
Helping Wine Lovers With Taxonomies
Paolo Ciaccia

1
, Davide Martinenghi

2
and Riccardo Torlone

3

1

Dipartimento di Informatica - Scienza e Ingegneria, Università di Bologna, Italy

2

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

3

Dipartimento di Ingegneria, Università Roma Tre, Italy

Abstract
We formally investigate the problem of retrieving the best results complying with multiple preferences

expressed in a logic-based language when data are stored in relational tables with taxonomic domains. We

introduce two operators that rewrite preferences for enforcing transitivity, which guarantees soundness

of the result, and specificity, which solves conflicts among preferences. We show that these two properties

cannot be achieved together and identify the only two possibilities to ensure transitivity and minimize

conflicts. Our approach proves effective when tested over both synthetic and real-world datasets.

1. Introduction

Preferences are typically expressed in generic terms (e.g., I prefer pasta to beef), whereas

available data is more specific (the menu might contain lasagne and hamburger). This mismatch

causes difficulties when trying to automatically suggest the best solutions. The problem becomes

even more involved when several preferences at different levels of granularity and possibly

conflicting with each other are specified.

Example 1. We would like to select some bottles of wine from the list in Figure 1. While we

prefer white wines to red ones, we prefer Amarone (a red wine) to white wine; we prefer Tuscan

wineries in the province of Siena to those in the Piedmont province of Asti. Moreover, if the

winery lies in the Langhe (which spans both the Asti and Cuneo provinces) we prefer an aged

wine (i.e., produced before 2017) to a more recent one.

In order to support the mentioned preferences, we need further information, as, e.g., provided

by the taxonomies in Figure 1. The example also shows that conflicts can occur when preferences

are defined at different levels of detail (e.g., the preference for Amarone, which is a red wine,

is in contrast with the more generic preference for white wines). Also observe that further

preferences can be naturally (transitively) derived from those that are stated explicitly (e.g.,

from the preference for wines from Siena to those from Asti and the preference for aged wines

when they are from the Langhe region, we can also derive a preference for wines from Siena to

young wines from Langhe).

In this paper, unlike previous approaches that have only tackled the problem of mapping

preferences to data (see, e.g., [1]), we formally investigate the problem of modifying input

SEBD 2022: The 30th Italian Symposium on Advanced Database Systems, June 19-22, 2022, Tirrenia (PI), Italy

$ paolo.ciaccia@unibo.it (P. Ciaccia); davide.martinenghi@polimi.it (D. Martinenghi);

riccardo.torlone@uniroma3.it (R. Torlone)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:paolo.ciaccia@unibo.it
mailto:davide.martinenghi@polimi.it
mailto:riccardo.torlone@uniroma3.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Wines
Wine Winery Year

Arneis Correggia 2019 𝑎
Amarone Masi 2014 𝑏
Amarone Bertani 2013 𝑐
Canaiolo Montenidoli 2015 𝑑
Barolo Laficaia 2014 𝑒
Arneis Ceretto 2019 𝑓

Veneto Tuscany Piedmont

Roero LangheCuneoAstiSienaVerona

Valpolicella

BertaniMasi Montenidoli Casorzo Correggia Laficaia Ceretto

white rosé red

Arneis Canaiolo Amarone Barolo

Figure 1: Taxonomies for the running example.

preferences so as to guarantee that they are transitive and specific. The latter property means

that, in case of conflicts, the more specific preference overrides the more generic one. For

instance the specific preference for Amarone over white wines counts more than the that for

white wines over red ones.

We therefore study, from both a theoretical and a practical point of view, how transitivity

and specificity can be obtained by suitable rewritings of the initial preferences. We tackle

the problem by introducing two operators that rewrite preferences expressed as FO formulas:

T to enforce transitivity and S to remove conflicts between preferences. We prove that it is

unfortunately impossible to guarantee at the same time transitivity and a complete absence of

conflicts, no matter the order in which T and S are considered and how many times they are

applied. Intuitively, the removal of conflicts may compromise transitivity, whereas enforcement

of transitivity may (re-)introduce conflicts. In spite of this, we formally show that: (i) the set of

all possible sequences of operators can be reduced to a finite (and small) set, (ii) there are only

two sequences that guarantee transitivity and minimize residual conflicts between preferences,

and (iii) the best results obtainable via these two sequences may be very different.

