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Abstract

Querying inconsistent knowledge bases has attracted a great deal of interest over the last decades. Also

explainability has recently become a prominent problem in AI, and explaining query answers allows users

to understand why a query is entailed. In this paper, we address the problem of explaining ontological

query answers in the existential rules setting under three popular inconsistency-tolerant semantics,

namely, the ABox repair, the intersection of repairs, and the intersection of closed repairs semantics.
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1. Introduction

Existential rules from the context of Datalog
±

[2] and description logics (DLs) [3] are popular

ontology languages. In real-world applications, it may very well be the case that the data are

inconsistent with the ontology. To provide meaningful answers to queries in the presence of

inconsistency, various inconsistency-tolerant semantics of query answering have been proposed.

In the ABox repair (AR) semantics, first developed for relational databases [4] and then

generalized for several DLs [5], a query answer is valid if it can be inferred from each of

the repairs of the knowledge base, that is, the inclusion-maximal consistent subsets of the

database. The intersection of repairs (IAR) [5] and the intersection of closed repairs (ICR) [6]

semantics have been introduced as approximations of the AR semantics (see also [7, 8, 9] for

other approximation approaches). An answer is considered to be valid under the IAR (resp.,

ICR) semantics if it can be inferred from the intersection of the repairs (resp., the intersection

of the closure of the repairs), along with the ontology.

Explainability has recently become a prominent problem in different areas of AI. In our

setting, explaining query answers allows users to understand not only what is entailed by an
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inconsistent knowledge base, but also why it is entailed. In this paper, we study explanations of

query entailment under inconsistency-tolerant semantics in the presence of existential rules.P

There have been various works on explanations for query answers under existential rules in

the consistent setting. Explaining query answers under existential rules was investigated in [10]

and under DL in [11]; preferred explanations in [12] and negative explanations in [13].

Explaining query answers under inconsistency-tolerant semantics has recently been addressed

in the literature. Arioua et al. [14] addressed the problem of explaining query entailment under

the ICR semantics in the presence of existential rules for which the Skolemized chase is finite.

Their definition of explanation is based on abstract argumentation. Their approach along

with interactive explanation methods based on dialectical approaches has been experimentally

evaluated by Hecham et al. [15]. Bienvenu et al. [16, 17, 18] considered the logic DL-Liteℛ.

They defined explanations for positive and negative answers under the brave, AR, and IAR
semantics, and investigated the data complexity of different related problems.

In this paper we investigate the complexity of query explanations under the AR, IAR, and

ICR semantics for a wide spectrum of Datalog
±

languages.

2. Preliminaries

We here briefly recall some basics on existential rules from the context of Datalog
±

[2].

General. We assume a set C of constants, a set N of labeled nulls, and a set V of variables. A

term 𝑡 is a constant, null, or variable. We assume a set of predicates, each associated with an arity.

An atom has the form 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 is an 𝑛-ary predicate, and 𝑡1, . . . , 𝑡𝑛 are terms. An

atom containing only constants is called fact. Conjunctions of atoms are also identified with

the sets of their atoms. An instance 𝐼 is a (possibly infinite) set of atoms defined over constants

and nulls. A database 𝐷 is a finite instance containing only constants. A homomorphism is a

substitution ℎ : C∪N∪V ↦→ C∪N∪V that is the identity on C and maps N to C∪N. With

a slight abuse of notation, homomorphisms are applied also to (sets/conjunctions of) atoms. A

conjunctive query (CQ) 𝑞 has the form ∃Y𝜑(X,Y), where 𝜑(X,Y) is a conjunction of atoms

without nulls. The answer to 𝑞 over an instance 𝐼 , denoted 𝑞(𝐼), is the set of all |X|-tuples

t over C for which there is a homomorphism ℎ such that ℎ(𝜑(X,Y)) ⊆ 𝐼 and ℎ(X)= t. A

Boolean CQ (BCQ) 𝑞 is a CQ ∃Y𝜑(Y), i.e., all variables are existentially quantified; 𝑞 is true
over 𝐼 , denoted 𝐼 |= 𝑞, if 𝑞(𝐼) ̸= ∅, i.e., there is a homomorphism ℎ with ℎ(𝜑(Y)) ⊆ 𝐼 .

