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Abstract
Querying inconsistent ontological knowledge bases is an important problem in practice, for which

several inconsistency-tolerant semantics have been proposed. In these semantics, the input database is

erroneous, and a repair is a maximally consistent database subset. Different notions of maximality (such

as subset and cardinality maximality) have been considered. In this paper, we give a precise picture of

the computational complexity of inconsistency-tolerant query answering in a wide range of Datalog+/–

languages under the cardinality-based versions of three prominent repair semantics.
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1. Introduction

In many ontology-based applications, such as ontology-based data extraction from the Web, or

ontology-based integration of different data sources, it is very likely that the data are inconsis-

tent with the ontology, and thus inconsistency-tolerant semantics for ontology-based query

answering are urgently needed. Among the most prominent ontology languages are description

logics (DLs) [2] and existential rules from the context of Datalog
±

[3].

The most widely accepted semantics for querying inconsistent ontological knowledge bases is

perhaps consistent query answering (CQA), which was first developed for relational databases [4]

and then generalized as the ABox repair (AR) semantics for several DLs [5]. Consistent query

answering is based on the concept of repair, which is a maximal consistent subset of the

input database. A fact/query is entailed by an ontological knowledge base in consistent query

answering, if it is (classically) entailed by all the repairs (under the ontology). Several other

repair semantics for querying inconsistent knowledge bases have recently been developed as

alternatives. In the intersection of repairs (IAR) semantics [5], an answer is considered to be
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valid, if it can be inferred from the intersection of the repairs (and the ontology). The intersection

of closed repairs (ICR) [6] is another semantics, in which an answer is valid, if it can be inferred

from the intersection of the closure of the repairs (and the ontology). Recently, the AR semantics

was extended to the generalized repair (GR) semantics [7]. In the GR semantics, also ontological

rules may be removed. This generalization was extended to the IAR and ICR semantics in [8]

Interestingly, the IAR and the ICR semantics can be seen as under-approximation of the AR
semantics and analyzing their complexity helps to understand whether such approximations

have actually lower complexities (see also [9, 10] for other approximation approaches). Beside

this, a crucial advantage of the IAR and the ICR semantics is that their intersection of (closed)

repairs can be materialized [11, 12], while the AR semantics exists only virtually.

The complexity of consistent query answering when the ontology is described via one of

the main DLs is well-understood. Rosati [13] studied the data and combined complexity for a

wide spectrum of DLs, while Bienvenu [6] identified cases for simple ontologies (within the

DL-Lite family) for which tractable data complexity results can be obtained. In [14], the data

and different types of combined complexity of consistent query answering have been studied

for ontologies described via existential rules and negative constraints.

Alternative maximality notions for repairs, such as cardinality-maximal repairs [15], rather

than subset-maximal ones, have been explored less. Bienvenu et al. [16] analyzed the data

and the combined complexity of query answering under the AR and IAR semantics over the

language DL-Liteℛ for various notions of maximal repairs, among which maximum cardinality.

This paper continues this line of research on cardinality-maximal consistent query answering,

and we analyze the complexity of the above three inconsistency-tolerant query answering

semantics for a wide range of Datalog
±

languages and for several different complexity measures.

2. Preliminaries

We here briefly recall some basics on existential rules from the context of Datalog
±

[3].

General. We assume a set C of constants, a set N of labeled nulls, and a set V of variables. A

term 𝑡 is a constant, null, or variable. We assume a set of predicates, each associated with an arity.