A number of experiments shows that the computation of the best results largely benefits

from the minimization of conflicts between preferences, while incurring a low overhead due to

the rewriting process.

The full version of this paper has appeared in [2].

2. Operations on Preferences

We consider a simple extension of the relational model in which the values of an attribute can

be arranged in a hierarchical taxonomy, i.e., a poset 𝑇 = (𝑉,≤𝑉 ), where 𝑉 is a set of values

and ≤𝑉 is a partial order on 𝑉 .

Given a set of attribute-taxonomy pairs 𝐴1 : 𝑇1, . . . , 𝐴𝑑 : 𝑇𝑑, let 𝒯 denote the set of all

possible tuples over any schema that can be defined using such pairs. A preference relation is



a relation ⪰ on 𝒯 × 𝒯 . Given 𝑡1 and 𝑡2 in 𝒯 , if 𝑡1 ⪰ 𝑡2 then 𝑡1 is (weakly) preferable to 𝑡2. If

𝑡1 ⪰ 𝑡2 but 𝑡2 ̸⪰ 𝑡1, then 𝑡1 is strictly preferable to 𝑡2, denoted by 𝑡1 ≻ 𝑡2.

We consider that preferences are expressed via an intrinsic preference formula [3] 𝐹 such that

𝑡1 ⪰ 𝑡2 ⇔ 𝐹 (𝑡1, 𝑡2). A formula is a disjunction of DNFs, each of which is called a preference

statement, formed by one or more clauses.

Example 2. The preferences in Example 1 can be expressed as 𝑃1(𝑥, 𝑦)∨𝑃2(𝑥, 𝑦)∨𝑃3(𝑥, 𝑦)∨
𝑃4(𝑥, 𝑦), which can be compactly written as: 𝑃1 = white ⪰ red (short form of 𝑃1(𝑥, 𝑦) =
(𝑥[Wine] ≤ white) ∧ (𝑦[Wine] ≤ red)), 𝑃2 = Amarone ⪰ white, 𝑃3 = Siena ⪰ Asti, 𝑃4 =
Langhe ∧ aged ⪰ Langhe ∧ young.

Now we introduce two operators that can be applied to a preference relation: Transitive

closure (T) and Specificity-based refinement (S). Let ⪰ denote the initial preference relation; the

resulting relation is indicated ⪰T for T and ⪰S for S. Multiple application of operators, e.g., first

T and then S, leads to the relation (⪰T)S, which we compactly denote as ⪰TS. In general, for any

sequence 𝑋 ∈ {T, S}*, ⪰X is the preference relation obtained from the initial preference relation

⪰ by applying the operators in the order in which they appear in X. Notice that ⪰𝜀 = ⪰, where

𝜀 denotes the empty sequence.

We describe the behavior of the two operators by means of suitable rewritings of a preference

formula. Given a sequence X of operators, and an initial (input) formula 𝐹 (𝑥, 𝑦) inducing the

preference relation ⪰, 𝐹 X(𝑥, 𝑦) denotes the rewriting of 𝐹 that accounts for the application of

the X sequence, yielding ⪰X.

Transitive Closure. Transitivity of ⪰, and consequently of ≻, is a basic requirement of any

sound preference-based system. If ⪰ is not transitive then ≻ might contain cycles, a fact that

could easily lead either to empty or non-stable results [2].

The transitive closure operator, denoted T, given an input preference relation ⪰X yields the

preference relation ⪰XT. The transitive closure 𝐹 XT
of an ipf 𝐹 X

with 𝑛 statements 𝑃1, . . . , 𝑃𝑛

is still a finite ipf that can be computed as described in [3]. In particular, two predicates of

the form (𝑥[𝐴𝑖] ≤𝑉𝑖 𝑣1) and (𝑥[𝐴𝑖] ≤𝑉𝑖 𝑣2), over the same attribute 𝐴𝑖 and using the same

variable 𝑥, are contradictory if values 𝑣1 and 𝑣2 are different and have no common descendant

in the taxonomy 𝑉𝑖. If the predicates are of the form (𝑥[𝐴𝑖] ≤𝑉𝑖 𝑣1) and (𝑥[𝐴𝑖] ̸≤𝑉𝑖 𝑣2), then

they are contradictory in case there is a path from 𝑣1 to 𝑣2 in 𝑉𝑖 (or 𝑣1 = 𝑣2).