Dependencies. A tuple-generating dependency (TGD) 𝜎 is an FO formula ∀X∀Y𝜙(X,Y) →
∃Z 𝑝(X,Z), where X, Y, and Z are pairwise disjoint sets of variables, 𝜙(X,Y) is a conjunction

of atoms, and 𝑝(X,Z) is an atom, all without nulls. An instance 𝐼 satisfies 𝜎, written 𝐼 |= 𝜎,

whenever there exists a homomorphism ℎ such that ℎ(𝜙(X,Y)) ⊆ 𝐼 , then there exists ℎ′ ⊇ ℎ|X,

where ℎ|X is the restriction of ℎ on X, such that ℎ′(𝑝(X,Z)) ∈ 𝐼 . A negative constraint (NC) 𝜈
is a first-order formula ∀X𝜙(X) → ⊥, where X ⊆ V, 𝜙(X) is a conjunction of atoms without

nulls, and ⊥ denotes the truth constant false . An instance 𝐼 satisfies 𝜈, written 𝐼 |= 𝜈, if there

is no homomorphism ℎ such that ℎ(𝜙(X)) ⊆ 𝐼 . Given a set Σ of TGDs and NCs, 𝐼 satisfies

Σ, written 𝐼 |= Σ, if 𝐼 satisfies each TGD and NC of Σ. For brevity, we omit the universal

quantifiers in front of TGDs and NCs, and use the comma (instead of ∧) for conjoining atoms.



Table 1
Complexity of BCQ answering under existential rules [22]. All non-“in” entries are completeness results.

ℒ Data fp-comb. ba-comb. Comb.

L, LF, AF in ac
0

np np pspace

S, SF in ac
0

np np exp

A in ac
0

np nexp nexp

G p np exp 2exp

F, GF p np np exp

WS, WA p np 2exp 2exp

For a TGD class C, C⊥ denotes the formalism obtained by combining C with arbitrary NCs.

Finite sets of TGDs and NCs are also called programs, and TGDs are also called existential rules.
The Datalog

±
languages ℒ that we consider to guarantee decidability are among the most

frequently analyzed in the literature, namely, linear (L) [2], guarded (G) [19], sticky (S) [20], and

acyclic TGDs (A), along with the “weak” (proper) generalizations weakly sticky (WS) [20] and

weakly acyclic TGDs (WA) [21], as well as their “full” (i.e., existential-free) proper restrictions

linear full (LF), guarded full (GF), sticky full (SF), and acyclic full TGDs (AF), respectively,

and full TGDs (F) in general. We also recall the following further inclusions: L⊂G and

F⊂WA⊂WS. We refer to [22] for a more detailed overview.

Knowledge Bases. A knowledge base is a pair (𝐷,Σ), where𝐷 is a database, and Σ is a program.

For a program Σ, Σ𝑇 and ΣNC denote the TGDs and NCs subsets, respectively, of Σ. The set

mods(KB) of models of KB = (𝐷,Σ) is the set of instances {𝐼 | 𝐼 ⊇ 𝐷 ∧ 𝐼 |= Σ}; KB is

consistent if mods(KB) ̸= ∅, otherwise KB is inconsistent. The answer to a CQ 𝑞 w.r.t. KB is the

set of tuples ans(𝑞,KB) =
⋂︀
{𝑞(𝐼) | 𝐼 ∈ mods(KB)}. The answer to a BCQ 𝑞 is true, denoted

KB |= 𝑞, if ans(𝑞,KB) ̸= ∅. Another way to define the existential rules semantics is via the

concept of the Chase (see, e.g., [23, 24]). The decision version of the CQ answering problem is:

for a knowledge base KB , a CQ 𝑞, and a tuple of constants t, decide whether t ∈ ans(𝑞,KB).
Since CQ answering can be reduced in logspace to BCQ answering, we focus on BCQs. BCQ(ℒ)

denotes the problem of BCQ answering when restricted over programs belonging to ℒ.

Following Vardi [25], the combined complexity of BCQ answering considers the database,

the set of dependencies, and the query as part of the input. The bounded-arity-combined (or

ba-combined) complexity assumes that the arity of the underlying schema is bounded by an

integer constant. The fixed-program-combined (or fp-combined) complexity considers the sets of

TGDs and NCs as fixed; the data complexity also assumes the query fixed. Table 1 recalls the

complexity results of BCQ answering for the languages here considered [22].

A language ℒ is FO-rewritable if given any program Σ ∈ ℒ and any BCQ 𝑞, there exists an

FO-query 𝑞Σ such that, for all databases 𝐷 we have that (𝐷,Σ) |= 𝑞 iff 𝐷 |= 𝑞Σ. All languages

from Table 1 with ac
0

data complexity are FO-rewritable.