An atom has the form 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 is an 𝑛-ary predicate, and 𝑡1, . . . , 𝑡𝑛 are terms. An

atom containing only constants is called fact. Conjunctions of atoms are also identified with

the sets of their atoms. An instance 𝐼 is a (possibly infinite) set of atoms defined over constants

and nulls. A database 𝐷 is a finite instance containing only constants. A homomorphism is a

substitution ℎ : C∪N∪V ↦→ C∪N∪V that is the identity on C and maps N to C∪N. With

a slight abuse of notation, homomorphisms are applied also to (sets/conjunctions of) atoms. A

conjunctive query (CQ) 𝑞 has the form ∃Y𝜑(X,Y), where 𝜑(X,Y) is a conjunction of atoms

without nulls. The answer to 𝑞 over an instance 𝐼 , denoted 𝑞(𝐼), is the set of all |X|-tuples

t over C for which there is a homomorphism ℎ such that ℎ(𝜑(X,Y)) ⊆ 𝐼 and ℎ(X)= t. A

Boolean CQ (BCQ) 𝑞 is a CQ ∃Y𝜑(Y), i.e., all variables are existentially quantified; 𝑞 is true

over 𝐼 , denoted 𝐼 |= 𝑞, if 𝑞(𝐼) ̸= ∅, i.e., there is a homomorphism ℎ with ℎ(𝜑(Y)) ⊆ 𝐼 .

Dependencies. A tuple-generating dependency (TGD) 𝜎 is an FO formula ∀X∀Y𝜙(X,Y) →
∃Z 𝑝(X,Z), where X, Y, and Z are pairwise disjoint sets of variables, 𝜙(X,Y) is a conjunction

of atoms, and 𝑝(X,Z) is an atom, all without nulls. An instance 𝐼 satisfies 𝜎, written 𝐼 |= 𝜎,



whenever there exists a homomorphism ℎ such that ℎ(𝜙(X,Y)) ⊆ 𝐼 , then there exists ℎ′ ⊇ ℎ|X,

where ℎ|X is the restriction of ℎ on X, such that ℎ′(𝑝(X,Z)) ∈ 𝐼 . A negative constraint (NC) 𝜈
is a first-order formula ∀X𝜙(X) → ⊥, where X ⊆ V, 𝜙(X) is a conjunction of atoms without

nulls, and ⊥ denotes the truth constant false . An instance 𝐼 satisfies 𝜈, written 𝐼 |= 𝜈, if there

is no homomorphism ℎ such that ℎ(𝜙(X)) ⊆ 𝐼 . Given a set Σ of TGDs and NCs, 𝐼 satisfies

Σ, written 𝐼 |= Σ, if 𝐼 satisfies each TGD and NC of Σ. For brevity, we omit the universal

quantifiers in front of TGDs and NCs, and use the comma (instead of ∧) for conjoining atoms.

For a TGD class C, C⊥ denotes the formalism obtained by combining C with arbitrary NCs.

Finite sets of TGDs and NCs are also called programs, and TGDs are also called existential rules.

The Datalog
±

languages ℒ that we consider to guarantee decidability are among the most

frequently analyzed in the literature, namely, linear (L) [3], guarded (G) [17], sticky (S) [18], and

acyclic TGDs (A), along with the “weak” (proper) generalizations weakly sticky (WS) [18] and

weakly acyclic TGDs (WA) [19], as well as their “full” (i.e., existential-free) proper restrictions

linear full (LF), guarded full (GF), sticky full (SF), and acyclic full TGDs (AF), respectively,

and full TGDs (F) in general. We also recall the following further inclusions: L⊂G and

F⊂WA⊂WS. We refer to [14] for a more detailed overview.

Knowledge Bases. A knowledge base is a pair (𝐷,Σ), where 𝐷 is a database, and Σ is a program.

For a program Σ, Σ𝑇 and ΣNC denote the TGDs and NCs subsets, respectively, of Σ. The set

mods(KB) of models of KB = (𝐷,Σ) is the set of instances {𝐼 | 𝐼 ⊇ 𝐷 ∧ 𝐼 |= Σ}; KB is

consistent if mods(KB) ̸= ∅, otherwise KB is inconsistent. The answer to a CQ 𝑞 w.r.t. KB is the

set of tuples ans(𝑞,KB) =
⋂︀
{𝑞(𝐼) | 𝐼 ∈ mods(KB)}. The answer to a BCQ 𝑞 is true, denoted

KB |= 𝑞, if ans(𝑞,KB) ̸= ∅. Another way to define the existential rules semantics is via the

concept of the Chase (see, e.g., [20, 21]). The decision version of the CQ answering problem is:

for a knowledge base KB , a CQ 𝑞, and a tuple of constants t, decide whether t ∈ ans(𝑞,KB).
Since CQ answering can be reduced in logspace to BCQ answering, we focus on BCQs. BCQ(ℒ)

denotes the problem of BCQ answering when restricted over programs belonging to ℒ.

