean all literals in 𝑌 ∖𝑋 are assumptions with corresponding default literals, and 𝑌 contains as
many assumptions as possible.

Example 3 (Continue Example 2). For the program Π2, 𝑀 = ⟨𝑋 = {𝑞}, 𝑌 = {𝑞, 𝑠}⟩ is a
default interpretation. The default reduct Π𝑀 is a pair ⟨Π𝑀

𝑋 ,Π𝑀
𝑌 ⟩, where Π𝑀

𝑋 is

𝑝← 𝑠. 𝑞.

and Π𝑀
𝑌 is

𝑝← 𝑠. 𝑞. 𝑠.

Apparently, 𝑋 is an answer set of Π𝑀
𝑋 , and Π𝑀

𝑌 is satisfiable. Meanwhile, 𝑌 ∖𝑋 contains the
only literal 𝑟 in Φ(𝑌,Π2) and Π2, which means 𝑌 contains maximal assumptions. Therefore, 𝑀
is a default model of Π2.

By the fourth condition in Definition 3, CDLP also provides a method to distinguish the
negation of assumption (¬C𝑙) and the assumption of negation (C¬𝑙).
Example 4. Consider following CDLP programs Π3

𝑞 ← C¬𝑝.

and Π4

𝑞 ← ¬C𝑝.

Π3 represents an assumption of negation, which means 𝑞 is true if ¬𝑝 is consistent. Obviously, Π3

has a unique default model ⟨{𝑞}, {𝑞}⟩. Meanwhile, by Π4, 𝑞 is true if 𝑝 is not consistent, which
is not justified by any fact or rule. Therefore, ⟨∅, {𝑝}⟩ is the only default model of Π4.

As a result, we can describe the athlete’s problem in Section 1 as follows.

Example 5 (Athlete’s Dilemma). The athlete’s dilemma in Section 1 can be described with a
CDLP program Π5:

𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛← C𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛. (𝑟1)

𝑟𝑒𝑙𝑎𝑦 ← C𝑟𝑒𝑙𝑎𝑦. (𝑟2)

← 𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛, 𝑟𝑒𝑙𝑎𝑦. (𝑟3)

Program Π5 has two default models,

𝑀1 = ⟨{𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛}, {𝑚𝑎𝑟𝑎𝑡ℎ𝑜𝑛}⟩ and

𝑀2 = ⟨{𝑟𝑒𝑙𝑎𝑦}, {𝑟𝑒𝑙𝑎𝑦}⟩.

4. Program Splitting

4.1. Constraint Nonmonotonicity

The constraint monotonicity is an important property for ASP logic programs. A semantics 𝒮
satisfies constraint monotonicity if, for any ASP program Π and a constraint rule 𝑟𝑐, there does
not exist a stable model 𝐴 of Π ∪ {𝑟𝑐} such that 𝐴 is not a stable model of Π. However, CDLP
obviously does not satisfy this property.

Corollary 1 (Constraint Nonmonotonicity). The semantics of CDLP is not constraint monotonic.

This corollary can be proved by the following example.

Example 6. Consider following program Π6: {𝑞 ← C𝑝.} and a constraint rule 𝑟𝑐: ← 𝑞. Π6

has a unique default model 𝑀 = ⟨{𝑞}, {𝑝, 𝑞}⟩, while Π6 ∪ {𝑟𝑐} has a unique default model
𝑀 ′ = ⟨∅, ∅⟩.

An observation of Example 6 is that the constraint rule 𝑟𝑐 does not entail 𝑀 ′ ⊭ C𝑝 directly. It
rejects the default model produced by Π6, and brings out a new guess of default literals that C𝑝
is not satisfied. It means that whether a default literal C𝑝 is satisfied is not only affected by the
rules 𝑝 depends, and also by the rules depends 𝑝 directly or indirectly.

4.2. Strong Splitting Set

In a standard ASP program Π, constraint rules are always in the top part 𝑡𝑈 (Π) with regard to
a splitting set 𝑈 , because ℎ𝑒𝑎𝑑(𝑟) of a constraint rule is always empty. Since the semantics of
CDLP does not satisfy constraint monotonicity, the literals in constraint rules should be calculated
first. We can define the splitting set of CDLP by modifying the splitting set of ASP such that all
constraint rules belong in the bottom part.