Inconsistency-Tolerant Semantics. In classical BCQ answering, for an inconsistent knowl-

edge base KB (i.e., mods(KB)= ∅), every query is entailed, as everything follows from a

contradiction. Clearly, the answers obtained in such cases are not meaningful. Three prominent



inconsistency-tolerant semantics for query answering under existential rules are the ABox repair
(AR) semantics, its approximation by the intersection of repairs (IAR), and the intersection of
closed repairs (ICR) semantics [5, 6]; all three are based on the notion of repair.

A repair of a knowledge base KB = (𝐷,Σ) is an inclusion-maximal subset 𝑅 of 𝐷 such that

mods((𝑅,Σ)) ̸= ∅; Rep(KB) is the set of all KB ’ repairs. The closure Cl(KB) of KB is the set

of all facts built from constants in 𝐷 and Σ, entailed by 𝐷 and the TGDs of Σ. Let 𝑞 be a BCQ.

• KB entails 𝑞 under the ABox repair (AR) semantics, if (𝑅,Σ) |= 𝑞 for all 𝑅 ∈ Rep(KB).
• KB entails 𝑞 under the intersection of repairs (IAR) semantics, if (𝐷𝐼 ,Σ) |= 𝑞, where 𝐷𝐼 =⋂︀

{𝑅 | 𝑅 ∈ Rep(KB)}.

• KB entails 𝑞 under the intersection of closed repairs (ICR) semantics, if (𝐷𝐶 ,Σ) |= 𝑞, where

𝐷𝐶 =
⋂︀
{Cl(𝑅,Σ) | 𝑅 ∈ Rep(KB)}.

Symmetrically, the concept of repair is linked to that of culprit. Intuitively, a culprit is a

minimal subset of 𝐷 that, together with Σ𝑇 entails some NC; a culprit for an NC is a “minimal

explanation” [10] (see below) of the NC. By deleting from 𝐷 a minimal hitting set [26, 27] of

facts 𝑆 intersecting all culprits, we obtain a repair 𝑅 = 𝐷 ∖ 𝑆.

We refer to [22, 28, 29] for more on the complexity of AR-/IAR-/ICR-query answering.

3. Explanations for Query Answers

An explanation for 𝑞 w.r.t. KB is a subset 𝐸 of 𝐷 such that (𝐸,Σ) is consistent and (𝐸,Σ) |= 𝑞.

A minimal explanation 𝐸, or MinEx, for 𝑞 w.r.t. KB is an explanation for 𝑞 w.r.t. KB that is

inclusion-minimal, i.e., there is no 𝐸′ ⊊ 𝐸 that is an explanation for 𝑞 w.r.t. KB . We now

introduce the notions of (minimal) explanation under the AR, IAR, and ICR semantics.

Definition 1. • An AR-explanation for 𝑞 w.r.t. KB is a set of explanations ℰ = {𝐸1, . . . , 𝐸𝑛}
for 𝑞 w.r.t. KB such that every repair of KB contains some 𝐸𝑖.

• An IAR-explanation for 𝑞 w.r.t. KB is a singleton set of explanations ℰ = {𝐸} for 𝑞 w.r.t.

KB such that 𝐸 ⊆ 𝑅 for every repair 𝑅 ∈ Rep(KB).
• An ICR-explanation for 𝑞 w.r.t. KB is a set of explanations ℰ = {𝐸1, . . . , 𝐸𝑛} for 𝑞 w.r.t. KB

such that eachKB ’s repair contains an𝐸𝑖 and (𝐸𝐶 ,Σ) |= 𝑞, with𝐸𝐶 =
⋂︀
{Cl(𝐸𝑖) | 𝐸𝑖 ∈ ℰ}.

Definition 2. For any 𝑆 ∈ {AR, IAR, ICR}, an 𝑆-explanation ℰ = {𝐸1, . . . , 𝐸𝑛} for 𝑞 w.r.t.

KB is an 𝑆-minimal explanation, or 𝑆-MinEx, if every 𝐸𝑖 ∈ ℰ is a MinEx for 𝑞 w.r.t. KB , and

no ℰ ′ ⊊ ℰ is an 𝑆-explanation for 𝑞 w.r.t. KB .

