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Abstract. Numerous strategies were developed over the years in order
to encourage users to reduce energy consumption and bolster energy ef-
ficiency. However, with increasing levels of efficiency achieved by most
household appliances, one of the most impactful approaches that remains
as a means to further increase energy efficiency is attempting to encour-
age users to behave in an energy efficient manner. More precisely, positive
behavior change can be motivated through the creation of unique social
pressure and competition. Namely, the idea of the methodology pre-
sented in this paper is providing a fair, normalized, comparable ranking
(benchmark) between different energy consumptions of different users.
Therefore, the ranking is supposed to motivate them to either retain a
leading position in the ranking or to attempt to improve their behavior
and advance within the ranking.
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1 Introduction

The energy-use performance benchmarking and user behavior assessment method-
ologies appear to be a relatively unexplored topic in the relevant literature of this
domain, especially when compared with other energy related topics like demand
side management or demand response optimizations. Review papers [3] and [13]
predominantly analyze non-residential building benchmarking solutions, while
a recent survey [5] focuses on demand forecasting in the residential sector and
states that ”Residential energy performance prediction has historically received
less attention, as compared to commercial buildings.” and that there is a ”need
for the availability of more residential building data sources to be able to assess
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and improve models, and further testing is needed including those models that
have not yet been significantly used for residential buildings”.

With regards to specific methodologies, [3] separates the applied methodolo-
gies into: Simple normalization, Ordinary least squares (OLS) and its modifi-
cations, Stochastic frontier analysis (SFA), Data envelopment analysis (DEA),
simulations (model-based) and Artificial neural networks (ANN). As was previ-
ously mentioned, most of the included use cases are exclusively related to the
non-residential domain. Schools are chosen as the main building type of interest
by [12] and [14] that apply OLS while [2] and [6] use a model-based approach to
efficiency estimation. A school is also used for benchmarking in [7] with descrip-
tive statistics and ANNs. Others focus on office buildings with [9] performing
benchmarking through simple normalization, [16], [1] and [4] through OLS, [11]
and [10] using DEA and finally [8] and [11] employing simulations.

Given findings in the aforementioned analysis regarding relevant papers that
are dedicated to the subject of energy-use efficiency benchmarking, it can be
deduced that the current state-of-the-art solutions appear to be ill-equipped to
deal with an IoT future in which individual homes will be outfitted with a vast
number of sensors. Therefore, this paper aims to introduce a flexible methodol-
ogy that can be utilized for smart homes and that incorporates various factors
pertaining to the energy consumption of the analyzed households. Furthermore,
the same methodology could even be extended towards commercial objects that
are sufficiently covered with smart sensors.

2 Methodology

With the main goal of the presented methodology being the holistic and compre-
hensive assessment of user behavior through multiple energy usage indicators,
the user benchmarking methodology is based on four different elements denoted
ri where each one of them depicts a different aspect of energy efficiency (nor-
malized comparison with others, normalized comparison to oneself, alignment
with intermittent renewable generation and engagement), as will be described in
greater detail in the following sections. With respect to the weights wi of each
of these criteria, the final unscaled score (rating) can be obtained as a linear
combination of these factors

Runscaled =

4∑
k=1

wkrk = w1r1 + w2r2 + w3r3 + w4r4.

However, these raw results are further processed before being presented to end
users. Namely, linear scaling is applied to convert the obtained interval of values
into the range of [40, 95]%, as specified in accordance with expert inputs, so
that less efficient users are not demotivated and so that the most efficient users
get the impression that there is still room for improvement.



2.1 Data envelopment analysis

According to [15], DEA represents a quantitative, nonparametric technique which
is used in operational research and most commonly economics to establish a best
practice group of decision making units (DMUs) (the so-called efficiency fron-
tier) and to determine which units are less efficient when compared to the best
practice groups and at what the magnitude of inefficiencies are.

In consistence with the related literature, let the following symbols be

– j the order number of DMU,
– i the order number of input used by DMUs,
– r the order number of output used by DMUs,
– θ the efficiency/inefficiency rating,
– yrj the amount of output r by DMU j,
– xij the amount of input i by DMU j,
– ur the weight coefficient assigned to r-th output,
– vr the weight coefficient assigned to i-th input.

Now, the DEA problem is posed as determining the maximum objective function
as defined by

θj = max

{
u1y1j + u2y2j + · · ·+ usyrj
v1x1j + v2x2j + · · ·+ vmymj

}
= max

{∑s
r=1 uryrj∑m
i=1 vixij

}
where s is the total number of outputs and m is the total number of inputs. The
maximization is obtained under a set of constraints

(∀j)
(

u1y1j + u2y2j + · · ·+ usyrj
v1x1j + v2x2j + · · ·+ vmymj

)
=

(∑s
r=1 uryrj∑m
i=1 vixij

)
≤ 1

and
u1, u2, . . . , us > 0 and v1, v2, . . . , vm ≥ 0.

