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Abstract
A fuzzy multipreference semantics has been recently proposed for weighted conditional knowledge bases with typicality, and
used to develop a logical semantics for Multilayer Perceptrons, by regarding a deep neural network (after training) as a weighted
conditional knowledge base. Based on different variants of this semantics, we propose some new gradual argumentation
semantics, and relate them to the family of the gradual semantics. The paper also suggests an approach for defeasible reasoning
over a weighted argumentation graph, building on the proposed semantics.

Keywords
Defeasible Reasoning, Gradual Argumentation, Fuzzy Description Logics

1. Introduction
Argumentation is a reasoning approach which, in its differ-
ent formulations and semantics, has been used in different
contexts in the multi-agent setting, from social networks
[54] to classification [5], and it is very relevant for deci-
sion making and for explanation [61]. The argumentation
semantics are strongly related to other non-monotonic
reasoning formalisms and semantics [29, 1].

Our starting point in this paper is a preferential seman-
tics for commonsense reasoning which has been proposed
for a description logic with typicality. Preferential de-
scription logics have been studied in the last fifteen years
to deal with inheritance with exceptions in ontologies,
based on the idea of extending the language of Descrip-
tion Logics (DLs), by allowing for non-strict forms of
inclusions, called typicality or defeasible inclusions, of
the form T(𝐶) ⊑ 𝐷 (meaning “the typical 𝐶-elements
are 𝐷-elements" or “normally 𝐶’s are 𝐷’s"), with dif-
ferent preferential semantics [39, 18] and closure con-
structions, by Casini and Straccia [20, 21] and other re-
searchers [40, 11, 23]. Such defeasible inclusions cor-
respond to Kraus, Lehmann and Magidor (KLM) condi-
tionals 𝐶 |∼ 𝐷 [51, 52], and defeasible DLs inherit and
extend some of the preferential semantics and closure
constructions developed within preferential and condi-
tional approaches to commonsense reasoning by Kraus,
Lehmann and Magidor [51], Pearl [56], Lehmann [52],
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Geffner and Pearl [34], Benferhat et al.[9].
In previous work [42], a concept-wise multiprefer-

ence semantics for weighted conditional knowledge bases
(KBs) has been proposed to account for preferences with
respect to different concepts, by allowing a set of typicality
inclusions of the form T(𝐶) ⊑ 𝐷 with positive or nega-
tive weights, for distinguished concepts 𝐶. The concept-
wise multipreference semantics has been first introduced
as a semantics for ranked DL knowledge bases [41], where
conditionals are given a positive integer rank, and later
extended to weighted conditional KBs, in the two-valued
and in the fuzzy case, based on a different semantic clo-
sure construction, still in the spirit of Lehmann’s lexico-
graphic closure [53] and Kern-Isberner’s c-representations
[47, 48], but exploiting multiple preferences with respect
to concepts.

The concept-wise multipreference semantics has been
proven to have some desired properties from the knowl-
edge representation point of view in the two-valued case
[41]: it satisfies the KLM properties of a preferential con-
sequence relation [51, 52], it allows to deal with specificity
and irrelevance and avoids inheritance blocking or the
“drowning problem" [56, 9], and deals with “ambiguity
preservation" [34]. The plausibility of the concept-wise
multipreference semantics has also been supported [38]
by showing that it is able to provide a logical interpreta-
tion to Kohonen’ Self-Organising Maps [49], which are
psychologically and biologically plausible neural network
models. In the fuzzy case, the KLM properties of non-
monotomic entailment have been studied in [36], showing
that most KLM postulates are satisfied, depending on
their reformulation and on the choice of fuzzy combina-
tion functions. It has been shown [42] that both in the
two-valued and in the fuzzy case, the multi-preferential
semantics allows to describe the input-output behavior of
Multilayer Perceptrons (MLPs), after training, in terms
of a preferential interpretation which, in the fuzzy case,
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can be proven to be a model (in a logical sense) of the
weighted KB which is associated to the neural network.

The relationships between preferential and conditional
approaches to non-monotonic reasoning and argumen-
tation semantics are strong. Let us just mention, the
work by Geffner and Pearl on Conditional Entailment,
whose proof theory is defined in terms of “arguments”
[34]. In this paper we aim at investigating the relation-
ships between the fuzzy multipreference semantics for
weighted conditionals and gradual argumentation seman-
tics [24, 46, 30, 31, 2, 7, 4, 60]. To this purpose, in addi-
tion to the notions of coherent [42] and faithful [36] fuzzy
multipreference semantics, in Section 4, we introduce a
notion of 𝜙-coherent fuzzy multipreference semantics. In
Section 5, we propose three new gradual semantics for
a weighted argumentation graph (namely, a coherent, a
faithful and a 𝜙-coherent semantics) inspired by the fuzzy
preferential semantics of weighted conditionals and, in
Section 6, we investigate the relationship of 𝜙-coherent
semantics with the family of gradual semantics studied by
Amgoud and Doder. The relationships between weighted
conditional knowledge bases and MLPs easily extend to
the proposed gradual semantics, which captures the sta-
tionary behavior of MLPs. This is in agreement with
the previous results on the relationships between argu-
mentation frameworks and neural networks by Garces,
Gabbay and Lamb [27] and by Potyca [57]. Section 7 sug-
gests a possible approach for defeasible reasoning over
an argumentation graph, building on the proposed gradual
semantics.

A preliminary version of this work has been pre-
sented in [35]. For the proofs of the results we refer
to https://arxiv.org/abs/2110.03643v2.

2. The description logic ℒ𝒞 and
fuzzy ℒ𝒞

In this section we recall the syntax and semantics of a
description logic and of its fuzzy extension [55]. For sake
of simplicity, we only focus on ℒ𝒞, the boolean fragment
of 𝒜ℒ𝒞 [6], which does not allow for roles. Let 𝑁𝐶

be a set of concept names, and 𝑁𝐼 a set of individual
names. ℒ𝒞 concepts (or, simply, concepts) can be defined
inductively as follows:

• 𝐴 ∈ 𝑁𝐶 , ⊤ and ⊥ are concepts;
• if 𝐶 and 𝐷 are concepts, then 𝐶⊓𝐷, 𝐶⊔𝐷, ¬𝐶

are concepts.

An ℒ𝒞 knowledge base 𝐾 is a pair (𝒯𝐾 ,𝒜𝐾), where 𝒯𝐾

is a TBox and 𝒜𝐾 is an ABox. The TBox 𝒯𝐾 is a set
of concept inclusions (or subsumptions) 𝐶 ⊑ 𝐷, where
𝐶,𝐷 are concepts. The ABox 𝒜𝐾 is a set of assertions of
the form 𝐶(𝑎), where 𝐶 is a concept and 𝑎 an individual
name in 𝑁𝐼 .

An ℒ𝒞 interpretation is defined as a pair 𝐼 = ⟨Δ, ·𝐼⟩
where: Δ is a domain—a set whose elements are denoted
by 𝑥, 𝑦, 𝑧, . . .—and ·𝐼 is an extension function that maps
each concept name 𝐶 ∈ 𝑁𝐶 to a set 𝐶𝐼 ⊆ Δ, and each
individual name 𝑎 ∈ 𝑁𝐼 to an element 𝑎𝐼 ∈ Δ. It is
extended to complex concepts as follows:

⊤𝐼 = Δ ⊥𝐼 = ∅ (¬𝐶)𝐼 = Δ∖𝐶𝐼

(𝐶 ⊓𝐷)𝐼 = 𝐶𝐼 ∩𝐷𝐼 (𝐶 ⊔𝐷)𝐼 = 𝐶𝐼 ∪𝐷𝐼

The notion of satisfiability of a KB in an interpretation
and the notion of entailment are defined as follows:

Definition 1 (Satisfiability and entailment). Given an
ℒ𝒞 interpretation 𝐼 = ⟨Δ, ·𝐼⟩:

- 𝐼 satisfies an inclusion 𝐶 ⊑ 𝐷 if 𝐶𝐼 ⊆ 𝐷𝐼 ;
- 𝐼 satisfies an assertion 𝐶(𝑎) if 𝑎𝐼 ∈ 𝐶𝐼 .

