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Abstract
In this paper, we study the effect of preferences in abstract argumentation under a claim-centric perspective. Recent work has

revealed that semantical and computational properties can change when reasoning is performed on claim-level rather than

on the argument-level, while under certain natural restrictions (arguments with the same claims have the same outgoing

attacks) these properties are conserved. We now investigate these effects when, in addition, preferences have to be taken into

account and consider four prominent reductions to handle preferences between arguments. As we shall see, these reductions

give rise to different classes of claim-augmented argumentation frameworks, and behave differently in terms of semantic

properties and computational complexity. This strengthens the view that the actual choice for handling preferences has to

be taken with care.

1. Introduction
Arguments vary in their plausibility. Research in formal

argumentation has taken up this aspect in both quanti-

tative and qualitative terms [1, 2]. Indeed, preferences

are nowadays a standard feature of many structured ar-

gumentation formalisms [3, 4]. At the same time, there

are numerous generalizations of abstract Argumentation

Frameworks (AFs) [5] that consider the impact of pref-

erences on the abstract level, be it in terms of argument

strength [6, 7] or preferences between values [8]. In

Dung AFs in which conflicts are expressed as a binary

relation between arguments (attack relation), the incor-

poration of preferences typically results in the deletion

or reversion of attacks between arguments of different

strength—deciding acceptability of arguments via argu-

mentation semantics is thus reflected in terms of the

modified attack relation [9].

The difference in argument strength and the resulting

modification of the attack relation naturally influences

the acceptability of the arguments’ conclusion (the claim
of the argument). Claim acceptance in argumentation

systems, i.e., the evaluation of commonly acceptable state-

ments while disregarding their particular justifications,

is an integral part of many structured argumentation for-

malisms [10, 11] and has received increasing attention in

the literature [12, 13, 14]. A simple yet powerful general-

ization of Dung AFs that allow for claim-based evaluation

are Claim-augmented AFs (CAFs) [14]. They extend AFs
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by assigning to each argument a claim. Semantics for

CAFs can be obtained by evaluating the underlying AF

before inspecting the claims of the acceptable arguments

in the final step. CAFs serve as an ideal target formalism

for ASPIC+ [10] and other knowledge representation for-

malisms which utilize abstract argumentation semantics

whilst also considering the claims of the arguments in the

evaluation. Thus, CAFs help to streamline the instantia-

tion process by avoiding additional mappings to obtain

semantical correspondence; e.g., in contrast to classi-

cal AF-instantiations of logic programs [15] where ad-

ditional mappings are needed, claim-based semantics of

CAFs capture logic programming semantics without de-

tours [16]. In this way, we obtain a direct correspondence

between the claim-extensions in the CAF and conclusion-

extensions in the original formalism.

Although the acceptance of claims is closely related to

argument-acceptance, there are subtle differences as ob-

served in [14, 17, 10] stemming from the fact that claims

can appear as conclusion of several different arguments.

As a consequence, several properties of AF semantics

such as I-maximality, i.e., ⊆-maximality of extensions,

cannot be taken for granted when considered in terms of

the arguments’ claims [18]. Furthermore, the additional

level of claims causes a rise in the computational com-

plexity of standard decision problems (in particular, veri-

fication is one level higher in the polynomial hierarchy as

for standard AFs), see [14, 19]. Luckily, these drawbacks

can be alleviated by taking fundamental properties of the

attack relation into account: the basic observation that

attacks typically depend on the claim of the attacking

arguments gives rise to the central class of well-formed
CAFs. CAFs from this class require that arguments with

the same claim attack the same arguments, thus model-

ing – on the abstract level – a very natural behavior of

arguments that is common to all leading structured argu-

mentation formalisms and instantiations. Well-formed

27

mailto:mbernrei@dbai.tuwien.ac.at
mailto:dvorak@dbai.tuwien.ac.at
mailto:arapberg@dbai.tuwien.ac.at
mailto:woltran@dbai.tuwien.ac.at
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


CAFs have the main advantage that most of the seman-

tics behave ‘as expected’. For instance, they retain the

fundamental property of I-maximality, and their compu-

tational complexity is located at the same level of the

polynomial hierarchy as for Dung AFs.

Unfortunately, it turns out that well-formedness can-

not be assumed if one deals with preferences in argu-

mentation, as arguments with the same claim are not

necessarily equally plausible. The following example

demonstrates this.