The fact that the transitive closure is computed with respect to the (possibly infinite) domain

𝒯 of the tuples, and not with respect to a (finite) relation 𝑟 of tuples, is quite standard for

preference relations (see e.g., [3]), and has the advantage of yielding a relation ⪰XT that does

not change with 𝑟.

Example 3. Continuing with Example 2, the transitive closure of 𝐹 is the formula 𝐹 T
that,

among others, adds the following statements to 𝐹 :

𝑃5 = Amarone ⪰T red 𝑃6 = Siena ⪰T Langhe ∧ young

Statement 𝑃5 clearly follows from 𝑃2 and 𝑃1, whereas 𝑃6 is obtained from 𝑃3 and 𝑃4, since

there exists at least one winery that is both in the Asti province and in the Langhe region (Casorzo
is one of them).



After applying the T operator, we simplify the formula as needed, and, in particular, we

remove statements that are subsumed by other statements. Similarly, we also simplify statements

by removing contradictory clauses and clauses subsumed within the same statement.

Specificity-based Refinement. The most intriguing of our operators is S. As apparent from

Example 2, conflicting preferences, such as 𝑎 ⪰ 𝑏 and 𝑏 ⪰ 𝑎 (induced by 𝑃1 and 𝑃2, resp.),

may hold. To solve this problem we resort to a specificity principle, borrowed from non-

monotonic reasoning, stating that more specific information should prevail over more generic

one. Therefore, giving the same importance to, e.g., 𝑃1 and 𝑃2, the former being more generic,

contradicts the intuition.

The specificity principle we adopt for analyzing conflicting preferences is based on the

extension of preferences statements, i.e., on the set of pairs of tuples in 𝒯 for which a statement

is true.

Definition 1 (Specificity principle). Let ⪰X be a preference relation, and let 𝐹 X
be the correspond-

ing formula. Let 𝑃𝑖 and 𝑃𝑗 be two preference statements in 𝐹 X
. We say that 𝑃𝑖 is more specific

than 𝑃𝑗 if, for any pair of tuples 𝑡1, 𝑡2 ∈ 𝒯 such that 𝑃𝑖(𝑡1, 𝑡2) is true, then 𝑃𝑗(𝑡2, 𝑡1) is also true,

and the opposite does not hold.

From Definition 1 we can immediately determine how a less specific statement has to be

rewritten so as to solve conflicts.

Lemma 1. A preference statement 𝑃𝑖(𝑥, 𝑦) is more specific than 𝑃𝑗(𝑦, 𝑥) iff 𝑃𝑖(𝑥, 𝑦) implies

𝑃𝑗(𝑦, 𝑥) (written 𝑃𝑖(𝑥, 𝑦) → 𝑃𝑗(𝑦, 𝑥)) and the opposite does not hold.

According to Lemma 1, when 𝑃𝑖(𝑥, 𝑦) implies 𝑃𝑗(𝑦, 𝑥) the S operator replaces 𝑃𝑗(𝑦, 𝑥) with

𝑃 ′
𝑗(𝑦, 𝑥) = 𝑃𝑗(𝑦, 𝑥) ∧ ¬𝑃𝑖(𝑥, 𝑦), so that 𝑃𝑖 and 𝑃 ′

𝑗 do not induce any conflicting preferences.

Example 4. Continuing with Example 3, the application of the S operator amounts to rewriting

formula 𝐹 T
by replacing the clause 𝑃1(𝑥, 𝑦) with 𝑃1(𝑥, 𝑦) ∧ ¬𝑃2(𝑦, 𝑥), since 𝑃2(𝑦, 𝑥) →

𝑃1(𝑥, 𝑦). This, after distributing ¬ over the two predicates in 𝑃2 and simplifying, leads to the

new clause: 𝑃7 = white ⪰TS red ∧ ¬Amarone.