Example 3. Consider the database 𝐷 = {Prof (𝑝, 𝑐𝑠),Postdoc(𝑝,𝑚𝑎𝑡ℎ),Group(𝑔)}, assert-

ing that 𝑝 is a professor working in the 𝑐𝑠 department, 𝑝 is a postdoc working in the 𝑚𝑎𝑡ℎ
department, and 𝑔 is a research group. Consider also the following program Σ:

Prof (𝑋,𝑌 ) → Researcher(𝑋), Prof (𝑋,𝑌 ) → Dept(𝑌 ),

Postdoc(𝑋,𝑌 ) → Researcher(𝑋), Postdoc(𝑋,𝑌 ) → Dept(𝑌 ),

Prof (𝑋,𝑌 ),Postdoc(𝑋,𝑍) → ⊥,

expressing that Prof and Postdoc have Researcher as domain and Dept as range, and one

cannot be both a professor and a postdoc. Clearly, the knowledge base KB = (𝐷,Σ) is



Table 2
Complexity of AR-, IAR-, and ICR-MinEx. All entries are completeness results. Hardness results for
AR and ICR in the data and fp-combined complexity also follow from inspection of a proof in [18].

AR- and ICR-MinEx IAR-MinEx

ℒ Data fp-comb. ba-comb. Comb. Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ d
p

d
p

d
p

2 pspace in p d
p Πp

2 pspace

S⊥, SF⊥ d
p

d
p

d
p

2 exp in p d
p Πp

2 exp

A⊥ d
p

d
p

p
nexp

p
nexp in p d

p
p
nexp

p
nexp

G⊥ d
p

d
p

exp 2exp co-np d
p

exp 2exp

F⊥, GF⊥ d
p

d
p

d
p

2 exp co-np d
p Πp

2 exp

WS⊥, WA⊥ d
p

d
p

2exp 2exp co-np d
p

2exp 2exp

inconsistent, as 𝑝 violates the NC. The knowledge base admits the following two repairs:

𝐷′ = {Prof (𝑝, 𝑐𝑠),Group(𝑔)}, and 𝐷′′ = {Postdoc(𝑝,𝑚𝑎𝑡ℎ),Group(𝑔)}. Their intersection

is 𝐷𝐼 = {Group(𝑔)}, while their closures’ intersection is 𝐷𝐶 = {Group(𝑔),Researcher(𝑝)}.

The BCQ ∃𝑋Group(𝑋) is entailed by KB under IAR (and thus also under ICR and AR).

The set {{Group(𝑔)}} is an IAR-minimal (as well as ICR- and AR-minimal) explanation for

the query w.r.t. KB . Indeed, Group(𝑔) is the fact in 𝐷𝐼 that entails the query.

The BCQ ∃𝑋Researcher(𝑋) is entailed by KB under ICR (and thus also under AR), but

not under IAR. The set {{Prof (𝑝, 𝑐𝑠)}, {Postdoc(𝑝,𝑚𝑎𝑡ℎ)}} is an ICR-minimal (as well as

AR-minimal) explanation for the query w.r.t. KB . Indeed, Researcher(𝑝) is the fact in 𝐷𝐶 that

entails the query, and the reason why Researcher(𝑝) belongs to the closures of 𝐷′
and 𝐷′′

are

the facts Prof (𝑝, 𝑐𝑠) and Postdoc(𝑝,𝑚𝑎𝑡ℎ) of 𝐷′
and 𝐷′′

, respectively.

The BCQ ∃𝑋Dept(𝑋) is entailed by KB only under AR. An AR-minimal explanation for

the query w.r.t. 𝐾𝐵 is {{Prof (𝑝, 𝑐𝑠)}, {Postdoc(𝑝,𝑚𝑎𝑡ℎ)}}. Indeed, Prof (𝑝, 𝑐𝑠) is the fact of

𝐷′
entailing the query, while Postdoc(𝑝,𝑚𝑎𝑡ℎ) is the fact of 𝐷′′

entailing the query. ◁

We will study the 𝑆-MinEx problems, for any 𝑆 ∈ {AR, IAR, ICR}, of recognizing 𝑆-

MinExes: for a knowledge base KB = (𝐷,Σ), a BCQ 𝑞, and a set ℰ ⊆ 𝒫(𝐷), with 𝒫(𝐷) being

the powerset of 𝐷, decide whether the set ℰ is an 𝑆-MinEx for 𝑞 w.r.t. KB .

4. Complexity Analysis

The first results imply most of the complexity upper-bounds of Table 2. The intuition behind

these theorems is as follows (for the details see [1]). Verifying that ℰ is an 𝑆-MinEx for 𝑞 w.r.t.