Example 1. Consider two arguments 𝑎, 𝑎′ with claim 𝛼,
and another argument 𝑏 having claim 𝛽. Moreover, both
𝑎 and 𝑎′ attack 𝑏, while 𝑏 attacks 𝑎. Furthermore assume
that we are given the additional information that 𝑏 is pre-
ferred over 𝑎′ (for example, if assumptions in the support
of 𝑏 are stronger than assumptions made by 𝑎′). A com-
mon method to integrate such information on argument
rankings is to delete attacks from arguments that attack
preferred arguments. In this case, we delete the attack from
𝑎′ to 𝑏.

Both frameworks are depicted below: 𝐹 represents the
original situation while 𝐹 ′ is the CAF resulting from delet-
ing the unsuccessful attack from 𝑎′ on the argument 𝑏.

𝐹 : 𝑎

𝛼

𝑏

𝛽

𝑎′

𝛼

𝐹 ′ : 𝑎

𝛼

𝑏

𝛽

𝑎′

𝛼

Note that 𝐹 is well-formed since all arguments with the
same claims attack the same arguments. The unique ac-
ceptable argument-set w.r.t. stable semantics (cf. Defini-
tion 2) is {𝑎, 𝑎′} which translates to {𝛼} on the claim-
level.

The CAF𝐹 ′, on the other hand, is no longer well-formed
since 𝑎′ does not attack 𝑏. In 𝐹 ′, the argument-sets {𝑎, 𝑎′}
and {𝑎, 𝑏} are both acceptable w.r.t. to stable-semantics. In
terms of claims this translates to {𝛼} and {𝛼, 𝛽}, which
shows that I-maximality is violated on the claim-level.

Although well-formedness can not be guaranteed in

view of preferences, this does not imply arbitrary behav-

ior of the resulting CAF: on the one hand, preferences

conform to a certain type of ordering (e.g., asymmetric,

strict, partial, or total orders) over the set of arguments;

on the other hand, it is evident that the deletion, rever-

sion, and other types of attack manipulation impose cer-

tain restrictions on the structure of the resulting CAF.

Combining both aspects, we obtain that, assuming well-

formedness of the initial framework, it is unlikely that

preference incorporation results in arbitrary behavior.

The key motivation of this paper is to identify and ex-

ploit structural properties of preferential argumentation

in the scope of claim acceptance. The aforementioned

restrictions suggest beneficial impact on both the compu-

tational complexity and on desired semantical properties

such as I-maximality.

In this paper, we tackle this issue by considering four

commonly used methods, so-called reductions, to inte-

grate preference orderings into the attack relation: the

most common modification is the deletion of attacks in

case the attacking argument is less preferred than its

target. This method is typically utilized to transform

preference-based argumentation frameworks (PAFs) [20]

into AFs but is also used in many structured argumenta-

tion formalisms such as ASPIC+. This reduction has been

criticized due to several problematic side-effects, e.g., it

can be the case that two conflicting arguments are jointly

acceptable, and has been accordingly adapted in [21]; two

other reductions have been introduced in [9]. We apply

these four preference reductions to well-formed CAFs

with preferences. In particular, our main contributions

are as follows:

• For each of the four reductions, we characterize

the possible structure of CAFs that are obtained

by applying the reduction to a well-formed CAF

and a preference relation. This results in four

novel CAF classes, each of which constitutes a

proper extension of well-formed CAFs but does

not retain the full expressiveness of general CAFs.

We investigate the relationship between these

classes.

• We study I-maximality of stable, preferred, semi-

stable, stage, and naive semantics of the novel

CAF classes. Our results highlight a significant

advantage of a particular reduction: we show that,

for admissible-based semantics, this modification

preserves I-maximality. The other reductions fail

to preserve I-maximality; moreover, for naive and

stage semantics, I-maximality cannot be guaran-

teed for any of the four reductions.

• Finally, we investigate the complexity of reason-

ing for CAFs with preferences with respect to

conflict-free, admissible, complete, and all of the

aforementioned semantics. We show that for

three of the four reductions, the verification prob-

lem drops by one level in the polynomial hierar-

chy for all except complete semantics and is thus

not harder than for well-formed CAFs (which

in turn has the same complexity as the corre-

sponding AF problems). Complete semantics re-

main hard for all but one preference reduction.