3. Sequences of Operators

In this section we analyze the effect of performing the operations described in the previous

section, and prove some fundamental properties.

In order to clarify the relationships between the results of the different operations, we

introduce the notions of equivalence and containment between sequences of operators.

Definition 2 (Equivalence and containment). Let X,Y ∈ {T, S}*; X is contained in Y, denoted

X ⊑ Y, if for every initial preference relation ⪰, ⪰X⊆⪰Y; X and Y are equivalent, denoted X ≡ Y,

if both X ⊑ Y and Y ⊑ X.

We observe that T and S are idempotent, T is monotone and cannot remove preferences,

while S cannot add preferences. In addition, the preference relation obtained after applying T
on the initial preference relation ⪰ is maximal, in that it includes all other relations obtained

from ⪰ by applying T and S in any way.



Theorem 1. Let X,Y ∈ {T, S}*, with X ⊑ Y. Then:

XTT ≡ XT XSS ≡ XS idempotence (1)

XT ⊑ YT monotonicity (2)

X ⊑ XT XS ⊑ X inflation / deflation (3)

X ⊑ T maximality (4)

We call complete those sequences that include both T and S. A sequence X is transitive if, for

every initial preference relation ⪰, ≻X is transitive. Eventually, our goal is to drop conflicting

and less specific preferences while preserving transitivity. To this end, we add minimality with

respect to ⊑ as a desideratum.

The following, non-trivial result shows that we can focus on just eight sequences, shown in

Figure 2, because any sequence is equivalent to one of them.

Theorem 2. Let X ∈ {T, S}*. Then ∃Y ∈ {𝜀, T, S, TS, ST, TST, STS, STST} such that X ≡ Y.

ε

T

S

ST

STS

STST TS

TST

Figure 2: A transitively reduced graph showing containment between sequences. Dashed border for
incomplete sequences; grey background for non-transitive sequences; blue background for minimal-
transitive sequences.

To give an intuition, we observe that i) consecutive repetitions of the same operator are idle

(via idempotence) and ii) the repeated application of a TS suffix does not change the semantics

of a sequence (i.e., XTS ≡ XTSTS).

Minimality and transitivity. Generally, any complete sequence not ending with S is non-

minimal, in that it may contain conflicting preferences (possibly introduced by T) that turn out

to be in contrast with other, more specific preferences. We exemplify this on ST using a single

taxonomy about time.



Example 5. Let 𝐹 consist of 𝑃1 = autumn ⪰ sep and the more specific 𝑃2 = sep10 ⪰ oct10.
By specificity, in 𝐹 S

, 𝑃1 is replaced by the statement 𝑃3 consisting of two clauses: autumn ⪰
sep ∧ ¬sep10 and autumn ∧ ¬oct10 ⪰ sep. In 𝐹 ST

, the clauses in 𝑃3 transitively combine into

𝑃1 again, since, e.g., the value sep30 is below sep but not sep10 and below autumn but not

oct10; therefore oct10 ⪰ST sep10 holds. However, in 𝐹 STS
, 𝑃1 is again replaced by 𝑃3, so that

oct10 ̸⪰STS sep10, which shows that ST is not minimal.

All the containments indicated in Figure 2 are strict, as can be shown through constructions

similar to that of Example 5, so no sequence ending with T is minimal in {T, S}*.

Transitivity is achieved for any sequence ending with T, while no sequence ending with S is

transitive. Therefore, we summarize our finding in the following major result.

Theorem 3. Let X ∈ {T, S}*. Then XT is not minimal and XS is not transitive, thus no sequence

is both transitive and minimal.

Since transitivity and minimality cannot be both achieved at the same time, we enforce

transitivity (which cannot be waived) and look for the minimal sequences among those that are

transitive, which we call minimal-transitive sequences.

We first observe that all complete sequences starting with S are incomparable with those

starting with T (also refer to Figure 2). Therefore, only three sequences are both complete

and transitive: ST, TST and STST, the first of which contains the last one and is therefore not

minimal. The remaining two sequences are transitive, incomparable, and, therefore, minimal in

the set of complete and transitive sequences.