Given a knowledge base 𝐾 = (𝒯𝐾 ,𝒜𝐾), an interpreta-
tion 𝐼 satisfies 𝒯𝐾 (resp. 𝒜𝐾 ) if 𝐼 satisfies all inclusions
in 𝒯𝐾 (resp. all assertions in 𝒜𝐾); 𝐼 is a model of 𝐾 if
𝐼 satisfies 𝒯𝐾 and 𝒜𝐾 .

A subsumption 𝐹 = 𝐶 ⊑ 𝐷 (resp., an assertion
𝐶(𝑎)), is entailed by 𝐾, written 𝐾 |= 𝐹 , if for all models
𝐼 =⟨Δ, ·𝐼⟩ of 𝐾, 𝐼 satisfies 𝐹 .

Given a knowledge base 𝐾, the subsumption problem is
the problem of deciding whether an inclusion 𝐶 ⊑ 𝐷 is
entailed by 𝐾.

Fuzzy description logics have been widely studied in
the literature for representing vagueness in DLs by Strac-
cia [59], Stoilos [58], Lukasiewicz and Straccia [55],
Borgwardt et al. [13], Bobillo and Straccia [10], based
on the idea that concepts and roles can be interpreted as
fuzzy sets. Formulas in Mathematical Fuzzy Logic [26]
have a degree of truth in an interpretation rather than be-
ing true or false; similarly, axioms in a fuzzy DL have a
degree of truth, usually in the interval [0, 1]. In the follow-
ing we shortly recall the semantics of a fuzzy extension
of 𝒜ℒ𝒞 for the fragment ℒ𝒞, referring to the survey by
Lukasiewicz and Straccia [55]. We limit our considera-
tion to a few features of a fuzzy DL, without considering
datatypes, and restricting to constructs in ℒ𝒞.

A fuzzy interpretation for ℒ𝒞 is a pair 𝐼 = ⟨Δ, ·𝐼⟩
where: Δ is a non-empty domain and ·𝐼 is fuzzy interpre-
tation function that assigns to each concept name 𝐴 ∈ 𝑁𝐶

a function 𝐴𝐼 : Δ → [0, 1], and to each individual name
𝑎 ∈ 𝑁𝐼 an element 𝑎𝐼 ∈ Δ. A domain element 𝑥 ∈ Δ
belongs to concept 𝐴 with a membership degree 𝐴𝐼(𝑎𝐼)
in [0, 1], i.e., 𝐴𝐼 is a fuzzy set.

The interpretation function ·𝐼 is extended to complex
concepts as follows:

⊤𝐼(𝑥) = 1, ⊥𝐼(𝑥) = 0,
(¬𝐶)𝐼(𝑥) = ⊖𝐶𝐼(𝑥),
(𝐶 ⊓𝐷)𝐼(𝑥) = 𝐶𝐼(𝑥)⊗𝐷𝐼(𝑥),
(𝐶 ⊔𝐷)𝐼(𝑥) = 𝐶𝐼(𝑥)⊕𝐷𝐼(𝑥).
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where 𝑥 ∈ Δ and ⊗, ⊕, ▷ and ⊖ are a t-norm, an s-norm,
an implication function, and a negation function, chosen
among the combination functions of fuzzy logics (we refer
to [55] for details). For instance, in Zadeh logic 𝑎⊗ 𝑏 =
𝑚𝑖𝑛{𝑎, 𝑏}, 𝑎⊕𝑏 = 𝑚𝑎𝑥{𝑎, 𝑏}, 𝑎▷𝑏 = 𝑚𝑎𝑥{1−𝑎, 𝑏}
and ⊖𝑎 = 1− 𝑎.

The interpretation function ·𝐼 is also extended to non-
fuzzy axioms (i.e., to strict inclusions and assertions of an
ℒ𝒞 knowledge base) as follows:

(𝐶 ⊑ 𝐷)𝐼 = 𝑖𝑛𝑓𝑥∈Δ𝐶𝐼(𝑥)▷𝐷𝐼(𝑥),
(𝐶(𝑎))𝐼 = 𝐶𝐼(𝑎𝐼).

A fuzzy ℒ𝒞 knowledge base 𝐾 is a pair (𝒯𝑓 ,𝒜𝑓 ) where
𝒯𝑓 is a fuzzy TBox and 𝒜𝑓 a fuzzy ABox. A fuzzy
TBox is a set of fuzzy concept inclusions of the form
𝐶 ⊑ 𝐷 𝜃 𝑛, where 𝐶 ⊑ 𝐷 is an ℒ𝒞 concept inclusion
axiom, 𝜃 ∈ {≥,≤, >,<} and 𝑛 ∈ [0, 1]. A fuzzy ABox
𝒜𝑓 is a set of fuzzy assertions of the form 𝐶(𝑎)𝜃𝑛, where
𝐶 is an ℒ𝒞 concept, 𝑎 ∈ 𝑁𝐼 , 𝜃 ∈ {≥, ≤, >,<} and 𝑛 ∈
[0, 1]. Following Bobillo and Straccia [10], we assume
that fuzzy interpretations are witnessed, i.e., the sup and
inf are attained at some point of the involved domain. The
notions of satisfiability of a KB in a fuzzy interpretation
and of entailment are defined in the natural way.

Definition 2 (Satisfiability and entailment). A fuzzy in-
terpretation 𝐼 satisfies a fuzzy ℒ𝒞 axiom 𝐸 (denoted
𝐼 |= 𝐸), as follows:

• 𝐼 satisfies a fuzzy ℒ𝒞 inclusion axiom 𝐶 ⊑ 𝐷 𝜃 𝑛
if (𝐶 ⊑ 𝐷)𝐼𝜃 𝑛;

• 𝐼 satisfies a fuzzy ℒ𝒞 assertion 𝐶(𝑎) 𝜃 𝑛 if
𝐶𝐼(𝑎𝐼)𝜃 𝑛

where for 𝜃 ∈ {≥,≤, >,<} and 𝑛 ∈ [0, 1].
Given a fuzzy ℒ𝒞 knowledge base 𝐾 = (𝒯𝑓 ,𝒜𝑓 ), a

fuzzy interpretation 𝐼 satisfies 𝒯𝑓 (resp. 𝒜𝑓 ) if 𝐼 satisfies
all fuzzy inclusions in 𝒯𝑓 (resp. all fuzzy assertions in 𝒜𝑓 ).
A fuzzy interpretation 𝐼 is a model of 𝐾 if 𝐼 satisfies 𝒯𝑓

and 𝒜𝑓 . A fuzzy axiom 𝐸 is entailed by a fuzzy knowledge
base 𝐾 (i.e., 𝐾 |= 𝐸) if for all models 𝐼 =⟨Δ, ·𝐼⟩ of 𝐾,
𝐼 satisfies 𝐸.

3. Fuzzy ℒ𝒞 with typicality: ℒ𝒞FT
In this section, we describe an extension of fuzzy ℒ𝒞
with typicality following [42, 36]. Typicality concepts
of the form T(𝐶) are added, where 𝐶 is a concept in
fuzzy ℒ𝒞. The idea is similar to the extension of 𝒜ℒ𝒞
with typicality under the two-valued semantics [39] but
transposed to the fuzzy case. The extension allows for
the definition of fuzzy typicality inclusions of the form
T(𝐶) ⊑ 𝐷 𝜃 𝑛, meaning that typical 𝐶-elements are
𝐷-elements with a degree 𝑚 such that 𝑚𝜃𝑛 holds. In
the two-valued case, a typicality inclusion T(𝐶) ⊑ 𝐷
stands for a KLM conditional implication 𝐶 |∼ 𝐷 [51, 52],

but now it has an associated degree. We call ℒ𝒞FT the
extension of fuzzy ℒ𝒞 with typicality. As in the two-
valued case, and in the propositional typicality logic, PTL,
[12] the nesting of the typicality operator is not allowed.