Moreover, it turns out that verification for the

reduction which deletes attacks from weaker ar-

guments remains as hard as for general CAFs.

Our results constitute a systematic study of the struc-

tural and computational effect of preferences on claim

acceptance. Since we use CAFs as our base formalism,
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our investigations extend to large classes of formalisms

that can be represented as CAFs, just like results on Dung

AFs yield insights for formalisms that can be captured

by AFs.

2. Preliminaries
We first define (abstract) argumentation frameworks [5].

𝑈 denotes a countable infinite domain of arguments.

Definition 1. An argumentation framework (AF) is a tu-
ple 𝐹 = (𝐴,𝑅) where 𝐴 ⊆ 𝑈 is a finite set of arguments
and 𝑅 ⊆ 𝐴×𝐴 is an attack relation between arguments.
Let 𝐸 ⊆ 𝐴. We say 𝐸 attacks 𝑏 (in 𝐹 ) if (𝑎, 𝑏) ∈ 𝑅 for
some 𝑎 ∈ 𝐸; 𝐸+

𝐹 = {𝑏 ∈ 𝐴 | ∃𝑎 ∈ 𝐸 : (𝑎, 𝑏) ∈ 𝑅} de-
notes the set of arguments attacked by 𝐸. 𝐸⊕

𝐹 = 𝐸 ∪𝐸+
𝐹

is the range of 𝐸 in 𝐹 . An argument 𝑎 ∈ 𝐴 is defended

(in 𝐹 ) by 𝐸 if 𝑏 ∈ 𝐸+
𝐹 for each 𝑏 with (𝑏, 𝑎) ∈ 𝑅.

Given an AF 𝐹 = (𝐴,𝑅) it can be convenient to write

𝑎 ∈ 𝐹 for 𝑎 ∈ 𝐴 and (𝑎, 𝑏) ∈ 𝐹 for (𝑎, 𝑏) ∈ 𝑅. Seman-

tics for AFs are defined as functions 𝜎 which assign to

each AF 𝐹 = (𝐴,𝑅) a set 𝜎(𝐹 ) ⊆ 2𝐴 of extensions. We

consider for 𝜎 the functions cf , adm , com , naive , stb,

prf , sem , and stg which stand for conflict-free, admissi-

ble, complete, naive, stable, preferred, semi-stable, and

stage, respectively [22].

Definition 2. Let 𝐹 = (𝐴,𝑅) be an AF. A set 𝑆 ⊆ 𝐴
is conflict-free (in 𝐹 ), if there are no 𝑎, 𝑏 ∈ 𝑆, such that
(𝑎, 𝑏) ∈ 𝑅. cf (𝐹 ) denotes the collection of conflict-free
sets of 𝐹 . For a conflict-free set 𝑆 ∈ cf (𝐹 ), it holds that

• 𝑆 ∈ adm(𝐹 ) if each 𝑎 ∈ 𝑆 is defended by 𝑆 in 𝐹 ;
• 𝑆 ∈ com(𝐹 ) if 𝑆 ∈ adm(𝐹 ) and each 𝑎 ∈ 𝐴

defended by 𝑆 in 𝐹 is contained in 𝑆;
• 𝑆 ∈ naive(𝐹 ) if there is no 𝑇 ∈ cf (𝐹 ) with
𝑆 ⊂ 𝑇 ;

• 𝑆 ∈ stb(𝐹 ) if each 𝑎 ∈ 𝐴 ∖ 𝑆 is attacked by 𝑆
in 𝐹 ;

• 𝑆 ∈ prf (𝐹 ) if 𝑆 ∈ adm(𝐹 ) and there is no
𝑇 ∈ adm(𝐹 ) with 𝑆 ⊂ 𝑇 ;

• 𝑆 ∈ sem(𝐹 ) if 𝑆 ∈ adm(𝐹 ) and there is no
𝑇 ∈ adm(𝐹 ) with 𝑆⊕

𝐹 ⊂ 𝑇⊕
𝐹 ;

• 𝑆 ∈ stg(𝐹 ) if there is no 𝑇 ∈ cf (𝐹 ) with
𝑆⊕
𝐹 ⊂ 𝑇⊕

𝐹 .