Theorem 4. The only minimal-transitive sequences are TST and STST.

The result of Theorem 3 is inherent and no finer granularity in the interleaving of T and S (e.g.,

by making S resolve one conflict at a time instead of all together) would remove this limitation.

Furthermore, this limitation is unavoidable and we can prove that no method whatsoever (not

just those based on the T and S operators) could solve it.

4. Obtaining the Best Results

Given a relation 𝑟 ⊆ 𝒯 , the “best” tuples in 𝑟 according to the preference relation ⪰ can be

selected by means of the Best operator 𝛽 [4], which returns the tuples 𝑡1 of 𝑟 such that there is

no other tuple 𝑡2 in 𝑟 that is strictly preferable to 𝑡1, i.e., 𝛽≻(𝑟) = {𝑡1 ∈ 𝑟 | ∄𝑡2 ∈ 𝑟, 𝑡2 ≻ 𝑡1}.
As shown in Section 3, TST and STST are incomparable, thus there will be relations 𝑟 and

input preference relations ⪰ for which the best results delivered by the two semantics will differ.

In order to quantify the difference between these results, we define, for any two sequences X
and Y, Diff𝛽(X,Y, 𝑛) as the worst-case size of the difference in the results delivered by X with

respect to those due to Y, for any given cardinality of the input relation 𝑟. We have:

Theorem 5. Diff𝛽(TST, STST, 𝑛) = Θ(𝑛); Diff𝛽(STST, TST, 𝑛) = Θ(𝑛).

From a practical point of view, Theorem 5 shows that there is no all-seasons minimal-transitive

semantics. Furthermore, there can be cases (used in the proof of the theorem) in which the



average median
0

500

1000

1500

2000
|B
es
t|

TST

STST

T

ε

(a) Cardinality of 𝛽.

average median
0

5

10

15

20

25

tim
e
fo
r
B
es
t(
s)

TST

STST

T

ε

(b) Time for computing 𝛽.

Figure 3: Computing 𝛽 with default parameter values.

number of best results from any of the two semantics is comparable to 𝑛, whereas the other

semantics returns 𝒪(1) tuples.

For space reasons, we only give hints at our experimental results and refer the reader to [2]

for details. As for the rewriting of the input formula, in all cases we incur a low overhead,

negligible with respect to the time required for computation of 𝛽.

In our experiments, as recognized in the germane literature [5], we only consider relevant

tuples, i.e., those that satisfy either side of at least one clause in the rewritten formula, since the

other tuples correspond to those objects that the formula does not talk about.

The algorithm we adopt for computing 𝛽 is an improved version of BNL, exploiting a heuristics

tailored to our scenario, which pre-sorts the input relation so that the tuples matching the left

side of a clause and corresponding to more specific values in the taxonomies come first. The

rationale is that these values are likely associated with a smaller amount of tuples, so that a

smaller 𝛽 partial result can be found before scanning large amounts of data. Furthermore, such

tuples are likely to be preferred to many others, in particular when specificity is a concern.

Besides testing real taxonomies, we experimented on a variety of synthetic datasets, generated

according to various taxonomy topologies (regular, random, and scale-free), dataset sizes (up to

1M tuples), attributes (up to 5), and input preferences (up to 10). Figure 3a shows our results

using default parameter values (regular taxonomy on 1 attribute, two conflicting preference

statements, 10K tuples). The amount of relevant tuples is roughly 40% of the size of the dataset.

Both T (i.e., only enforcing transitivity) and 𝜀 (i.e., no rewriting of the preference formula)

retain about half of the relevant tuples (which is both the average and the median value we

obtained), while TST and STST retain less than 2% in the median case (the average value goes

up to 20% due to runs with unfocused input formulas referring to values not in the dataset).

This is reflected in the computation times, shown in Figure 3b, which are consistently around

24𝑠 for T and 10𝑠 for 𝜀, but nearly two orders of magnitude smaller in the median case for TST
and STST.

This confirms that our approach is effective both in reducing the cardinality of 𝛽 and in

achieving substantial speedup with respect to baseline strategies. Similar results are obtained

in all other scenarios we tested.