Observe that, in a fuzzy ℒ𝒞 interpretation 𝐼 = ⟨Δ, ·𝐼⟩,
the degree of membership 𝐶𝐼(𝑥) of the domain elements
𝑥 in a concept 𝐶 induces a preference relation <𝐶 on Δ,
as follows:

𝑥 <𝐶 𝑦 iff 𝐶𝐼(𝑥) > 𝐶𝐼(𝑦) (1)

Each <𝐶 has the properties of preference relations in
KLM-style ranked interpretations [52], that is, <𝐶 is a
modular and well-founded strict partial order, under the
assumption that fuzzy interpretations are witnessed (see
Section 2) or that Δ is finite. Let us recall that, <𝐶 is well-
founded if there is no infinite descending chain 𝑥1 <𝐶 𝑥0,
𝑥2 <𝐶 𝑥1, 𝑥3 <𝐶 𝑥2, . . . of domain elements; <𝐶 is
modular if, for all 𝑥, 𝑦, 𝑧 ∈ Δ, 𝑥 <𝐶 𝑦 implies (𝑥 <𝐶 𝑧
or 𝑧 <𝐶 𝑦).

As there are multiple preferences, fuzzy interpretations
can be regarded as multipreferential interpretations, which
have been also studied in the two-valued case by Giordano
and Theseider Dupré [41], by Delgrande and Rantsoudis
[28], by Giordano and Gliozzi [37], by Casini et al. [19].

Preference relation <𝐶 captures the relative typical-
ity of domain elements wrt concept 𝐶 and may then be
used to identify the typical 𝐶-elements. We will regard
typical 𝐶-elements as the domain elements 𝑥 that are
preferred with respect to relation <𝐶 among those such
that 𝐶𝐼(𝑥) ̸= 0. Let 𝐶𝐼

>0 be the crisp set containing
all domain elements 𝑥 such that 𝐶𝐼(𝑥) > 0, that is,
𝐶𝐼

>0 = {𝑥 ∈ Δ | 𝐶𝐼(𝑥) > 0}. One can provide a
(two-valued) interpretation of typicality concepts T(𝐶)
in a fuzzy interpretation 𝐼 , by letting:

(T(𝐶))𝐼(𝑥) =

{︂
1 if 𝑥 ∈ 𝑚𝑖𝑛<𝐶 (𝐶𝐼

>0)
0 otherwise

(2)

where 𝑚𝑖𝑛<(𝑆) = {𝑢 : 𝑢 ∈ 𝑆 and ∄𝑧 ∈ 𝑆 s.t. 𝑧 < 𝑢}.
When (T(𝐶))𝐼(𝑥) = 1, we say that 𝑥 is a typical 𝐶-
element in 𝐼 . Notice that, if 𝐶𝐼(𝑥) > 0 for some 𝑥 ∈ Δ,
𝑚𝑖𝑛<𝐶 (𝐶𝐼

>0) is non-empty.

Definition 3 (ℒ𝒞FT interpretation). An ℒ𝒞FT inter-
pretation 𝐼 = ⟨Δ, ·𝐼⟩ is a fuzzy ℒ𝒞 interpretation, ex-
tended by interpreting typicality concepts as in (2).

The fuzzy interpretation 𝐼 = ⟨Δ, ·𝐼⟩ implicitly defines
a multipreference interpretation, where any concept 𝐶 is
associated to a preference relation <𝐶 . This is different
from the two-valued multipreference semantics in [41],
where only the subset of distinguished concepts have an
associated preference, and a notion of global preference <
is introduced to define the interpretation of the typicality
concept T(𝐶), for any arbitrary 𝐶. Here, we do not need
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to introduce a notion of global preference. The interpre-
tation of any ℒ𝒞 concept 𝐶 is defined compositionally
from the interpretation of atomic concepts, and the pref-
erence relation <𝐶 associated to 𝐶 is defined from 𝐶𝐼 .
The notions of satisfiability in ℒ𝒞FT, model of an ℒ𝒞FT
knowledge base, and ℒ𝒞FT entailment can be defined in
a similar way as in fuzzy ℒ𝒞 (see Section 2).

3.1. Strengthening ℒ𝒞FT: some closure
constructions

To overcome the weakness of preferential entailment, the
rational closure [52] and the lexicographic closure of a
conditional knowledge base [53] have been introduced. In
this section, we recall a closure construction introduced
by Giordano and Theseider Dupré [42] to strengthen
𝒜ℒ𝒞FT entailment for weighted conditional knowledge
bases, and then we consider some variants. In the two-
valued case, the construction is related to the definition
of Kern-Isberner’s c-representations [47, 48], which in-
clude penalty points for falsified conditionals. In the fuzzy
case, the construction also relates to the fuzzy extension
of rational closure by Casini and Straccia [22].

A weighted ℒ𝒞FT knowledge base 𝐾, over a set
𝒞 = {𝐶1, . . . , 𝐶𝑘} of distinguished ℒ𝒞 concepts, is a
tuple ⟨𝒯𝑓 , 𝒯𝐶1 , . . . , 𝒯𝐶𝑘 ,𝒜𝑓 ⟩, where 𝒯𝑓 is a set of fuzzy
ℒ𝒞FT inclusion axiom, 𝒜𝑓 is a set of fuzzy ℒ𝒞FT as-
sertions and 𝒯𝐶𝑖 = {(𝑑𝑖ℎ, 𝑤𝑖

ℎ)} is a set of all weighted
typicality inclusions 𝑑𝑖ℎ = T(𝐶𝑖) ⊑ 𝐷𝑖,ℎ for 𝐶𝑖, in-
dexed by ℎ, where each inclusion 𝑑𝑖ℎ has weight 𝑤𝑖

ℎ, a
real number. As in [42], the typicality operator is assumed
to occur only on the l.h.s. of a weighted typicality inclu-
sion, and we call distinguished concepts those concepts
𝐶𝑖 occurring in the l.h.s. of such inclusions. Arbitrary
ℒ𝒞FT inclusions and assertions may belong to 𝒯𝑓 and
𝒜𝑓 . Let us consider the following example of weighted
ℒ𝒞FT knowledge base adapted from [36]:

Example 1. Consider the weighted knowledge base 𝐾 =
⟨𝒯𝑓 , 𝒯𝐵𝑖𝑟𝑑, 𝒯𝑃𝑒𝑛𝑔𝑢𝑖𝑛, 𝒜𝑓 ⟩, over the set of distinguished
concepts 𝒞 = {Bird ,Penguin}, with the strict TBox
𝒯𝑓 containing the inclusion Black ⊓ Red ⊑ ⊥ ≥ 1 ; the
weighted TBox 𝒯𝐵𝑖𝑟𝑑 containing the weighted defeasible
inclusions:

(𝑑1) T(Bird) ⊑ Fly , +20
(𝑑2) T(Bird) ⊑ Has_Wings , +50
(𝑑3) T(Bird) ⊑ Has_Feather , +50;

𝒯𝑃𝑒𝑛𝑔𝑢𝑖𝑛 containing the weighted defeasible inclusions:
(𝑑4) T(Penguin) ⊑ Bird , +100
(𝑑5) T(Penguin) ⊑ Fly , - 70
(𝑑6) T(Penguin) ⊑ Black , +50.