Example 2. Consider the AF 𝐹 = ({𝑎, 𝑎′, 𝑏}, {(𝑎, 𝑏),
(𝑎′, 𝑏), (𝑏, 𝑎)}) from Example 1, ignoring claims 𝛼 and 𝛽.
Then cf (𝐹 ) = {∅, {𝑎}, {𝑎′}, {𝑏}, {𝑎, 𝑎′}}, adm(𝐹 ) =
{∅, {𝑎}, {𝑎′}, {𝑎, 𝑎′}}, naive(𝐹 ) = {{𝑏}, {𝑎, 𝑎′}},
and 𝜎(𝐹 ) = {{𝑎, 𝑎′}} for 𝜎 ∈ {com, stb, prf , sem,
stg}.

CAFs are AFs in which each argument is assigned a

claim, and thus constitute a straightforward generaliza-

tion of AFs [14].

Table 1
I-maximality of CAFs.

naive𝑐 stb𝑐 prf𝑐 sem𝑐 stg𝑐
CAF x x x x x

wfCAF x ✓ ✓ ✓ ✓

Table 2
Complexity of CAFs (Δ ∈ {CAF ,wfCAF}).

𝜎 CredΔ
𝜎 SkeptΔ𝜎 VerCAF

𝜎 VerwfCAF
𝜎

cf in P trivial NP-c in P

adm NP-c trivial NP-c in P

com NP-c P-c NP-c in P

naive in P coNP-c NP-c in P

stb NP-c coNP-c NP-c in P

prf NP-c ΠP
2 -c ΣP

2 -c coNP-c

sem/stg ΣP
2 -c ΠP

2 -c ΣP
2 -c coNP-c

Definition 3. A claim-augmented argumentation frame-
work (CAF) is a triple (𝐴,𝑅, claim) where (𝐴,𝑅) is an
AF and claim : 𝐴 → Claims is a function that maps ar-
guments to claims. The claim-function can be extended to
sets of arguments, i.e., claim(𝐸) = {claim(𝑎) | 𝑎 ∈ 𝐸}.
A well-formed CAF (wfCAF) is a CAF (𝐴,𝑅, claim) in
which all arguments with the same claim attack the same
arguments, i.e., for all 𝑎, 𝑏 ∈ 𝐴 with claim(𝑎) =
claim(𝑏) we have {𝑐 | (𝑎, 𝑐) ∈ 𝑅} = {𝑐 | (𝑏, 𝑐) ∈ 𝑅}.

The semantics of CAFs are based on those of AFs.

Definition 4. Let 𝐹 = (𝐴,𝑅, claim) be a CAF.
The claim-based variant of a semantics 𝜎 is defined as
𝜎𝑐(𝐹 ) = {claim(𝑆) | 𝑆 ∈ 𝜎((𝐴,𝑅))}.

Example 3. Consider the CAF 𝐹 from Example 1. For-
mally, 𝐹 = (𝐴,𝑅, claim) with 𝐴 = {𝑎, 𝑎′, 𝑏}, 𝑅 =
{(𝑎, 𝑏), (𝑎′, 𝑏), (𝑏, 𝑎)}, claim(𝑎) = claim(𝑎′) = 𝛼,
and claim(𝑏) = 𝛽. 𝐹 is well-formed and the under-
lying AF of 𝐹 was investigated in Example 2. From
there we can infer that, e.g., cf𝑐(𝐹 ) = {∅, {𝛼}, {𝛽}},
adm𝑐(𝐹 ) = {∅, {𝛼}}, naive𝑐(𝐹 ) = {{𝛼}, {𝛽}}, and
stb𝑐(𝐹 ) = {{𝛼}}.

Well-known basic relations between different AF se-

mantics 𝜎 also hold for 𝜎𝑐: stb𝑐(𝐹 ) ⊆ sem𝑐(𝐹 ) ⊆
prf 𝑐(𝐹 ) ⊆ adm𝑐(𝐹 ) as well as stb𝑐(𝐹 ) ⊆ stg𝑐(𝐹 ) ⊆
naive𝑐(𝐹 ) ⊆ cf𝑐(𝐹 ) [18].