Definition 4 (Strong Splitting Set). Let Π be a CDLP program without odd loops. A splitting
set of Π is a set 𝑈 ∈ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(Π) such that for every rule 𝑟 ∈ Π, if ℎ𝑒𝑎𝑑(𝑟) ∪ 𝑈 ̸= ∅, or
ℎ𝑒𝑎𝑑(𝑟) = ∅, then 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(𝑟) ∈ 𝑈 . The set of rules 𝑟 ∈ Π such that 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(𝑟) ⊆ 𝑈 is called
the bottom of Π w.r.t. 𝑈 , and is denoted by 𝑏𝑈 (Π). The set of rules Π∖𝑏𝑈 (Π) is called the top of
Π w.r.t 𝑈 , and is denoted by 𝑡𝑈 (Π).

Example 7. Consider following program Π7:

𝑞 ← C𝑝. (𝑟1)

← 𝑞. (𝑟2)

𝑠← C𝑞. (𝑟3)

Let 𝑈 = {𝑞, 𝑝} be a splitting set of Π7. Thus we have 𝑏𝑈 (Π7) = {𝑟1, 𝑟2}, and 𝑡𝑈 (Π7) = {𝑟3}.

Let 𝑀𝑏 be a default model of 𝑏𝑈 (Π). For every rule 𝑟, if for every extended literal (or default
literal) 𝑡 in 𝑏𝑜𝑑𝑦(𝑟), 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(𝑡) ⊆ 𝑈 →𝑀𝑏 |= 𝑡, then we say 𝑟 is not falsified by 𝑀𝑏. We can
obtain a rule 𝑟′ from every 𝑟 ∈ 𝑡𝑈 (Π) by following steps if 𝑟 is not falsified:

• ℎ𝑒𝑎𝑑(𝑟′) = ℎ𝑒𝑎𝑑(𝑟), and
• if there is an extended literal or default literal 𝑡 that 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(𝑡) ∈ 𝑈 , then remove 𝑡 from
𝑏𝑜𝑑𝑦(𝑟′).

We denote the set of obtained rules by 𝑒𝑈 (Π∖𝑏𝑈 (Π),𝑀𝑏).

Definition 5 (Solution). Let Π be a CDLP program without odd loops, 𝑈 be a splitting set of Π.
A solution to Π with regard to 𝑈 is a pair ⟨𝑀𝑏,𝑀𝑒⟩ such that

1. 𝑀𝑏 is a default model of 𝑏𝑈 (Π), and
2. 𝑀𝑒 is a default model of 𝑒𝑈 (Π∖𝑏𝑈 (Π),𝑀𝑏), and
3. for 𝑀𝑏 = ⟨𝑋𝑏, 𝑌𝑏⟩ and 𝑀𝑒 = ⟨𝑋𝑒, 𝑌𝑒⟩, 𝑋𝑏 ∪𝑋𝑒 and 𝑌𝑏 ∪ 𝑌𝑒 are consistent respectively.

Theorem 1 (Strong Splitting Theorem). Let Π be a CDLP program without odd loops, 𝑈 be
a strong splitting set of Π. ⟨𝑋,𝑌 ⟩ is a default model of Π, if and only if there exists a solution
⟨⟨𝑋𝑏, 𝑌𝑏⟩, ⟨𝑋𝑒, 𝑌𝑒⟩⟩ w.r.t 𝑈 such that 𝑋 = 𝑋𝑏 ∪𝑋𝑒 and 𝑌 = 𝑌𝑏 ∪ 𝑌𝑒.

4.3. Splitting Set

Although a strong splitting set can be used to split a CDLP program, Definition 4 is too strong for
many conditions. For example, for CDLP programs with odd loops, a strong splitting set can not
split these programs correctly.

Example 8. Consider following program Π8 with an odd loop.