The meaning is that a bird normally has wings, has feath-
ers and flies, but having wings and feather (both with
weight 50) for a bird is more plausible than flying (weight
20), although flying is regarded as being plausible. For a

penguin, flying is not plausible (inclusion (𝑑5) has nega-
tive weight -70), while being a bird and being black are
plausible properties of prototypical penguins, and (𝑑4)
and (𝑑6) have positive weights. Given an ABox in which
Reddy is red, has wings, has feather and flies (all with
degree 1) and Opus has wings and feather, does not fly
(with degree 1), and is black with degree 0.8, considering
the weights of defeasible inclusions, we may expect Reddy
to be more typical than Opus as a bird, but less typical as
a penguin.

The semantics of a weighted knowledge base is defined
in [42] trough a semantic closure construction, which al-
lows a subset of the 𝒜ℒ𝒞FT interpretations to be selected,
namely, the interpretations whose induced preference rela-
tions <𝐶𝑖 , for the distinguished concepts 𝐶𝑖, coherently
or faithfully represent the defeasible part of the knowledge
base 𝐾.

Let 𝒯𝐶𝑖 = {(𝑑𝑖ℎ, 𝑤𝑖
ℎ)} be the set of weighted typicality

inclusions 𝑑𝑖ℎ = T(𝐶𝑖) ⊑ 𝐷𝑖,ℎ associated to the distin-
guished concept 𝐶𝑖, and let 𝐼 = ⟨Δ, ·𝐼⟩ be a fuzzy ℒ𝒞FT
interpretation. In the two-valued case, we would associate
to each domain element 𝑥 ∈ Δ and each distinguished
concept 𝐶𝑖, a weight 𝑊𝑖(𝑥) of 𝑥 wrt 𝐶𝑖 in 𝐼 , by summing
the weights of the defeasible inclusions for 𝐶𝑖 satisfied
by 𝑥. However, as 𝐼 is a fuzzy interpretation, we also
need to consider, for all inclusions T(𝐶𝑖) ⊑ 𝐷𝑖,ℎ ∈ 𝒯𝐶𝑖 ,
the degree of membership of 𝑥 in 𝐷𝑖,ℎ. Furthermore, in
comparing the weight of domain elements with respect to
<𝐶𝑖 , we give higher preference to the domain elements
belonging to 𝐶𝑖 (with a degree greater than 0), with re-
spect to those not belonging to 𝐶𝑖 (having membership
degree 0).

For each domain element 𝑥 ∈ Δ and distinguished
concept 𝐶𝑖, the weight 𝑊𝑖(𝑥) of 𝑥 wrt 𝐶𝑖 in the ℒ𝒞FT
interpretation 𝐼 = ⟨Δ, ·𝐼⟩ is defined as follows:

𝑊𝑖(𝑥) =

{︂ ∑︀
ℎ 𝑤𝑖

ℎ 𝐷𝐼
𝑖,ℎ(𝑥) if 𝐶𝐼

𝑖 (𝑥) > 0
−∞ otherwise

(3)

where −∞ is added at the bottom of real values.
The value of 𝑊𝑖(𝑥) is −∞ when 𝑥 is not a 𝐶-element

(i.e., 𝐶𝐼
𝑖 (𝑥) = 0). Otherwise, 𝐶𝐼

𝑖 (𝑥) > 0 and the higher
is the sum 𝑊𝑖(𝑥), the more typical is the element 𝑥 rela-
tive to the defeasible properties of 𝐶𝑖.

In [42] a notion of coherence is introduced, to force
an agreement between the preference relations <𝐶𝑖 in-
duced by a fuzzy interpretation 𝐼 , for each distinguished
concept 𝐶𝑖, and the weights 𝑊𝑖(𝑥) computed, for each
𝑥 ∈ Δ, from the conditional knowledge base 𝐾, given
the interpretation 𝐼 . This leads to the following definition
of a coherent fuzzy multipreference model of a weighted
a ℒ𝒞FT knowledge base.
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Definition 4 (Coherent (fuzzy) multipreference model).
Let 𝐾 = ⟨𝒯𝑓 , 𝒯𝐶1 , . . . , 𝒯𝐶𝑘 ,𝒜𝑓 ⟩ be a weighted ℒ𝒞FT
knowledge base over 𝒞. A coherent (fuzzy) multi-
preference model (cf𝑚-model) of 𝐾 is a fuzzy ℒ𝒞FT
interpretation 𝐼 = ⟨Δ, ·𝐼⟩ s.t.:

• 𝐼 satisfies the fuzzy inclusions in 𝒯𝑓 and the fuzzy
assertions in 𝒜𝑓 ;

• for all 𝐶𝑖 ∈ 𝒞, the preference <𝐶𝑖 is coherent to
𝒯𝐶𝑖 , that is, for all 𝑥, 𝑦 ∈ Δ,

𝑥 <𝐶𝑖 𝑦 ⇐⇒ 𝑊𝑖(𝑥) > 𝑊𝑖(𝑦) (4)

In a similar way, one can define a faithful (fuzzy) multipref-
erence model (fm-model) of 𝐾 by replacing the coherence
condition (4) with the following faithfulness condition
(called weak coherence in [42], extended version): for all
𝑥, 𝑦 ∈ Δ,

𝑥 <𝐶𝑖 𝑦 ⇒ 𝑊𝑖(𝑥) > 𝑊𝑖(𝑦). (5)

The weaker notion of faithfulness allows to define a larger
class of fuzzy multipreference models of a weighted
knowledge base, compared to the class of coherent mod-
els. This allows a larger class of monotone non-decreasing
activation functions in neural network models to be cap-
tured, whose activation function is monotonically non-
decreasing (we refer to [42], extended version, Sec. 7).

Example 2. Referring to Example 1 above,
let us further assume that Bird I (reddy) = 1 ,
Bird I (opus) = 0.8, that PenguinI (reddy) = 0 .2 and
PenguinI (opus) = 0 .8 . Clearly, 𝑟𝑒𝑑𝑑𝑦 <𝐵𝑖𝑟𝑑 𝑜𝑝𝑢𝑠
and 𝑜𝑝𝑢𝑠 <𝑃𝑒𝑛𝑔𝑢𝑖𝑛 𝑟𝑒𝑑𝑑𝑦. The interpretation 𝐼 to be
faithful and coherent, as WBird(reddy) > WBird(opus)
and WPenguin (opus) > WPenguin(reddy)
hold. On the contrary, if we had PenguinI

(reddy) = 0 .9 , the interpretation 𝐼 would not
be faithful. For PenguinI (reddy) = 0 .8 , the
interpretation 𝐼 would be faithful, but not coher-
ent, as WPenguin(opus) > WPenguin (reddy), but
PenguinI (opus) = PenguinI (reddy).

It has been shown [42] that the proposed semantics
allows the input-output behavior of a deep network (con-
sidered after training) to be captured by a fuzzy multi-
preference interpretation built over a set of input stimuli,
through a simple construction which exploits the activity
level of neurons for the stimuli. Each unit ℎ of 𝒩 can be
associated to a concept name 𝐶ℎ and, for a given domain
Δ of input stimuli, the activation value of unit ℎ for a stim-
ulus 𝑥 is interpreted as the degree of membership of 𝑥 in
concept 𝐶ℎ. The resulting preferential interpretation can
be used for verifying properties of the network by model
checking (e.g., T(Penguin) ⊑ Has_Wings ≥ 0.7, do
typical penguins have wings with degree ≥ 0.7?).

For MLPs, the deep network itself can be regarded
as a conditional knowledge base, by mapping synaptic
connections to weighted conditionals, so that the input-
output model of the network can be regarded as a coherent-
model of the associated conditional knowledge base [42].

4. Yet another closure
construction: 𝜙-coherent
models

In this section we consider a new notion of coherence of a
fuzzy interpretation 𝐼 wrt a KB, that we call 𝜙-coherence,
where 𝜙 is a function from R to the interval [0, 1], i.e.,
𝜙 : R → [0, 1]. We also establish it relationships with
coherent and faithful models.