KB requires checking the following conditions: (1) that all 𝐸𝑖 ∈ ℰ are MinExes of 𝑞 w.r.t. KB
(which implies verifying that: (1a) all 𝐸𝑖 ∈ ℰ are consistent; (1b) all 𝐸𝑖 ∈ ℰ entail 𝑞; and (1c) all

𝐸𝑖 ∈ ℰ are minimal); (2) that all the repairs are “covered” by ℰ ; and (3) verify that the “cover by

ℰ is minimal”, for which we borrow the concept of “critical vertex in a minimal hitting set” [30].

Theorem 4. Let ℒ be one of the Datalog± languages of this paper. If BCQ(ℒ) is in C, then
AR-MinEx and IAR-MinEx can be answered by the following sequence of checks:
• AR: a co-(npC) check, an np

C check, a linear number of C checks, and a linear number of
co-C checks.



• IAR: a co-(npC) check, a C check, and a linear number of co-C checks.

For the ICR case we need a slightly different proof. Verifying that a set ℰ = {𝐸1, . . . , 𝐸𝑛}
is an ICR-MinEx requires to check conditions (1), (2), and (3) as above, and the additional

condition that the intersection of the closure of all the 𝐸𝑖’s entails the query. Verifying the

latter can be reduced to ICR reasoning over a suitable knowledge base.

Theorem 5. Let ℒ be one of the Datalog± languages of this paper. If BCQ(ℒ) (resp., BCQ(ℒ)
under ICR) is in C (resp., in D), then ICR-MinEx can be answered by the following sequence of
checks: a co-(npC) check, an np

C check, a D check, and a linear number of co-C checks.

For the fp-combined setting we have tighter results thanks to these two observations. First,

in the fp-combined setting, for the Datalog
±

languages here considered, checking a set of facts

to be a repair is in p. Second, for the ICR case, we also need to notice that, in the fp-combined

setting, checking the intersection of the 𝐸𝑖’s closure to entail the query is in np.

Theorem 6. AR-/IAR-/ICR-MinEx is in d
p in the fp-combined complexity for the Datalog±

languages of this paper.

The following result proves the p upper-bounds in Table 2. A key observation is that the

intersection of the repairs in the stated fragments is computable in polynomial time [22].

Theorem 7. IAR-MinEx from knowledge bases over L⊥, A⊥, and S⊥ is in p in the data complexity.

The upper-bounds found in the previous section are actually tight, and indeed we can show

matching lower-bounds. The co-np-hardness andΠp

2-hardness results for IAR are via reductions

from UnSat and from deciding the validity of a QBF ∀𝑋∃𝑌 𝜑(𝑋,𝑌 ), respectively.

The p
nexp

-hardness results are obtained via a reduction from the following problem [22]:

given a triple (𝑚,TP1,TP2), where 𝑚 is a number in unary, and TP1 and TP2 are two tiling

problems for the exponential square 2𝑛 × 2𝑛, decide whether, for all initial tiling conditions 𝑤
of length 𝑚, TP1 has no solution with 𝑤 or TP2 has a solution with 𝑤.

The d
p
-hardness results in the data complexity for AR and ICR are via a reduction from

Minimal UnSat [31]: given a Boolean formula 𝜑, decide whether 𝜑 is minimally unsatisfiable,

i.e., if 𝜑 is unsatisfiable, and removing any clause from 𝜑 makes the formula satisfiable.

The d
p

2-hardness results for AR and ICR are via a reduction from the problem of deciding

the validity of two QBFs Φ = ∃𝑋∀𝑌 ¬𝜑(𝑋,𝑌 ) and Ψ = ∀𝑋∃𝑌 𝜓(𝑋,𝑌 ). The reduction uses

the simplifying assumption that variables 𝑋 and 𝑌 of Φ and Ψ can be the same [32, 33].

The remaining hardness results follow from Is-MinEX’s hardness over consistent KBs [10].

5. Summary and Outlook

We have analyzed the problem of explaining query answers under three popular inconsistency-

tolerant semantics, for a wide range of existential rules, and under different complexity measures;

this work has recently been extended to negative query answers [34].

This paper opens up several avenues for further research, like analyzing the complexity

of other related problems, such as deciding if a fact is necessary or relevant. Inspired by the



idea of exploring preferences over explanations [12], we can also consider how more elaborate

preference models can be included in this framework [35, 36, 37, 38, 39]. Moreover, in some

scenarios, knowing the existential rules needed to derive query answers may be useful as well.
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