𝑞 ← C𝑝. (𝑟1)

𝑠← ¬𝑠, 𝑝. (𝑟2)

If we extend Definition 4 to CDLP programs with odd loops, 𝑈 = {𝑝} was a strong splitting set of
Π8. Therefore, there was a solution ⟨𝑀𝑏,𝑀𝑒⟩ of Π8, where 𝑀𝑏 = ⟨{𝑞}, {𝑝, 𝑞}⟩ and 𝑀𝑒 = ⟨∅, ∅⟩.
However, 𝑟2 in this program is a rule with an odd loop, which implies that 𝑝 will lead to a
contradiction, and C𝑝 should not be satisfied by any default models. As a result, 𝑀 = ⟨∅, ∅⟩ is
the unique default model of Π8. Apparently, ⟨𝑀𝑏,𝑀𝑒⟩ is not a solution corresponding to 𝑀 .

On the other hand, if a program consists of two sets Π′ and Π′′ of rules with disjoint literals,
then Π′ and Π′′ can both contain constraint rules.

Example 9. Consider following program Π9:

𝑝← C𝑝. ← 𝑝.

𝑞 ← C𝑞. ← C𝑞.

Π9 should have two splitting sets {𝑝} and {𝑞}.

Further observation shows that if a literal 𝑝 belongs in the bottom part 𝑏𝑈 (Π), literals in a rule
𝑟 that depends on C𝑝 should also belong in 𝑏𝑈 (Π).

Example 10. Consider following program Π10:

𝑝|𝑢. (𝑟1)

𝑠← ¬𝑝. (𝑟2)

𝑞 ← C𝑝. (𝑟3)

← 𝑞. (𝑟4)

𝑡← 𝑢,¬𝑡. (𝑟5)

Figure 1 is the support graph of Π10. In Figure 1, both 𝑟4 and 𝑟5 are used to represent
inconsistency. It shows that 𝑟4 is indirectly dependent on C𝑝. As a result, every literal that
𝑝 depends on should also belong in 𝑈 . Thus Π10 has a splitting set 𝑈 = {𝑝, 𝑞, 𝑢, 𝑠}, and
𝑏𝑈 (Π10) = {𝑟1, 𝑟2, 𝑟3, 𝑟4}.

Definition 6 (Splitting Set). Let Π be a program, 𝑈 and 𝑈− be two sets of literals in 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(Π).
𝑈 is a splitting set if for every rule 𝑟 ∈ Π,

• if ℎ𝑒𝑎𝑑(𝑟) ∩ 𝑈 ̸= ∅, then 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(𝑟) ∈ 𝑈 , and

r1

p

u

r2

r3

s

q r4

r5 t

¬

C

¬

U+

U−

Figure 1: The support graph with constraints of Π10. 𝑈− contains all rules and literals that
depending 𝑝, while 𝑝 belongs in 𝑈+, which is a subset of 𝑈 . Therefore, the literals in 𝑟2, 𝑟3 and
𝑟4 should belong in 𝑈 .

𝑑 C𝑒 ∈ 𝑔 C𝑒 /∈ 𝑔

C𝑒 remove C𝑒 delete the rule
¬C𝑒 replace C𝑒 with 𝑒 delete the rule

Table 2
Obtain Π𝑔

𝑋 from Π by eliminating default literals in Π, where 𝑒 is an extended literal, and 𝑒 is its
counterpart.

• for every literal 𝑙 ∈ 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠(Π), if 𝑙 ∈ 𝑈 , then there exists a set 𝑈− of literal such that

– 𝑙 ∈ 𝑈−, and
– if 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(𝑏𝑜𝑑𝑦(𝑟)) ∩ 𝑈− ̸= ∅, then 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠(𝑟) ⊂ 𝑈−, and
– 𝑈− ⊆ 𝑈 .

According to the definition above, the splitting set 𝑈 of Π10 in Example 10 is 𝑈+ ∪ 𝑈− in
Figure 1, where 𝑈+ contains all literals in 𝑟1, and 𝑈− contains all literals in 𝑟3 and 𝑟4.

Theorem 2 (Splitting Theorem). Let Π be a CDLP program, 𝑈 a splitting set of Π. ⟨𝑋,𝑌 ⟩ is
a default model of Π, if and only if there exists a solution ⟨⟨𝑋𝑏, 𝑌𝑏⟩, ⟨𝑋𝑒, 𝑌𝑒⟩⟩ w.r.t 𝑈 such that
𝑋 = 𝑋𝑏 ∪𝑋𝑒 and 𝑌 = 𝑌𝑏 ∪ 𝑌𝑒.

