
Ranking Approach to Monolingual Question
Answering over Knowledge Graphs

Nikita Baramiia1, Alina Rogulina1, Sergey Petrakov1,
Valerii Kornilov1, and Anton Razzhigaev1

Skolkovo Institute of Science and Technology (Skoltech)
Bolshoy Boulevard 30, bld. 1, 121205, Moscow, Russia
{Nikita.Baramiia, Alina.Rogulina, Sergey.Petrakov,

Valerii.Kornilov, Anton.Razzhigaev}@skoltech.ru

Abstract. In this paper we describe our solution to the task 1 of Ques-
tion Answering over Linked Data (QALD) challenge: multilingual QALD
over Wikidata. We propose the method where we learn to rank items and
properties to find suitable SPARQL query. With our approach we achieve
0.4281 Macro F1-score in QALD system.

Keywords: Question answering · transformers · approximate nearest
neighbors

GitHub: https://github.com/roguLINA/NNLP_project

1 Introduction

Question Answering (QA) is one of rapidly developed fields in natural language
processing (NLP), covering many different problems from search engines to dia-
logue systems. One of the most common tasks is to answer a question by making
a query to an RDF data repository (an RDF dataset is the unit that is queried
by a SPARQL query). In our case, we should train the model to make right
SPARQL queries to retrieve answers from Wikidata.

2 Data description

In this challenge Wikidata was chosen as the main RDF dataset for answers
search. Our preprocessing procedure of the training data consists of the parsing
queries which have the form shown in the example 1. As a result, our train data
is reduced from 412 to 145 samples with items (Q) and properties (P).

We also have embeddings for items (4 106 847) and properties (5 927) from
Wikidata1. Then SPARQL queries are generated from this pool.

We use only one language (English) for all samples, both train and test. The
choice of this approach is justified by the fact that each question is represented
by its own set of languages necessarily included English.

1 These embeddings were prepared via TransE algorithm from PyTorch-BigGraph
(PGD) system from Facebook

https://github.com/roguLINA/NNLP_project
https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/facebookresearch/PyTorch-BigGraph


2 Baramiia et al.

1 {

2 "id": "99",

3 "question": [...],

4 "query": {

5 "sparql": "SELECT DISTINCT

6 ?o1 WHERE {

7 <http://www.wikidata.org/

8 entity/Q23337>

9 <http://www.wikidata.org/

10 prop/direct/P421> ?o1 . }"

11 },

12 "answers": [...]

13 }

Listing 1: QALD JSON format

3 Description of the approach

Our approach consists of several parts which we describe step-by-step in the
Sections 3.1, 3.2, 3.3. Then we discuss training process of the proposed model
and its usage on inference step.

3.1 Learning to rank

Our solution is closely connected with a task of ranking: in traditional statement
we want our model to give a score for each observation according to which we can
sort them from the most relevant to the least. Our core idea is that our model
predicts embeddings of Q and P which are as close as possible to the relevant
ones (connected with correct query) and as far as possible to the others. We use
triplet margin loss and transformer language model BART for this purpose.

3.2 BART model

We use pre-trained BART [3] model from Hugging Face Hub2. Basically, BART
is a transformer sequence-to-sequence model with a bidirectional encoder and an
autoregressive decoder. This model performs well in such tasks as summarizing,
translation, classification, and what is especially important for us, a task of
answering a question (after fine-tuning). For this reason, BART is the basis for
our research.

The authors of [5] demonstrate that BART and RoBERTa [4] are the best
models according to F1-score at the task of extractive question answering. Since
our target metric is F1-score it is additional argument to work with these models.

2 https://huggingface.co/facebook/bart-base

https://www.nliwod.org/challenge
https://huggingface.co/facebook/bart-base


Ranking Approach to Multilingual QA over Knowledge Graphs 3

We compare the performance of RoBERTa and BART and we do not receive any
improvements from RoBERTa, that is why we concentrate on BART.

Moreover, we compare BART model to other models like DistilBERT [6], and
even with XLM-RoBERTa [1]. Also, we conducted experiments with multilin-
gual BART, BERT, multilingual BERT, and multilingual XLM-RoBERTa. The
comparison of DistilBERT and BART shows that BART has lower loss within
all process of training. Theoretically, DistilBERT has faster inference, however,
in practice, duration of training did not differ a lot.

We made one modification of the model to adapt it to our task: we av-
erage last hidden state embeddings getting output final embedding with size
(batch size, 768), to which we apply a linear mapR768 → RQ embed size+P embed size.
This final model was fine-tuned to predict embeddings for Q and P. In our ap-
proach we use batch size equals to 128.

3.3 Approximate neighbours search with ScaNN

Fig. 1. ScaNN outperforms other methods significantly on glove-100-angular bench-
mark (Recall@10 – fraction of true nearest neighbors found among 10 returned by
algorithm: averaged over all queries)

Scalable Nearest Neighbors (ScaNN) – one of the latest methods for efficient
neighbours search achieved by using the new score-aware quantization loss func-
tion proposed in the paper [2]. It lets the authors to achieve state-of-the-art
results in most of benchmarks3: on Fig. 1 you can see one of prime examples on
the glove-100-angular dataset.

In the Section 3.2 we explain how we get embeddings for P and Q, but with
high probability we will never get exact matches, so the idea is to find nearest
ones from the prepared pool of Q-items and P-properties via ScaNN approach
with the dot product distance metric. In the Section 1 we describe how it works
during training and model inference.