However, DEA is most often implemented using linear programming, which
cannot be performed with the given set of constraints and the objective func-
tion because the division between the numerator and denominator presents a
non-linear operation. This issue is circumvented by modifying the given set of
formulas through an additional constraint that specifies that all denominators
must be equal to one. In this modified form, DEA is formulated as maximizing
the objective function specified by

θj = max

{
s∑

r=1

uryrj

}

subject to

(∀j)

(
s∑

r=1

uryrj −
m∑
i=1

vixij ≤ 0 ∧
m∑
i=1

vixij = 1

)



while the constraints

u1, u2, . . . , us > 0 and v1, v2, . . . , vm ≥ 0

still apply.
In general, DEA is capable of considering a wide variety of different input

parameters. For energy efficiency applications specifically, these parameters can
be grouped in two different categories

– Static parameters:
• heated area,
• heated volume,
• outward wall (and window) area,
• wall thickness,
• wall material (conductivity),
• number of reported tenants;

– Dynamic parameters:
• total energy consumed,
• avg. occupancy for the household/building,
• cooling/heating degree days,
• diff. between indoor and outdoor temperature.

However, having in mind that for the specific use cases that will be demonstrated
in the following text, buildings from the same neighborhood were considered,
with all of them sharing the same construction properties and microclimate, the
number of considered parameters is limited to

– total energy consumed,
– average total occupancy,
– average absolute difference between indoor and outdoor temperature,
– total heated area,

as including others would add no additional information.
A resulting arrangement of users in this space with the total energy consumed

as the primary output is illustrated in Figure 1 where those users on the ineffi-
ciency frontier are assigned the rating of 0 and others are given a rating r1 = θi
corresponding to their position between the origin and frontier, as dictated by
the DEA approach.

2.2 ML-based consumption prediction

The main idea of this novel approach was to exploit machine learning through
models like random forests, k nearest neighbors, support vector machines, linear
regression and neural networks as the estimator of the user’s expected energy
usage in accordance with his previous behavior making the most of machine
learning’s (ML) extraordinary estimation potential. It is intended to be used
in a way which would result in rewarding on penalizing the users depending on
their change in behavior. In other words, given a similar set of inputs as the DEA



Fig. 1. An example of DEA spatial arrangement

approach uses, it is supposed to approximate what amount of energy a user is
expected to consume. Therefore, the estimated value Ê can then be compared
with measured (real) one Emeas, and reward or penalize the user proportional
to the difference that would be assigned to that user, as illustrated in Figure 2.
This concept could be considered as an example of the differential part in control
theory, as it measures the difference from the previous behavior and proposes
the ”control” accordingly i.e., behavioral stimulus which is in form of positive
or negative rating in this particular case. The output of the discussed ML-based
part of the benchmarking methodology can therefore be defined as

r2 = tansig

(
ln

(
Ê

Emeas

))
=

2

1 + e− ln(Ê/Emeas)
− 1.

Namely the idea of using the logarithm function was to obtain negative result
when the real measured consumption is greater than the one based on previous
behavior, as a negative penalty for inefficient behavior is supposed to be assigned,

Fig. 2. ML-based consumption prediction illustration (with assets designed by Freepik)



and vice versa. Additionally, the tansig function has been chosen as it is an
odd limited function, so for the same positive and negative behavior the same
absolute penalty would be assigned and the output would be within the required
limits.

2.3 Production and demand correlation

Having in mind the increasing penetration of RES installations with individual
users, one of the key goals to their efficient usage is maximizing self-consumption,
i.e., ensuring that as much of locally produced energy is also consumed locally.
Achieving this objective entails that the demand profile should be well aligned
with the generation profile meaning that peaks in the demand should follow the
peaks for production and vice versa for valleys. However, the stiff character of
users’ daily habits can notably hinder this process as customs are not so easy
to adapt to, for example, the production profile of PV modules which generally
displays peak performance during the mid-day period when the sun is shining
the brightest.

Therefore, in order to numerically quantify how well-aligned the consumption
profile X is to the renewable generation profile Y , their correlation coefficient σ
is calculated as

r3 = σ{X,Y } =
Cov(X,Y )√

Cov(X,X) · Cov(Y, Y )

and used as the third benchmarking contribution r3.

2.4 Responsiveness

The final part of the proposed energy efficiency performance evaluation method-
ology considers user’s responsiveness to notifications and suggestions delivered
through a companion mobile application for their smart device management in
form of a reward for users that show motivation for behavioral improvements.
Namely, this part of the system is supposed to additionally encourage users will-
ing to adapt their demands in order to save energy. For example, if the house-
hold/building owner promptly reacts to suggestions about energy conservation,
such behavior should be rewarded. Additionally, this factor is not meant for any
penalization if the suggestions are not considered because some of the events
that are being checked may not imply that energy is being wasted.

The score rewarded in this category is obtained simply by ranking the users
by three equally weighted and combined factors that are considered to contribute
to the overall responsiveness: the percentage of the energy conservation notifica-
tions that they have responded to in due time (less than 30 minutes), the total
number of controls actions sent using the app (turning appliances on or off) and
total number of sessions (discreet log-ins separated by more than 30 minutes).



3 Conclusion

In summary, this paper provides an outline of a benchmarking methodology
for smart homes of the future with a specific goal of further increasing energy
efficiency. It takes into account a multitude of different factors relating to the
collective energy consumption of a community as well as changes in individual
behavior. It also considers other factors such as integration with renewable gen-
eration and interaction with installed smart devices through a provided platform.
Planned future efforts include the evaluation of the methodology on a real set
of users and illustrating the link between changes in the ranking and in energy
consumption.
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