Definition 5 (𝜙-coherence). Let 𝐾 = ⟨𝒯𝑓 , 𝒯𝐶1 , . . . ,
𝒯𝐶𝑘 ,𝒜𝑓 ⟩ be a weighted ℒ𝒞FT knowledge base, and 𝜙 :
R → [0, 1]. A fuzzy ℒ𝒞FT interpretation 𝐼 = ⟨Δ, ·𝐼⟩ is
𝜙-coherent if, for all concepts 𝐶𝑖 ∈ 𝒞 and 𝑥 ∈ Δ,

𝐶𝐼
𝑖 (𝑥) = 𝜙(

∑︁
ℎ

𝑤𝑖
ℎ 𝐷𝐼

𝑖,ℎ(𝑥)) (6)

where 𝒯𝐶𝑖 = {(T(𝐶𝑖) ⊑ 𝐷𝑖,ℎ, 𝑤
𝑖
ℎ)} is the set of

weighted conditionals for 𝐶𝑖.

To define 𝜙-coherent multipreference model of a knowl-
edge base 𝐾, we can replace the coherence condition
(4) in Definition 4 with the notion of 𝜙-coherence of an
interpretation 𝐼 wrt the knowledge base 𝐾.

Observe that, for all 𝑥 such that 𝐶𝑖(𝑥) > 0, condition
(6) above corresponds to condition 𝐶𝐼

𝑖 (𝑥) = 𝜙(𝑊𝑖(𝑥)).
While in coherent and faithful models the notion of weight
𝑊𝑖(𝑥) considers, as a special case, the case 𝐶𝑖(𝑥) = 0,
condition (6) imposes the same constraint to all domain
elements 𝑥.

To see the relation between this semantics and Mul-
tilayer Perceptrons, consider that a neuron 𝑘 can be
described by the following pair of equations: 𝑢𝑘 =∑︀𝑛

𝑗=1 𝑤𝑘𝑗𝑥𝑗 , and 𝑦𝑘 = 𝜙(𝑢𝑘 + 𝑏𝑘), where 𝑥1, . . . , 𝑥𝑛

are the input signals and 𝑤𝑘1, . . . , 𝑤𝑘𝑛 are the weights of
neuron 𝑘; 𝑏𝑘 is the bias, 𝜙 the activation function, and 𝑦𝑘
is the output signal of neuron 𝑘. By adding a new synapse
with input 𝑥0 = +1 and synaptic weight 𝑤𝑘0 = 𝑏𝑘, one
can write: 𝑢𝑘 =

∑︀𝑛
𝑗=0 𝑤𝑘𝑗𝑥𝑗 , and 𝑦𝑘 = 𝜙(𝑢𝑘), where

𝑢𝑘 is called the induced local field of the neuron. The
neuron can be represented as a directed graph, where the
input signals 𝑥1, . . . , 𝑥𝑛 and the output signal 𝑦𝑘 of neu-
ron 𝑘 are nodes of the graph. An edge from 𝑥𝑗 to 𝑦𝑘,
labelled 𝑤𝑘𝑗 , means that 𝑥𝑗 is an input signal of neuron
𝑘 with synaptic weight 𝑤𝑘𝑗 . A neural network can then
be seen as “a directed graph consisting of nodes with
interconnecting synaptic and activation links" [44].
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Let us associate a concept name 𝐶𝑖 to each unit 𝑖 in a
deep neural network 𝒩 (possibly allowing for feedback),
and let us interpret, as in [42], a synaptic connection
between neuron ℎ and neuron 𝑖 with weight 𝑤𝑖ℎ as the
conditional T(𝐶𝑖) ⊑ 𝐶𝑗 with weight 𝑤𝑖

ℎ = 𝑤𝑖ℎ. If
we assume that 𝜙 is the activation function of all units
in the network 𝒩 , then condition (6) characterizes the
stationary states of the network, where 𝐶𝐼

𝑖 (𝑥) corresponds
to the activation of neuron 𝑖 for some input stimulus 𝑥 and∑︀

ℎ 𝑤𝑖
ℎ 𝐷𝐼

𝑖,ℎ(𝑥) corresponds to the induced local field of
neuron 𝑖, where each 𝐷𝐼

𝑖,ℎ(𝑥) represents the input signal
𝑥ℎ, for input stimulus 𝑥.

Of course, 𝜙-coherence could be easily extended to
deal with different activation functions 𝜙𝑖, one for each
concept 𝐶𝑖 (i.e., for each unit 𝑖). The following proposi-
tion establishes some relationships between 𝜙-coherent,
faithful and coherent fuzzy multipreference models of a
weighted conditional knowledge base 𝐾.

Proposition 1. Let 𝐾 be a weighted conditional ℒ𝒞FT
knowledge base and 𝜙 : R → [0, 1]. (1) if 𝜙 is a monoton-
ically non-decreasing function, a 𝜙-coherent fuzzy multi-
preference model 𝐼 of 𝐾 is also a faithful-model of 𝐾; (2)
if 𝜙 is a monotonically increasing function, a 𝜙-coherent
fuzzy multipreference model 𝐼 of 𝐾 is also a coherent-
model of 𝐾.

Item 2 can be regarded as the analog of Proposition 1
in [42], where the fuzzy multi-preferential interpretation
ℳ𝑓,Δ

𝒩 of a deep neural network 𝒩 , built over the domain
of input stimuli Δ, is proven to be a coherent model of the
knowledge base 𝐾𝒩 associated to 𝒩 , under the specified
conditions on the activation function 𝜙, and the assump-
tion that each stimulus in Δ corresponds to a stationary
state in the neural network. Item 1 in Proposition 1 is as
well the analog of Proposition 2 in [42], extended version,
stating that ℳ𝑓,Δ

𝒩 is a faithful (or weakly-coerent) model
of 𝐾𝒩 .

A notion of coherent/faithful/𝜙-coherent multiprefer-
ence entailment from a weighted ℒ𝒞FT knowledge base
𝐾 can be defined in the obvious way (see [42, 36] for the
definitions of coherent and faithful (fuzzy) multiprefer-
ence entailment). The properties of faithful entailment
have been studied in [36]. Faithful entailment is reason-
ably well-behaved: it deals with specificity and irrele-
vance; it is not subject to inheritance blocking; it satisfies
most KLM properties [51, 52], depending on their fuzzy
reformulation and on the chosen combination functions.

As MLPs are usually represented as a weighted graphs
[44], whose nodes are units and whose edges are the
synaptic connections between units with their weight,
it is very tempting to extend the different semantics of
weighted knowledge bases considered above, to weighted
argumentation graphs.

5. Coherent, faithful and
𝜙-coherent semantics for
weighted argumentation

There is much work in the literature concerning extension
of Dung’s argumentation framework [29] with weights
attached to arguments and/or to the attacks between argu-
ments. Many different proposals have been investigated
and compared in the literature. Let us just mention, for the
moment, the work by Cayrol and Lagasquie-Schiex [24],
Janssen and Cock [46], Dunne et al. [30], Egilmez et al.
[31], Amgoud et al. [2], Amgoud and Doder [4], which
also include extensive comparisons. In the following, we
propose some semantics for weighted argumentation with
the purpose of establishing some links with the semantics
of conditional knowledge bases considered in the previous
sections.

We consider a notion of weighted argumentation graph
as a triple 𝐺 = ⟨𝒜,ℛ, 𝜋⟩, where 𝒜 is a set of argu-
ments, ℛ ⊆ 𝒜 × 𝒜 and 𝜋 : ℛ → R. This definition
of weighted argumentation graph corresponds to the defi-
nition of weighted argument system in [30], but here we
admit both positive and negative weights, while [30] only
allows for positive weights representing the strength of at-
tacks. In our notion of weighted graph, a pair (𝐴,𝐵) ∈ ℛ
can be regarded as a support relation when the weight is
positive and an attack relation when the weight is negative,
and it leads to bipolar argumentation [3]. The argumenta-
tion semantics we consider in the following, as in the case
of weighted conditionals, deals with both the positive and
the negative weights in a uniform way. For the moment
we do not include in 𝐺 a function determining the basic
strength of arguments [2].