3 http://ann-benchmarks.com

http://ann-benchmarks.com


4 Baramiia et al.

3.4 Train and inference procedures

Training process is presented in Algorithm 1 below:

Algorithm 1 Training process

Require: pool of Q and P, samples, model fw
for epoch in num of epochs do

shuffled samples ← shuffle(samples)
batches ← split(shuffled samples)

for (sentences batch, queries batch) in batches do
queries anchor = fw(sentences batch)
queries positive = true queries values
queries negative = nearest to anchor false queries

L = triplet loss(queries anchor, queries positive, queries negative)
w ← w −∇wL

end for
end for=0

It is a typical metric learning procedure with hard negative mining strategy.
Within training procedure we use Adam optimizer. There is a widespread

practice of changing learning rate using scheduler since it is worth changing
learning rate value during training. The main idea is to decrease it while training
because we need smaller steps of the gradient when we come closer to optimum.
In our case, we implement StepLR with warm-up during the first two epochs,
initial and minimal learning rates 10−5, step size 13, gamma 0.9 (every 13 epochs
current learning rate multiplied by 0.9, and it could not be less than 10−5). Initial
learning rate equals to minimal learning rate since we use warm-up technique.
This mean that first two epochs has minimal learning rate. This is a good practice
that allows adaptive optimizers such as Adam to better calculate loss function
gradients. Thus, it helps the optimizer to choose a more optimal and stable
direction of optimization. Batch size of the final model equals 128 since it is a
power of 2 and it is big enough to represent data in one iteration.

We additionally use early stopping as a useful method of regularization, which
prevents overfitting of the model. Also, it gives significant reduction of training
time in case when there is a large number of training epochs. We set the param-
eter patience to 6 (if current loss higher than minimal previously achieved loss
within 6 epochs then training stops). Thus, we use only 40 epochs out of 100
originally declared.

Furthermore, we use triplet loss with default margin. It is a good idea to
take this type of loss because we want to generate a vector that will be close to
the vector of correct answers, and far from the vectors of wrong answers. This
is exactly what triple loss does.

In the Algorithm 2 we provide steps for getting response with our model:



Ranking Approach to Multilingual QA over Knowledge Graphs 5

Algorithm 2 Inference procedure

Require: pool of Q and P, trained model fw, test sentence
0: predicted query = fw (test sentence)
0: 3 nearest Qs and Ps = find nearest(predicted query)

for Q in 3 nearest Qs and Ps do
for P in 3 nearest Qs and Ps do

if exist query(Q, P) == True then
success = True
return Q, P

else
success = False

end for
end for

if success == False then
return None

We decided to consider more than one nearest neighbour (exactly 3) because
not all queries are able to get a response from Wikidata, but probably some
combinations of the nearest neighbours can. In our opinion, it is better than not
to provide the answer at all.

4 Results and discussion

After iterations of our experiments we received that fine-tuned BART with
ScaNN showed the best result. We could reach 0.4281 Macro F1 QALD score.
We achieved this score on 3 millions of embeddings. Additionally, we tried 4 mil-
lions of embeddings, however, the results were comparable. Thus, we can claim
that results are robust to the number of embeddings.

Speaking about extensions to the multilingual case, it is possible with using
transformers trained on several languages. Then, the pipeline is the same but we
get num of languages times more data where we have the same answers (queries)
for num of languages samples. Another way is to rotate embeddings: it is a well-
known method when we train the rotation matrix to translate embeddings from
one language to another. In this case, the main model will be trainable (probably
English variant is the most suitable) and models for other languages will be used
as is, without fine-tuning. For the last case we can utilize our trained model and
we will need only to train rotation matrices: it is a rough but relatively fast way
to get baseline extension for multilingual case.

After the deadline of QALD competition submission we conducted one more
experiment to understand the quality of current result. We used only 500 000
embeddings of queries and 2 epochs of train. This leads to increase of quality up
to 0.5133.



6 Baramiia et al.

Acknowledgment

We express our deep gratitude to Skoltech NLP Lab headed by Professor Alexan-
der Panchenko for embeddings prepared via TransE algorithm from PyTorch-
BigGraph (PGD) system from Facebook. Also, we thank organizers of the com-
petition for the opportunity to work on this interesting problem and conduct
this research Professor Ricardo Usbeck, Xi Yan, QALD and NLIWOD team.

References

1. Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán,
F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V.: Unsupervised cross-lingual
representation learning at scale. arXiv preprint arXiv:1911.02116 (2019)

2. Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern, F., Kumar, S.: Accel-
erating large-scale inference with anisotropic vector quantization. In: International
Conference on Machine Learning (2020), https://arxiv.org/abs/1908.10396

3. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O.,
Stoyanov, V., Zettlemoyer, L.: Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461 (2019)

4. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-
moyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692 (2019)

5. Pearce, K., Zhan, T., Komanduri, A., Zhan, J.: A comparative study of
transformer-based language models on extractive question answering. arXiv preprint
arXiv:2110.03142 (2021)

6. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

https://sites.skoltech.ru/nlp/
https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/facebookresearch/PyTorch-BigGraph
https://arxiv.org/abs/1908.10396

	Ranking Approach to Monolingual Question Answering over Knowledge Graphs