Note that the semantics 𝜎 ∈ {naive, stb, prf , sem,
stg} employ argument maximization and result in incom-

parable extensions on regular AFs: for all 𝑆, 𝑇 ∈ 𝜎(𝐹 ),
𝑆 ⊆ 𝑇 implies 𝑆 = 𝑇 . This property is referred to as

I-maximality, and is defined analogously for CAFs:

Definition 5. 𝜎𝑐 is I-maximal for a class 𝒞 of CAFs if, for
all CAFs 𝐹 ∈ 𝒞 and all 𝑆, 𝑇 ∈ 𝜎𝑐(𝐹 ), 𝑆 ⊆ 𝑇 implies
𝑆 = 𝑇 .
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𝑎 𝑏 𝐹, 𝑏 ≻ 𝑎 𝑎 𝑏 ℛ1(𝐹 ) 𝑎 𝑏 ℛ2(𝐹 ) 𝑎 𝑏 ℛ3(𝐹 ) 𝑎 𝑏 ℛ4(𝐹 )

𝑎 𝑏 𝐺, 𝑏 ≻ 𝑎 𝑎 𝑏 ℛ1(𝐺) 𝑎 𝑏 ℛ2(𝐺) 𝑎 𝑏 ℛ3(𝐺) 𝑎 𝑏 ℛ4(𝐺)

Figure 1: Effect of the four reductions on the attack relation between two arguments.

Table 1 shows I-maximality properties of CAFs [18],

revealing an important property of wfCAFs compared

to general CAFs: I-maximality is preserved in all seman-

tics except naive𝑐, implying natural behavior of these

maximization-based semantics analogous to regular AFs;

see, e.g., [23] for a general discussion of such properties.

Regarding computational complexity, we consider

the following decision problems pertaining to CAF-

semantics 𝜎𝑐:

• Credulous Acceptance (CredCAF
𝜎 ): Given a CAF

𝐹 and claim 𝛼, is 𝛼 contained in some 𝑆 ∈
𝜎𝑐(𝐹 )?

• Skeptical Acceptance (SkeptCAF
𝜎 ): Given a CAF𝐹

and claim 𝛼, is 𝛼 contained in each 𝑆 ∈ 𝜎𝑐(𝐹 )?

• Verification (VerCAF
𝜎 ): Given a CAF 𝐹 and a set

of claims 𝑆, is 𝑆 ∈ 𝜎𝑐(𝐹 )?

We furthermore consider these reasoning problems re-

stricted to wfCAFs and denote them by CredwfCAF
𝜎 ,

SkeptwfCAF
𝜎 , and VerwfCAF

𝜎 . Table 2 shows the com-

plexity of these problems [14, 19]. Here we see that the

complexity of the verification problem drops by one level

in the polynomial hierarchy when comparing general

CAFs to wfCAFs. This is an important advantage of

wfCAFs, as a lower complexity in the verification prob-

lem allows for a more efficient enumeration of claim-

extensions (cf. [14]).

3. Preference-based CAFs
As discussed in the previous sections, wfCAFs are a natu-

ral subclass of CAFs with advantageous properties in

terms of I-maximality and computational complexity.

However, when resolving preferences among arguments

the resulting CAFs are typically no longer well-formed

(cf. Example 1). In order to study preferences under a

claim-centric view we introduce preference-based CAFs.

These frameworks enrich the notion of wfCAFs with the

concept of argument strength in terms of preferences.

Our main goals are then to understand the effect of re-

solved preferences on the structure of the underlying

wfCAF on the one hand, and to determine whether the

advantages of wfCAFs are maintained on the other hand.

Given this motivation, it is reasonable to consider the

impact of preferences on well-formed CAFs only.

Definition 6. A preference-based claim-augmented ar-
gumentation framework (PCAF) is a quadruple 𝐹 =
(𝐴,𝑅, claim,≻) where (𝐴,𝑅, claim) is a well-formed
CAF and ≻ is an asymmetric preference relation over 𝐴.

Notice that preferences in PCAFs are not required to

be transitive. While transitivity of preferences is often

assumed in argumentation [21, 9], it cannot always be

guaranteed in practice [6]. However, we will consider

the effect of transitive orderings when applicable.

If 𝑎 and 𝑏 are arguments and 𝑎 ≻ 𝑏 holds then we

say that 𝑎 is stronger than 𝑏. But what effect should this

ordering have? How should this influence, e.g., the set of

admissible arguments? One possibility is to remove all

attacks from weaker to stronger arguments in our PCAF,

and to then determine the set of admissible arguments

in the resulting CAF. This altering of attacks in a PCAF

based on its preference-ordering is called a reduction.