Given a weighted argumentation graph 𝐺 = ⟨𝒜,ℛ, 𝜋⟩,
we define a labelling of the graph 𝐺 as a function
𝜎 : 𝒜 → [0, 1] which assigns to each argument an ac-
ceptability degree, i.e., a value in the interval [0, 1]. Let
R−(A) = {B | (B ,A) ∈ ℛ}. When R−(A) = ∅, argu-
ment 𝐴 has neither supports nor attacks.

For a weighted graph 𝐺 = ⟨𝒜,ℛ, 𝜋⟩ and a labelling
𝜎, we introduce a weight 𝑊𝐺

𝜎 on 𝒜, as a partial function
𝑊𝐺

𝜎 : 𝒜 → R, assigning a positive or negative support to
the arguments 𝐴𝑖 ∈ 𝒜 such that R−(Ai) ̸= ∅, as follows:

𝑊𝐺
𝜎 (𝐴𝑖) =

∑︁
(𝐴𝑗 ,𝐴𝑖)∈ℛ

𝜋(𝐴𝑗 , 𝐴𝑖) 𝜎(𝐴𝑗) (7)

When R−(Ai) = ∅, 𝑊𝐺
𝜎 (𝐴𝑖) is let undefined.

We can now exploit this notion of weight of an argu-
ment to define different argumentation semantics for a
graph 𝐺 as follows.

Definition 6. Given a weighted graph 𝐺 = ⟨𝒜,ℛ, 𝜋⟩
and a labelling 𝜎:
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• 𝜎 is a coherent labelling of 𝐺 if, for all arguments
𝐴,𝐵 ∈ 𝒜 s.t. R−(A) ̸= ∅ and R−(B) ̸= ∅,

𝜎(𝐴) < 𝜎(𝐵) ⇐⇒ 𝑊𝐺
𝜎 (𝐴) < 𝑊𝐺

𝜎 (𝐵);

• 𝜎 is a faithfull labelling of 𝐺 if, for all arguments
𝐴,𝐵 ∈ 𝒜 s.t. R−(A) ̸= ∅ and R−(B) ̸= ∅,

𝜎(𝐴) < 𝜎(𝐵) ⇒ 𝑊𝐺
𝜎 (𝐴) < 𝑊𝐺

𝜎 (𝐵);

• for a function 𝜙 : R → [0, 1], 𝜎 is a 𝜙-coherent
labelling of 𝐺 if, for all arguments 𝐴 ∈ 𝒜 s.t.
R−(A) ̸= ∅, 𝜎(𝐴) = 𝜙(𝑊𝐺

𝜎 (𝐴)).

These definitions do not put any constraint on the labelling
of arguments which do not have incoming edges in 𝐺:
their labelling is arbitrary, provided the constraints on the
labelings of all other arguments can be satisfied, depend-
ing on the semantics considered.

The definition of 𝜙-coherent labelling of 𝐺 is defined
through a set of equations, as in Gabbay’s equational
approach to argumentation networks [32]. Here, we use
equations for defining the weights of arguments starting
from the weights of attacks/supports.

A 𝜙-coherent labelling of a weigthed graph 𝐺 can be
proven to be as well a coherent labelling or a faithful
labelling, under some conditions on the function 𝜙.

Proposition 2. Given a weighted graph 𝐺 = ⟨𝒜,ℛ, 𝜋⟩:
(1) A coherent labelling of 𝐺 is a faithful labelling of 𝐺;
(2) if 𝜙 is a monotonically non-decreasing function, a 𝜙-
coherent labelling 𝜎 of 𝐺 is a faithful labelling of 𝐺; (3)
if 𝜙 is a monotonically increasing function, a 𝜙-coherent
labelling 𝜎 of 𝐺 is a coherent labelling of 𝐺.

The proof is similar to the one of Proposition 1. It exploits
the property of a 𝜙-labelling that 𝜎(𝐴) = 𝜙(𝑊𝐺

𝜎 (𝐴)),
for all arguments 𝐴 with R−(A) ̸= ∅, as well as the prop-
erties of 𝜙.

6. 𝜙-coherent labellings and the
gradual semantics

The notion of 𝜙-coherent labelling relates to the frame-
work of gradual semantics studied by Amgoud and Doder
[4] where, for the sake of simplicity, the weights of argu-
ments and attacks are in the interval [0, 1]. Here, as we
have seen, positive and negative weights are admitted to
represent the strength of attacks and supports. To define
an evaluation method for 𝜙-coherent labellings, we need
to consider a slightly extended definition of an evaluation
method for a graph 𝐺 in [4]. Following [4] we include a
function 𝜎0 : 𝒜 → [0, 1] in the definition of a weighted
graph, where 𝜎0 assigns to each argument 𝐴 ∈ 𝒜 its
basic strength. Hence a graph 𝐺 becomes a quadruple
𝐺 = ⟨𝒜, 𝜎0,ℛ, 𝜋⟩.

An evaluation method for a graph 𝐺 = ⟨𝒜, 𝜎0,ℛ, 𝜋⟩
is a triple 𝑀 = ⟨ℎ, 𝑔, 𝑓⟩, where1:

ℎ : R× [0, 1] → R
𝑔 :

⋃︀+∞
𝑛=0 R

𝑛 → R
𝑓 : [0, 1]×𝑅𝑎𝑛𝑔𝑒(𝑔) → [0, 1]

Function ℎ is intended to calculate the strength of an
attack/support by aggregating the weight on the edge be-
tween two arguments with the strength of the attacker/sup-
porter. Function 𝑔 aggregates the strength of all attacks
and supports to a given argument, and function 𝑓 returns a
value for an argument, given the strength of the argument
and aggregated weight of its attacks and supports.

As in [4], a gradual semantics 𝑆 is a function assigning
to any graph 𝐺 = ⟨𝒜, 𝜎0,ℛ, 𝜋⟩ a weighting 𝐷𝑒𝑔𝑆𝐺 on 𝒜,
i.e., 𝐷𝑒𝑔𝑆𝐺 : 𝒜 → [0, 1], where 𝐷𝑒𝑔𝑆𝐺(𝐴) represents the
strength of an argument 𝐴 (or its acceptability degree).

A gradual semantics 𝑆 is based on an evaluation
method 𝑀 iff, ∀ 𝐺 = ⟨𝒜, 𝜎0,ℛ, 𝜋⟩, ∀𝐴 ∈ 𝒜,

𝐷𝑒𝑔𝑆𝐺(𝐴) = 𝑓(𝜎0(𝐴), 𝑔(ℎ(𝜋(𝐵1, 𝐴), 𝐷𝑒𝑔𝑆𝐺(𝐵1)), . . . ,

ℎ(𝜋(𝐵𝑛, 𝐴), 𝐷𝑒𝑔𝑆𝐺(𝐵𝑛)))

where B1 , . . . ,Bn are all arguments attacking or support-
ing 𝐴 (i.e., R−(A) = {B1 , . . . , Bn}).