Following Vardi [22], the combined complexity of BCQ answering considers the database,

the set of dependencies, and the query as part of the input. The bounded-arity-combined (or

ba-combined) complexity assumes that the arity of the underlying schema is bounded by an

integer constant. The fixed-program-combined (or fp-combined) complexity considers the sets of

TGDs and NCs as fixed; the data complexity also assumes the query fixed. Table 1 recalls the

complexity results of BCQ answering for the languages here considered [14].

A language ℒ is FO-rewritable if given any program Σ ∈ ℒ and any BCQ 𝑞, there exists an

FO-query 𝑞Σ such that, for all databases 𝐷 we have that (𝐷,Σ) |= 𝑞 iff 𝐷 |= 𝑞Σ. All languages

from Table 1 with ac
0

data complexity are FO-rewritable.

Inconsistency-Tolerant Semantics. In classical BCQ answering, an inconsistent knowledge

base entails every query, as everything follows from a contradiction. Clearly, the answers

obtained in such cases are not meaningful. Three prominent inconsistency-tolerant semantics for

query answering under existential rules are the ABox repair (AR) semantics, its approximation

by the intersection of repairs (IAR), and the intersection of closed repairs (ICR) semantics [5, 6];

all three are based on the notion of repair, which is a maximal consistent subset of the database.

Symmetrically, the concept of repair is linked to that of culprit. Intuitively, a culprit is a

minimal subset of 𝐷 that, together with Σ𝑇 entails some NC; a culprit for an NC is a “minimal



Table 1
Complexity of BCQ answering under existential rules [14].

ℒ Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ ac
0

np np pspace

S, SF ≤ ac
0

np np exp

A ≤ ac
0

np nexp nexp

G p np exp 2exp

F, GF p np np exp

WS, WA p np 2exp 2exp

WG exp exp exp 2exp

explanation” [23, 24] of the NC. By deleting from 𝐷 a minimal hitting set [25, 26, 27] of facts 𝑆
intersecting all culprits, we obtain a repair 𝑅 = 𝐷 ∖ 𝑆.

We now define inconsistency-tolerant semantics for a generic concept of repair maximality.

Given a knowledge base KB = (𝐷,Σ), a selection 𝐷′
of KB is a database such that 𝐷′ ⊆ 𝐷.

A selection 𝐷′
of KB is consistent, if mods((𝐷′,Σ)) ̸= ∅. Consistent selections of knowledge

bases can be ordered according to some criteria to select the more desired ones. Given a preorder

≼ over a set 𝒮 of databases, for two elements 𝐷′, 𝐷′′ ∈ 𝒮 , 𝐷′ ≺ 𝐷′′
denotes that 𝐷′ ≼ 𝐷′′

and

𝐷′′ ̸≼ 𝐷′
. A database 𝐷 ∈ 𝒮 is ≼-maximal in 𝒮 iff there is no 𝐷′ ∈ 𝒮 such that 𝐷 ≺ 𝐷′

.

Definition 1. A ≼-repair of a knowledge base KB is a consistent selection of KB that is

≼-maximal in the set of all the consistent selections of KB .

We now define the three different inconsistency-tolerant semantics for BCQ answering.

Rep≼(KB) denotes the set of all ≼-repairs of KB . The closure Cl(KB) of KB is the set of all

facts built from constants in 𝐷 and Σ, entailed by 𝐷 and the TGDs of Σ.

Definition 2. Let KB be a knowledge base, let 𝑞 be a BCQ, and let ≼ be an order over the

consistent selections of KB .