5. A Primary Solving Algorithm

We propose a primary algorithm for solving CDLP programs based on the idea of generate-and-
test.

From Example 3, we can find that the Π𝑀
𝑋 in a default reduct is only affected by 𝑌 in the

interpretation 𝑀 = ⟨𝑋,𝑌 ⟩, or more specifically, by Φ(𝑌,Π). Therefore, for a guess about
which default literals are satisfied, we can build a collection of default interpretations satisfying
Condition 1 to 3 in Definition 3, which is called candidate default models and denoted by
𝐶𝐷𝑀(Π).

For a guess 𝑔 of a CDLP program Π, where 𝑔 ⊆ 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠(Π), the candidate default models
w.r.t 𝑔 is obtained by following steps:

1. generate Π𝑔
𝑋 according to Table 2, which is a variation of Table 1.

2. obtain the 𝑋 parts by solving the ASP program Π𝑔
𝑋 .

3. for a possible 𝑋 , obtain 𝑌 by union 𝑋 and the literals in 𝑔 and check if the 𝑌 part satisfies
Π

⟨𝑋,𝑌 ⟩
𝑌 .

Once we calculated all candidate default models of a program Π, we can get the default
models of Π by comparing the Φ(𝑌,Π) of these candidate default models. Since the guesses
contain all default literals in function Φ, we can also compare the subset relation between guesses.
Additionally, by sorting the guess sequence, we can make sure that whenever we are testing guess
𝑔𝑗 , the super sets of 𝑔𝑗 are already tested. Thus we only need to check whether there is a default
model with a tested guess 𝑔𝑖, where 𝑔𝑗 ⊂ 𝑔𝑖.

The algorithm above is formally described in Algorithm 1.

Algorithm 1: solving a CDLP program
Input: Π, a CDLP program
Output: DM, the set of all default models of Π

1 DM← ∅
// obtain sorted consistent guesses s.t.
∀𝑖, 𝑗 : (𝑔𝑖 ⊃ 𝑔𝑗)→ (𝑖 < 𝑗)

2 Guess = GuessDefault(Π)
3 foreach 𝑔 ∈ Guess do
4 if ∄⟨𝑋 ′, 𝑌 ′⟩ ∈ DM s.t. 𝑔 ⊂ Φ(𝑌 ′,Π) then
5 Calculate Π𝑔

𝑋 according to Table 2
6 Solve 𝐴𝑆(Π𝑔

𝑋) with existing ASP solvers
7 foreach 𝑋 ∈ 𝐴𝑆(Π𝑔

𝑋) do
8 𝑌 ← 𝑋 ∪ {𝑙|C𝑙 ∈ 𝑔}

// check if ⟨𝑋,𝑌 ⟩ is a default model

9 Generate Π
⟨𝑋,𝑌 ⟩
𝑌

10 if Satisfiable(Π⟨𝑋,𝑌 ⟩
𝑌) then

11 DM← DM ∪{⟨𝑋,𝑌 ⟩}

Theorem 3 (Soundness and Completeness of Algorithm 1). Let a CDLP program Π be the input
of Algorithm 1, and 𝐷𝑀 is the set of default interpretations output by Algorithm 1. A default
interpretation 𝑀 is a default model of Π, if and only if 𝑀 ∈ 𝐷𝑀 .

For a CDLP program Π and a guess 𝑔 ∈ 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠(Π), the calculation of default reduct Π𝑔
𝑋 is

polynomial, while the calculation of 𝑋 and Π𝑔
𝑌 is as difficult as solving an ASP program, which

is in Σ𝑃
2 [23]. Therefore, the solving of CDLP programs is in Σ𝑃

3 .