Let us consider the evaluation method 𝑀𝜙 =
⟨ℎ𝑝𝑟𝑜𝑑, 𝑔𝑠𝑢𝑚, 𝑓𝜙⟩, where the functions ℎ𝑝𝑟𝑜𝑑 and 𝑔𝑠𝑢𝑚
are defined as in [4], i.e., ℎ𝑝𝑟𝑜𝑑(𝑥, 𝑦) = 𝑥 · 𝑦 and
𝑔𝑠𝑢𝑚(𝑥1, . . . , 𝑥𝑛) =

∑︀𝑛
𝑖=1 𝑥𝑖, but we let 𝑔𝑠𝑢𝑚() to be

undefined. We let 𝑓𝜙(𝑥, 𝑦) = 𝑥 when 𝑦 is undefined, and
𝑓𝜙(𝑥, 𝑦) = 𝜙(𝑦) otherwise. The function 𝑓𝜙 returns a
value which is independent from the first argument, when
the second argument is not undefined (i.e., there is some
support/attack for the argument). When 𝐴 has neither
attacks nor supports (R−(A) = ∅), 𝑓𝜙 returns the basic
strength of 𝐴, 𝜎0(𝐴).

The evaluation method 𝑀𝜙 = ⟨ℎ𝑝𝑟𝑜𝑑, 𝑔𝑠𝑢𝑚, 𝑓𝜙⟩ pro-
vides a characterization of the 𝜙-coherent labelling for an
argumentation graph, in the following sense.

Proposition 3. Let 𝐺 = ⟨𝒜,ℛ, 𝜋⟩ be a weighted argu-
mentation graph. If, for some 𝜎0 : 𝒜 → [0, 1], 𝑆 is a
gradual semantics of graph 𝐺′ = ⟨𝒜, 𝜎0,ℛ, 𝜋⟩ based
on the evaluation method 𝑀𝜙 = ⟨ℎ𝑝𝑟𝑜𝑑, 𝑔𝑠𝑢𝑚, 𝑓𝜙⟩, then
𝐷𝑒𝑔𝑆𝐺′ is a 𝜙-coherent labelling for 𝐺.

Vice-versa, if 𝜎 is a 𝜙-coherent labelling for 𝐺, then
there are a function 𝜎0 and a gradual semantics 𝑆 based
on the evaluation method 𝑀𝜙 = ⟨ℎ𝑝𝑟𝑜𝑑, 𝑔𝑠𝑢𝑚, 𝑓𝜙⟩, such
that, for the graph 𝐺′ = ⟨𝒜, 𝜎0,ℛ, 𝜋⟩, 𝐷𝑒𝑔𝑆𝐺′ ≡ 𝜎.

Amgoud and Doder [4] study a large family of determi-
native and well-behaved evaluation models for weighted
1This definition is the same as in [4], but for the fact that in the
domain/range of functions ℎ and 𝑔 interval [0, 1] is sometimes
replaced by R.
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graphs in which attacks have positive weights in the in-
terval [0, 1]. For weighted graph 𝐺 with positive and
negative weights, the evaluation method 𝑀𝜙 cannot be
guaranteed to be determinative, even under the conditions
that 𝜙 is monotonically increasing and continuous. In gen-
eral, there is not a unique semantics 𝑆 based on 𝑀𝜙, and
there is not a unique 𝜙-coherent labelling for a weighted
graph 𝐺, given a basic strength 𝜎0. This is not surprising,
considering that 𝜙-coherent labelings of a graph corre-
spond to stationary states (or equilibrium states) in a deep
neural network [44].

A deep neural network can indeed be seen as a weighted
argumentation graph, with positive and negative weights,
where each unit in the network is associated to an argu-
ment, and the activation value of the unit can be regarded
as the weight (in the interval [0, 1]) of the corresponding
argument. Synaptic positive and negative weights cor-
respond to the strength of supports (when positive) and
attacks (when negative). In this view, 𝜙-coherent label-
ings, assigning to each argument a weight in the interval
[0, 1], correspond to stationary states of the network, the
solutions of a set of equations. This is in agreement with
previous results on the relationship between weighted
argumentation graphs and MLPs established by Garcez,
Gabbay and Lamb [27] and, more recently, by Potyca [57].
We refer to the conclusions for some comparisons.

Unless the network is feedforward (and the correspond-
ing graph is acyclic), stationary states cannot be uniquely
determined by an iterative process from an initial labelling
𝜎0. On the other hand, a semantics 𝑆 based on 𝑀𝜙 sat-
isfies some of the properties considered in [4], including
anonymity, independence, directionality, equivalence and
maximality, provided the last two properties are prop-
erly reformulated to deal with both positive and negative
weights (i.e., by replacing R−(x ) to 𝐴𝑡𝑡(𝑥), for each
argument 𝑥 in the formulation in [4]). However, a se-
mantics 𝑆 based on 𝑀𝜙 cannot be expected to satisfy the
properties of neutrality, weakening, proportionality and
resilience. In fact, function 𝑓𝜙 completely disregard the
initial valuation 𝜎0 in graph 𝐺 = ⟨𝒜, 𝜎0,ℛ, 𝜋⟩, for those
arguments having incoming edges (even if their weight is
0). So, for instance, it is not the same, for an argument to
have a support with weight 0 or no support or attack at all:
neutrality does not hold.

A detailed analysis of the properties of this argumen-
tation semantics is left for an extended version of this
work.

7. Back to conditional
interpretations

An interesting question is whether, given a set of possible
labelings Σ = {𝜎1, 𝜎2, . . .} for a weighted argumentation
graph 𝐺, where each labelling 𝜎𝑖 assigns to each argument

a value in the interval [0, 1] with respect to a given seman-
tics, one can define a preferential structure starting from
Σ to evaluate conditional properties of the argumentation
graph. This would allow, for instance, to verify properties
like: "does normally argument 𝐴2 follows from argument
𝐴1 with a degree greater than 0.7?" This query can be
formalized as a fuzzy inclusion T(𝐴1) ⊑ 𝐴2 > 0.7.

In particular, let Σ is a finite set of 𝜙-coherent labelings
𝜎1, 𝜎2, . . . of a weighted graph 𝐺 = ⟨𝒜,ℛ, 𝜋⟩, for some
function 𝜙. One can define a fuzzy multipreference in-
terpretation over Σ by adopting the construction used in
[42] to build a fuzzy multipreference interpretation over
the set of input stimuli of a neural network, where each
input stimulus was associated to a fit vector [50] describ-
ing the activity levels of all units for that input. Here,
each labelling 𝜎𝑖 plays the role of a fit vector and each
argument 𝐴 in 𝒜 can be interpreted as a concept name
of the language. Let 𝑁𝐶 = 𝒜 and 𝑁𝐼 = {𝑥1, 𝑥2, . . .}.
We assume that there is one individual name 𝑥𝑗 in the
language for each labelling 𝜎𝑗 ∈ Σ, and define a fuzzy
multipreference interpretation 𝐼𝐺Σ = ⟨Σ, ·𝐼) as follows:

• for all 𝑥𝑗 ∈ 𝑁𝐼 , 𝑥𝐼
𝑗 = 𝜎𝑗 ;

• for all 𝐴 ∈ 𝑁𝐶 , 𝐴𝐼(𝑥𝐼
𝑗 ) = 𝜎𝑗(𝐴).

The fuzzy ℒ𝒞 interpretation 𝐼𝐺Σ induces a preference rela-
tion <𝐴𝑖 for each argument 𝐴𝑖 ∈ 𝒜. For all 𝜎𝑗 , 𝜎𝑘 ∈ Σ:

𝜎𝑗 <𝐴𝑖 𝜎𝑘 iff 𝐴𝐼
𝑖 (𝑥

𝐼
𝑗 ) > 𝐴𝐼

𝑖 (𝑥
𝐼
𝑘)

iff 𝜎𝑗(𝐴𝑖) > 𝜎𝑗(𝐴𝑖).