• KB entails 𝑞 under the ABox repair semantics and order ≼ (≼-AR), denoted by KB |=≼-AR 𝑞,

if, for all 𝐷′ ∈ Rep≼(KB), (𝐷′,Σ) |= 𝑞.

• KB entails 𝑞 under the intersection of repairs semantics and order ≼ (≼-IAR), denoted by

KB |=≼-IAR 𝑞, if (𝐷*,Σ) |= 𝑞, where 𝐷* =
⋂︀
{𝐷′ | 𝐷′ ∈ Rep≼(KB)}.

• KB entails 𝑞 under the intersection of closed repairs semantics and order ≼ (≼-ICR), denoted

by KB |=≼-ICR 𝑞, if (𝐷𝐼 ,Σ) |= 𝑞, where 𝐷𝐼 =
⋂︀
{Cl((𝐷′,Σ)) | 𝐷′ ∈ Rep≼(KB)}.

An interesting class of repairs are those selected by the cardinality order ‘≤’ [16]. A ≤-repair

of a knowledge base KB is a maximum cardinality consistent selection of KB . Here, we consider

only the ‘≤’ order, hence, we often call ≤-repairs simply repairs, and by Rep(KB), we mean

Rep≤(KB). Cardinality-maximal repairs are very appropriate when it is known (or believed)

that all the facts in the database have the same (possibly small) probability of being erroneous.

In these cases, larger repairs are preferred, because fewer facts are dropped [16]. When facts in

the database have different likelihoods of being erroneous, then other concepts of repairs can

also be taken into consideration [6, 28].



Table 2
Complexity of ≤-AR/IAR/ICR BCQ answering—all completeness results. +Different membership
proof for AR/IAR in [16]. *Different hardness proof for AR/IAR for L⊥, G⊥, S⊥, and WS⊥, in [16].

≤-AR BCQ answering ≤-IAR/ICR BCQ answering

ℒ Data fp-comb. ba-comb. Comb. Data fp-comb. ba-comb. Comb.

L⊥, LF⊥, AF⊥ Θp

2
+* Πp

2 Θp

3 pspace Θp

2
+* Θp

2 Θp

3 pspace

S⊥, SF⊥ Θp

2
+* Πp

2 Θp

3 exp Θp

2
+* Θp

2 Θp

3 exp

A⊥ Θp

2
+ Πp

2 p
nexp

p
nexp Θp

2
+ Θp

2 p
nexp

p
nexp

G⊥ Θp

2
+* Πp

2 exp 2exp Θp

2
+* Θp

2 exp 2exp

F⊥, GF⊥ Θp

2
+ Πp

2 Θp

3 exp Θp

2
+ Θp

2 Θp

3 exp

WS⊥, WA⊥ Θp

2
+* Πp

2 2exp 2exp Θp

2
+* Θp

2 2exp 2exp

WG⊥ exp exp exp 2exp exp exp exp 2exp

3. Complexity Analysis

Compared to the case where subset maximality is considered, using maximum cardinality in

several cases comes at a cost, needed to compute the largest repair’s size. However, this is

sometimes masked out by the complexity of classical/AR/IAR/ICR BCQ answering. Compared

to ≤-AR-BCQ answering, the complexity of ≤-IAR- and ≤-ICR-BCQ answering slightly drops

and is the same. Their complexity is the same because the complexity of either classical BCQ

reasoning or of computing the biggest repairs’ size dominate the task’s complexity. Therefore, in

this setting ICR has an advantage over IAR, as ICR is a finer AR’s approximation than IAR.

3.1. Membership Results

A first result allows us to show most of the complexity upper-bounds of Table 2. The intuition

behind this theorem is as follows. First we can compute the size of the biggest repairs via a

binary search, then through some additional oracle calls it is possible to check whether the

query is entailed or not under the inconsistency-tolerant semantics (see [1] for more details).

Theorem 3. Let 𝐿 be a Datalog
±

language. If BCQ answering from knowledge bases over 𝐿 is

in C in the data / ba-combined / combined complexity (resp., data / ba-combined complexity),

then ≤-AR and ≤-IAR (resp., ≤-ICR) BCQ answering from knowledge bases over 𝐿 is in p

with an oracle for np
C[𝑂(log𝑛)] in the data / ba-combined / combined complexity (resp., data /

ba-combined complexity).