6. Relation with CDL

We can establish a correspondence between CDLP programs and constrained default theories. Let
Π be a CDLP program without disjunction heads or negation as failure, then its corresponding
CDL theory 𝜏(Π) = (𝐷𝜏 ,𝑊𝜏) is obtained by following steps. For a rule 𝑟 in a program Π with
following form:

𝑙0 ← 𝑙1, . . . , 𝑙𝑚,C𝑙𝑚+1, . . . ,C𝑙𝑛. (4)

1. if 𝑙0 is a literal and 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠(𝑟) is not empty, its corresponding default 𝜏(𝑟) ∈ 𝐷𝜏 is

𝑙1 ∧ · · · ∧ 𝑙𝑚 : 𝑙𝑚+1, 𝑙𝑛
𝑙0

(5)

2. otherwise, its corresponding formula 𝜏(𝑟) ∈𝑊𝜏 is

𝑙1 ∧ · · · ∧ 𝑙𝑚 ⊃ 𝑙0 (6)

where 𝑙0 may be a literal or ⊥.

Theorem 4. Let Π be a CDLP program without disjunction and negation as failure, and 𝜏(Π)
the corresponding constrained default theory.

• if ⟨𝑋,𝑌 ⟩ is a default model of Π, then ⟨𝑇ℎ(𝑋), 𝑇ℎ(𝑌)⟩ is a constrained extension of
𝜏(Π).

• If ⟨𝐸,𝐶⟩ is an extension of 𝜏(Π) with maximal(w.r.t. inclusion) justifications and Π is
satisfiable, then there is a default model ⟨𝑋,𝑌 ⟩ of Π such that 𝐸 = 𝑇ℎ(𝑋) and 𝑇ℎ(𝑌).

Example 11. Consider the following program Π11

𝑐← C𝑎. 𝑑← C𝑏. ← 𝑎, 𝑏.

The disjunctive constrained default theory 𝜏(Π11) is(︂
𝐷 =

{︂
: 𝑎

𝑐
,
: 𝑏

𝑑

}︂
,𝑊 = {𝑎 ∧ 𝑏 ⊃ ⊥}

)︂
Apparently, the program Π11 has two default models ⟨{𝑐}, {𝑎, 𝑐}⟩ and ⟨{𝑑}, {𝑏, 𝑑}⟩, while

the default theory 𝜏(Π11) has two constrained extensions, 𝐸1 = ⟨𝑇ℎ({𝑐}), 𝑇ℎ({𝑎, 𝑐})⟩ and
𝐸2 = ⟨𝑇ℎ({𝑑}), 𝑇ℎ({𝑏, 𝑑})⟩.

7. Related Works

There are many existing works on the consistency operators in logic programs. Logic GK of
minimal knowledge and justified assumption [24] is a logic with two modal operators, 𝒦 for
“known” and 𝒜 for “assumed”, while 𝒜𝐹 is true in a preferred model only if the assumption
of 𝐹 is justified. MBNF [25] is a simplified version of [24]. It uses believe operator ℬ (𝒦 in
the earlier version [26]) and adapts ¬ as another operator for nonmonotonicity. AELB [27] is a

variation of autoepistemic logic (AEL) with an additional operator ℬ, but the meaning of operator
ℬ is different from MBNF. ℬ𝐹 intuitively means formula 𝐹 is believed to be true, and formally
means 𝐹 is true by some nonmonotonic formalism. For example, 𝐹 is true in some minimal
models based on circumscription. ASP with default logic [28] and dl2asp [17] combine answer
set programming and Reiter’s default logic by forming defaults into ASP rules with default
operators. The language of epistemic specifications [9, 29] extends ASP with modal operators K
and M, where M is the dual operator of K. M𝑙 is defined as ¬K¬𝑙 and means literal 𝑙 “may be
true.” All these works are closely related to default logic, autoepistemic logic, and answer set
programming [30, 31, 32, 33]. A belief formula with consistency operators in these logics is true
in a model only if it is justified in all or some possible worlds. By the principle of rational or
minimal knowledge, an assumption of literal 𝑙 is not true if 𝑙 is not justified. Thus these logics do
not have the property of joint consistencies when they are used to represent defaults.

Some logic paradigms that support the joint consistency of assumptions, such as deontic logic
and DL-semantics for answer sets. Deontic logic [34, 35] is a modal logic with two operators,
O for obligations and P for permissions. A standard deontic logic theory does not allow any
normative conflicts, for example, O𝑝 and O∼𝑝 [36], which is similar to the joint inconsistencies
in constrained default logic and CDLP. Shen and Eiter [37] state that the additional constraints
can lead to believing some non-minimal models of origin programs in a relaxation of answer set
semantics, which seems a more intuitive interpretation of constraints for domain specialists.