Let 𝐾𝐺 be the conditional knowledge base extracted from
the weighted argumentation graph, as follows:

𝐾𝐺 = {(T(𝐴𝑖) ⊑ 𝐴𝑗 , 𝑤𝑗,𝑖) |
(𝐴𝑗 , 𝐴𝑖) ∈ ℛ and 𝑤((𝐴𝑗 , 𝐴𝑖)) = 𝑤𝑗𝑖}

It can be proven that:

Proposition 4. Let Σ be a finite set of 𝜙-coherent la-
belings of a weighted graph 𝐺 = ⟨𝒜,ℛ, 𝜋⟩, for some
function 𝜙 : R → [0, 1]. The following statements hold:

(i) If 𝜙 is a monotonically increasing function and
𝜙 : R → (0, 1], then 𝐼Σ is a coherent (fuzzy)
multipreference model of 𝐾𝐺.

(ii) If 𝜙 is a monotonically non-decreasing function,
then 𝐼Σ is a faithful (fuzzy) multipreference model
of 𝐾𝐺.

The proof of item (i) is similar to the proof of Proposition
1 in [42] (extended version with proofs). The proof of
item (ii) is similar to the proof of Proposition 2 therein.
The restriction to a finite set Σ of 𝜙-coherent labelings is
needed to guarantee the well-foundedness of the resulting
interpretation. In fact, in general, the set of all 𝜙-coherent
labelings of 𝐺 might be infinite and, if Σ is the set of all
𝜙-coherent labelings of 𝐺, there is no guarantee that the
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resulting fuzzy ℒ𝒞FT interpretation is witnessed and the
preference relations <𝐴𝑖 is well-founded.

While this allows (fuzzy) conditional formulas over
arguments to be validated by model checking over a pref-
erential model, whether this approach can be extended to
the other gradual semantics, and under which conditions
on the evaluation method, is subject of future work.

Observe also that, in the conditional semantics in Sec-
tions 3.1 and 4, in a typicality inclusion T(𝐶) ⊑ 𝐷,
concepts 𝐶 and 𝐷 are not required to be concept names,
but they can be complex concepts. In particular, in the
fragment ℒ𝒞 of 𝒜ℒ𝒞 considered in this paper, 𝐷 can be
any boolean combination of concept names. The corre-
spondence between weighted conditionals T(𝐴𝑖) ⊑ 𝐴𝑗

in 𝐾𝐺 and weighted attacks/supports in the argumenta-
tion graph 𝐺, suggests a possible generalization of the
structure of the weighted argumentation graph by allow-
ing attacks/supports by a boolean combination of argu-
ments. The labelling of arguments in the set [0, 1] can
indeed be extended to boolean combinations of arguments
using the fuzzy combination functions, as for boolean
concepts in the conditional semantics (e.g., by letting
𝜎(𝐴1 ∧ 𝐴2) = 𝑚𝑖𝑛{𝜎(𝐴1), 𝜎(𝐴2)}, using the mini-
mum t-norm as in Zadeh fuzzy logic). This also relates to
the work considering “sets of attacking (resp. supporting)
arguments”; i.e., several argument together attacking (or
supporting) an argument. Indeed, for gradual semantics,
the sets of attacking arguments framework (SETAF) has
been studied by Yun and Vesic, by considering “the force
of the set of attacking (resp. supporting) arguments to be
the force of the weakest argument in the set" [60]. This
would correspond to interpret the set of arguments as a
conjunction, using minimum t-norm.

8. Conclusions
In this paper, drawing inspiration from a fuzzy preferen-
tial semantics for weighted conditionals, which has been
introduced for modeling the behavior of Multilayer Per-
ceptrons [42], we develop some semantics for weighted ar-
gumentation graphs, where positive and negative weights
can be associated to pairs of arguments. In particular,
we introduce the notions of coherent/faithful/𝜙-coherent
labelings of a graph, and establish some relationships
among them. While in [42] a deep neural network is
mapped to a weighted conditional knowledge base, a deep
neural network can as well be seen as a weighted argumen-
tation graph, with positive and negative weights, under the
proposed semantics. In this view, 𝜙-coherent labelings
correspond to stationary states in the network (where each
unit in the network is associated to an argument and the
activation value of the unit can be regarded as the weight
of the corresponding argument). This is in agreement
with previous work on the relationship between argumen-

tation frameworks and neural networks, first investigated
by Garcez, et al. [27] and recently by Potyca [57].

The work by Garcez, et al. [27] combines value-based
argumentation frameworks [8] and neural-symbolic learn-
ing systems by providing a translation from argumentation
networks to neural networks with 3 layers (input, output
layer and one hidden layer). This enables the accrual of
arguments through learning as well as the parallel com-
putation of arguments. The work by Potyca [57] con-
siders a quantitative bipolar argumentation frameworks
(QBAFs) similar to [7] and exploits an influence function
based on the logistic function to define an MLP-based
semantics 𝜎MLP for a QBAF: for each argument 𝑎 ∈ 𝒜,
𝜎MLP (𝑎) = lim𝑘→∞ 𝑠

(𝑘)
𝑎 , when the limit exists, and is

undefined otherwise; where 𝑠
(𝑘)
𝑎 is a value in the interval

[0, 1], and 𝑘 represents the iteration. The paper studies
convergence conditions both in the discrete and in the
continuous case, as well as the semantic properties of
MLP-based semantics, and proves that all properties for
the QBAF semantics proposed in [2] are satisfied. As we
have seen in Section 6, our semantics based on 𝜙-coherent
models fails to satisfy some of the properties in [2].

In this work we have investigated the relationships be-
tween 𝜙-coherent labelings and the gradual semantics by
Amgoud and Doder [4], by slightly extending their defini-
tions to deal with positive and negative weights to capture
the strength of supports and of attacks. A correspondence
between the gradual semantics based on a specific eval-
uation method 𝑀𝜙 and 𝜙-coherent labelings has been
established. Differently from the Fuzzy Argumentation
Frameworks by Jenssen et al. [46], where an attack rela-
tion is a fuzzy binary relation over the set of arguments,
here we have considered real-valued weights associated
to pairs of arguments. Our semantics also relates to the
fuzzy extension of rational closure by Casini and Straccia
[22].

The paper discusses an approach for defeasible reason-
ing over a weighted argumentation graph building on 𝜙-
coherent labelings. This allows a multipreference model
to be constructed over a (finite) set of 𝜙-labelling Σ and
allows (fuzzy) conditional formulas over arguments to
be validated over Σ by model checking over a preferen-
tial model. Whether this approach can be extended to
the other gradual semantics, and under which conditions
on the evaluation method, requires further investigation
for future work. The paper also suggests an approach to
deal with attack/supports by a boolean combination of
arguments, by exploiting the fuzzy semantics of weighted
conditionals.

The correspondence between Abstract Dialectical
Frameworks [17] and Nonmonotonic Conditional Logics
has been studied by Heyninck, Kern-Isberner and Thimm
[45], with respect to the two-valued models, the stable,
the preferred semantics and the grounded semantics of
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ADFs. Whether the coherent/faithfull/𝜙-coherent seman-
tics developed in the paper for weighted argumentation
can be reformulated for a (weighted) Abstract Dialecti-
cal Frameworks, and which are the relationships with the
work in [45], also requires investigation for future work.

Undecidability results for fuzzy description logics with
general inclusion axioms (e.g., by Cerami and Straccia
[25] and by Borgwardt and Peñaloza [14]) motivate re-
stricting the logics to finitely valued semantics [15], and
the investigation of decidable approximations of fuzzy
multipreference entailment, under the different seman-
tics. An ASP approach for reasoning under finitely multi-
valued fuzzy semantics for weighterd conditional knowl-
edge bases has been proposed in [43], by exploiting
ASP [33] and asprin [16] for defeasible reasoning with
the concept-wise multipreference entailment under a 𝜙-
coherent semantics. through the computation of preferred
answer sets. As a proof of concept, this approach has been
experimented for checking properties of some trained
Multilayer Perceptrons. A similar investigation is also
of interest for the semantics of weighted argumentation
graphs introduced in this paper, to study its extensions to
the finitely many-valued case.
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