The previous result relies on the guess of a query entailment disprover to be passed to the

oracle. However, this cannot be done for the ICR case in the combined complexity, as the guess

might need be too large. We hence need a tailored proof analyzing all languages case by case.

Theorem 4. ≤-ICR BCQ answering in the combined complexity from knowledge bases over

Datalog
±

the languages 𝐿 here considered is in the complexity classes shown in Table 2.

For the upper-bounds in the fp-combined setting, we can actually provide tighter ones, as

checking the consistency of a set of facts is feasible in the complexity class of BCQ answering

in the data complexity (and not in the fp-complexity), because the NCs are fixed.



Theorem 5. If BCQ answering from knowledge bases over a Datalog
±

language 𝐿 is in D in the

data complexity and in C in the fp-combined complexity, then ≤-AR (resp., ≤-IAR and ≤-ICR)

BCQ answering from knowledge bases over 𝐿 is possible by a computation in p with an oracle

for np
D[𝑂(log𝑛)], followed by a computation in co-np

C
(resp., C), in the fp-combined complexity.

3.2. Hardness Results

We can show matching lower-bounds for the upper-bounds found in the previous section.

The following result is via a reduction from the Θp

2-complete problem InAllMaxIS [15]: for

a graph 𝐺 and a vertex 𝑤, decide if 𝑤 belongs to all the max-size independent sets of 𝐺.

Theorem 6. For every 𝐶 ∈ {AR, IAR, ICR}, ≤-C BCQ answering from knowledge bases over

LF⊥, AF⊥, and SF⊥ is Θp

2-hard in the data complexity.

For the next result, the reduction is from the classical Πp

2-complete problem of deciding the

validity of a QBF ∀𝑋∃𝑌 𝜑(𝑋,𝑌 ).

Theorem 7. ≤-AR BCQ answering from knowledge bases over LF⊥, AF⊥, and SF⊥ is Πp

2-hard

in the fp-combined complexity.

The Θp

3-hardness of the following problems is via a reduction from the Θp

3-complete problem

Comp-Valid2: given sets 𝐴 and 𝐵 of QBFs with 2 alternating quantifiers, decide whether the

number of valid formulas in 𝐴 is bigger than the number of valid formulas in 𝐵 [29] (this is a

generalization of the Comp-SAT problem [30]).

Theorem 8. For every 𝐶 ∈ {AR, IAR, ICR}, ≤-C BCQ answering from knowledge bases over

LF⊥, AF⊥, and SF⊥ is Θp

3-hard in the ba-combined complexity.

The next hardness is obtained via a reduction from the following p
nexp

-hard problem [14]: for

a triple (𝑚,TP1,TP2), where 𝑚 is an integer in unary notation, and TP1 and TP2 are two

tiling problems for the exponential square 2𝑛 × 2𝑛, decide whether there is an initial condition

𝑤 of length 𝑚, such that TP1 has no solution with 𝑤, and TP2 has a solution with 𝑤.

Theorem 9. For any 𝐶 ∈ {AR, IAR, ICR}, ≤-C BCQ answering for A⊥ are p
nexp

-hard in the

ba-combined and combined complexity.

The remaining hardness results follows from the hardness of BCQ answering.

4. Summary and Outlook

We have analyzed BCQ answering under different cardinality-maximal inconsistency-tolerant

semantics, for the most popular Datalog
±

languages and complexity measures.

Future research include defining other semantics for inconsistency-tolerant ontological query

answering, considering weighed repairs and more elaborate user preferences over repairs [31,

32, 33, 34, 35]. Also, in the line of a more recent research, it would be interesting to extend the

concepts of explanations for inconsistency-tolerant query answering [36, 37] to cardinality-

maximal repairs, and mix this with the notions of preferred explanations [38] and explanations

for negative query answers [39].
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