8. Conclusion

This paper proposes a new ASP paradigm CDLP concerning the constraint default logic defined
on a popular idea of joint consistency in commonsense reasoning. Unlike the existing default
logic variants defined in the classical first-order logic, negation as failure is allowed in CDLP. It
thus provides a more powerful tool to deal with incomplete information. The splitting theorem
and an algorithm to solve the CDLP program are given.

In the future, we plan to investigate more properties of CDLP, for example, the Kripke
semantics for CDLP. Moreover, we also plan to develop a parallel algorithm for solving CDLP
programs based on the splitting set and the primary algorithm presented in this paper and develop
a parallel solver. In addition, we plan to model some real-world applications with CDLP and
solve these problems with the solver.

References

[1] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. A.
Kowalski, K. A. Bowen (Eds.), Logic Programming, Proceedings of the Fifth International
Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes),
MIT Press, 1988, pp. 1070–1080.

[2] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases,
New Gener. Comput. 9 (1991) 365–386.

[3] V. W. Marek, M. Truszczynski, Stable models and an alternative logic programming
paradigm, in: K. R. Apt, V. W. Marek, M. Truszczynski, D. S. Warren (Eds.), The Logic

Programming Paradigm - A 25-Year Perspective, Artificial Intelligence, Springer, 1999, pp.
375–398.

[4] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Commun.
ACM 54 (2011) 92–103.

[5] M. Gelfond, Y. Kahl, Knowledge Representation, Reasoning, and the Design of Intelligent
Agents, Cambridge University Press, 2014.

[6] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81–132.
[7] G. Antoniou, A tutorial on default logics, ACM Comput. Surv. 31 (1999) 337–359.
[8] W. Faber, An introduction to answer set programming and some of its extensions, in:

M. Manna, A. Pieris (Eds.), Reasoning Web. Declarative Artificial Intelligence - 16th
International Summer School 2020, Oslo, Norway, June 24-26, 2020, Tutorial Lectures,
volume 12258 of Lecture Notes in Computer Science, Springer, 2020, pp. 149–185.

[9] M. Gelfond, Strong introspection, in: T. L. Dean, K. R. McKeown (Eds.), Proceedings
of the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, July 14-19,
1991, Volume 1, AAAI Press / The MIT Press, 1991, pp. 386–391.

[10] C. Baral, M. Gelfond, J. N. Rushton, Probabilistic reasoning with answer sets, Theory Pract.
Log. Program. 9 (2009) 57–144.

[11] J. Lee, Y. Wang, Weighted rules under the stable model semantics, in: C. Baral, J. P.
Delgrande, F. Wolter (Eds.), Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa,
April 25-29, 2016, AAAI Press, 2016, pp. 145–154.

[12] W. Lukaszewicz, Considerations on default logic: an alternative approach, Comput. Intell.
4 (1988) 1–16.

[13] A. Mikitiuk, M. Truszczynski, Constrained and rational default logics, in: Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal
Québec, Canada, August 20-25 1995, 2 Volumes, Morgan Kaufmann, 1995, pp. 1509–1517.

[14] M. Gelfond, H. Przymusinska, V. Lifschitz, M. Truszczynski, Disjunctive defaults, in:
Proceedings of the 2nd International Conference on Principles of Knowledge Representation
and Reasoning (KR’91). Cambridge, MA, USA, April 22-25, 1991, Morgan Kaufmann,
1991, pp. 230–237.

[15] T. Schaub, On Constrained Default Theories, in: B. Neumann (Ed.), 10th European Confer-
ence on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992. Proceedings,
John Wiley and Sons, 1992, pp. 304–308.

[16] V. Lifschitz, Answer set programming and plan generation, Artif. Intell. 138 (2002) 39–54.
[17] Y. Chen, H. Wan, Y. Zhang, Y. Zhou, dl2asp: Implementing default logic via answer set

programming, in: T. Janhunen, I. Niemelä (Eds.), Logics in Artificial Intelligence - 12th
European Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Proceedings,
volume 6341 of Lecture Notes in Computer Science, Springer, 2010, pp. 104–116.