We observe that the application of T alone corresponds to the work performed by preference

evaluation methods that only aim at guaranteeing transitivity, e.g., [3], which are therefore

outperformed by our approach. The inability of T to deal with conflicting preferences, thus



generating many indifferent tuples, which in turn induce (very) large result sets, indeed applies

to all our scenarios. Similar observations apply to 𝜀 (i.e., the empty sequence, corresponding

to the input formula), which represents the action of works on preference evaluation using

no rewriting whatsoever, such as [1]. Additionally, the results obtained via 𝜀 would be totally

unreliable, due to lack of transitivity.

5. Conclusions

In this paper we have tackled the problem of finding the best elements from a repository on

the basis of preferences referring to values that are more generic than the underlying data

and may involve conflicts. To this aim, we have introduced and formally investigated two

operators for enforcing, in a given collection of preferences, the properties of specificity, which

can solve conflicts, and transitivity, which guarantees the soundness of the final result. We

have then characterized the limitations that can arise from their combination and identified

the best ways in which they can be used together. We have finally shown, with experiments

over both synthetic and real-world datasets, the effectiveness and practical feasibility of the

overall approach. We remark that the need to address conflicts arising from preferences was also

observed in [6, 7]. The framework proposed there allows for a restricted form of taxonomies [8]

(with all values organized into distinct, named levels) and hints at an ad hoc procedure with

very limited support for conflict resolution; the focus of [6, 7] is, however, on the downward

propagation of preferences.

References

[1] T. Lukasiewicz, M. V. Martinez, G. I. Simari, Preference-based query answering in datalog+/-

ontologies, in: IJCAI 2013, pp. 1017–1023. URL: http://www.aaai.org/ocs/index.php/IJCAI/

IJCAI13/paper/view/6505.

[2] P. Ciaccia, D. Martinenghi, R. Torlone, Preference queries over taxonomic do-

mains, Proc. VLDB Endow. 14 (2021) 1859–1871. URL: http://www.vldb.org/pvldb/vol14/

p1859-martinenghi.pdf.

[3] J. Chomicki, Preference formulas in relational queries, ACM Trans. Database Syst. 28 (2003)

427–466. URL: https://doi.org/10.1145/958942.958946. doi:10.1145/958942.958946.

[4] P. Ciaccia, D. Martinenghi, R. Torlone, Foundations of context-aware preference propagation,

J. ACM 67 (2020) 4:1–4:43. URL: https://doi.org/10.1145/3375713. doi:10.1145/3375713.

[5] P. Georgiadis et al., Efficient rewriting algorithms for preference queries, in: ICDE,2008, pp.

1101–1110. URL: https://doi.org/10.1109/ICDE.2008.4497519.

[6] P. Ciaccia, D. Martinenghi, R. Torlone, Finding preferred objects with taxonomies, in: ER,

2019, pp. 397–411. URL: https://doi.org/10.1007/978-3-030-33223-5_33.

[7] P. Ciaccia, D. Martinenghi, R. Torlone, The POOR-MAD approach: Preferred objects over

rich, multi-attribute data, in: SEBD, 2021, pp. 283–290. URL: http://ceur-ws.org/Vol-2994/

paper30.pdf.

[8] D. Martinenghi, R. Torlone, Taxonomy-based relaxation of query answering in relational

databases, VLDB J. 23 (2014) 747–769. URL: https://doi.org/10.1007/s00778-013-0350-x.

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6505
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6505
http://www.vldb.org/pvldb/vol14/p1859-martinenghi.pdf
http://www.vldb.org/pvldb/vol14/p1859-martinenghi.pdf
https://doi.org/10.1145/958942.958946
http://dx.doi.org/10.1145/958942.958946
https://doi.org/10.1145/3375713
http://dx.doi.org/10.1145/3375713
https://doi.org/10.1109/ICDE.2008.4497519
https://doi.org/10.1007/978-3-030-33223-5_33
http://ceur-ws.org/Vol-2994/paper30.pdf
http://ceur-ws.org/Vol-2994/paper30.pdf
https://doi.org/10.1007/s00778-013-0350-x

	1 Introduction
	2 Operations on Preferences
	3 Sequences of Operators
	4 Obtaining the Best Results
	5 Conclusions