[18] V. Lifschitz, H. Turner, Splitting a logic program, in: P. V. Hentenryck (Ed.), Logic
Programming, Proceedings of the Eleventh International Conference on Logic Programming,
Santa Marherita Ligure, Italy, June 13-18, 1994, MIT Press, 1994, pp. 23–37.

[19] D. Nelson, Constructible falsity, J. Symb. Log. 14 (1949) 16–26.
[20] T. Syrjänen, Debugging inconsistent answer set programs, in: The 11th International

Workshop on Nonmonotonic Reasoning, Low Wood hotel, Lake District, England, UK, 30

May-1 June, 2006, 2006, pp. 77–83.
[21] N. Madrid, M. Ojeda-Aciego, Measuring Inconsistency in Fuzzy Answer Set Semantics,

IEEE Trans. Fuzzy Syst. 19 (2011) 605–622.
[22] F. Lin, X. Zhao, On Odd and Even Cycles in Normal Logic Programs, in: D. L. McGuin-

ness, G. Ferguson (Eds.), Proceedings of the Nineteenth National Conference on Artificial
Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, July
25-29, 2004, San Jose, California, USA, AAAI Press / The MIT Press, 2004, pp. 80–85.

[23] T. Eiter, W. Faber, M. Fink, S. Woltran, Complexity results for answer set programming with
bounded predicate arities and implications, Ann. Math. Artif. Intell. 51 (2007) 123–165.

[24] F. Lin, Y. Shoham, A logic of knowledge and justified assumptions, Artif. Intell. 57 (1992)
271–289.

[25] V. Lifschitz, Minimal belief and negation as failure, Artificial Intelligence 70 (1994) 53–72.
[26] V. Lifschitz, Nonmonotonic Databases and Epistemic Queries, in: Proceedings of the 12th

International Conference on Artificial Intelligence- Volume 1, 1991, pp. 381–386.
[27] T. C. Przymusinski, Autoepistemic Logic of Knowledge and Beliefs, Artif. Intell. 95 (1997)

115–154.
[28] V. W. Marek, J. B. Remmel, Answer set programming with default logic, in: J. P. Delgrande,

T. Schaub (Eds.), 10th International Workshop on Non-Monotonic Reasoning (NMR 2004),
Whistler, Canada, June 6-8, 2004, Proceedings, 2004, pp. 276–284.

[29] P. Kahl, R. Watson, E. Balai, M. Gelfond, Y. Zhang, The language of epistemic specifications
(refined) including a prototype solver, J. Log. Comput. 30 (2020) 953–989.

[30] K. Konolige, On the relation between default and autoepistemic logic, Artificial Intelligence
35 (1988) 343–382.

[31] M. Truszczynski, Modal Interpretations of Default Logic, in: Proceedings of the 12th
International Joint Conference on Artificial Intelligence. Sydney, Australia, August 24-30,
1991, Morgan Kaufmann, 1991, pp. 393–398.

[32] V. W. Marek, M. Truszczyński, More on modal aspects of default logic, Fundam. Informati-
cae 17 (1992) 99—-116.

[33] G. Gottlob, Translating Default Logic into Standard Auto-epistemic Logic, Journal of the
ACM (JACM) 42 (1995) 711–740.

[34] G. H. von Wright, Deontic logic, Mind 60 (1951) 1–15.
[35] L. Åqvist, Deontic Logic, Springer Netherlands, Dordrecht, 2002, pp. 147–264.
[36] J. Horty, Deontic Modals: Why Abandon the Classical Semantics?, Pacific Philosophical

Quarterly 95 (2014) 424–460.
[37] Y.-D. Shen, T. Eiter, Determining inference semantics for disjunctive logic programs, Artif.

Intell. 277 (2019).

	1 Introduction
	2 Preliminaries
	2.1 Constrained Default Logic
	2.2 Answer Set Programming

	3 Constrained Default Logic Programming
	4 Program Splitting
	4.1 Constraint Nonmonotonicity
	4.2 Strong Splitting Set
	4.3 Splitting Set

	5 A Primary Solving Algorithm
	6 Relation with CDL
	7 Related Works
	8 Conclusion