The literature describes four such reductions for regu-

lar AFs [9, 24, 21]. Following [9] we next recall these

reductions.

Definition 7. Given a PCAF 𝐹 = (𝐴,𝑅, claim,≻),
a corresponding CAF ℛ𝑖(𝐹 ) = (𝐴,𝑅′, claim) is con-
structed via Reduction 𝑖, where 𝑖 ∈ {1, 2, 3, 4}, as follows:

• 𝑖 = 1: ∀𝑎, 𝑏 ∈ 𝐴 : (𝑎, 𝑏) ∈ 𝑅′ ⇔ (𝑎, 𝑏) ∈ 𝑅,
𝑏 ̸≻ 𝑎

• 𝑖 = 2: ∀𝑎, 𝑏 ∈ 𝐴 : (𝑎, 𝑏) ∈ 𝑅′ ⇔ ((𝑎, 𝑏) ∈ 𝑅,
𝑏 ̸≻ 𝑎) ∨ ((𝑏, 𝑎) ∈ 𝑅, (𝑎, 𝑏) /∈ 𝑅, 𝑎 ≻ 𝑏)

• 𝑖 = 3: ∀𝑎, 𝑏 ∈ 𝐴 : (𝑎, 𝑏) ∈ 𝑅′ ⇔ ((𝑎, 𝑏) ∈ 𝑅,
𝑏 ̸≻ 𝑎) ∨ ((𝑎, 𝑏) ∈ 𝑅, (𝑏, 𝑎) ̸∈ 𝑅)

• 𝑖 = 4: ∀𝑎, 𝑏 ∈ 𝐴 : (𝑎, 𝑏) ∈ 𝑅′ ⇔ ((𝑎, 𝑏) ∈ 𝑅,
𝑏 ̸≻ 𝑎) ∨ ((𝑏, 𝑎) ∈ 𝑅, (𝑎, 𝑏) /∈ 𝑅, 𝑎 ≻ 𝑏) ∨
((𝑎, 𝑏) ∈ 𝑅, (𝑏, 𝑎) ̸∈ 𝑅)

Figure 1 visualizes the above reductions. Intuitively,

Reduction 1 removes attacks that contradict the prefer-

ence ordering while Reduction 2 reverts such attacks. Re-

duction 3 removes attacks that contradict the preference

ordering, but only if the weaker argument is attacked by

the stronger argument also. Reduction 4 can be seen as a

combination of Reductions 2 and 3. Observe that all four

reductions are polynomial time computable with respect

to the input PCAF.

Note that many structured argumentation formalisms

make use of preference-reductions as well. For instance,

ABA+ [4] employs attack reversal similar to Reduction 2
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while some instances of ASPIC [3] delete attacks from

weaker arguments in the spirit of Reduction 1.

The semantics for PCAFs can now be defined in a

straightforward way: first, one of the four reductions

is applied to the given PCAF; then, CAF-semantics are

applied to the resulting CAF.

Definition 8. Let 𝐹 be a PCAF and let 𝑖 ∈ {1, 2, 3, 4}.
The preference-claim-based variant of a semantics 𝜎 rela-
tive to Reduction 𝑖 is defined as 𝜎𝑖

𝑝(𝐹 ) = 𝜎𝑐(ℛ𝑖(𝐹 )).

Example 4. Let 𝐹 = (𝐴,𝑅, claim,≻) be the PCAF
where 𝐴 = {𝑎, 𝑎′, 𝑏}, 𝑅 = {(𝑎, 𝑏), (𝑎′, 𝑏), (𝑏, 𝑎)},
claim(𝑎) = claim(𝑎′) = 𝛼, claim(𝑏) = 𝛽, and 𝑏 ≻ 𝑎′.
The underlying CAF (𝐴,𝑅, claim) of 𝐹 was examined in
Example 3.

ℛ1(𝐹 ) = (𝐴,𝑅′, claim) with 𝑅′ = {(𝑎, 𝑏), (𝑏, 𝑎)},
which is the same CAF as 𝐹 ′ in Example 1. It can be veri-
fied that, e.g., adm1

𝑝(𝐹 ) = adm𝑐(ℛ1(𝐹 )) = {{∅, {𝛼},
{𝛽}, {𝛼, 𝛽}} and stb1𝑝(𝐹 ) = {{𝛼}, {𝛼, 𝛽}}.

Indeed, the choice of reduction can influence the exten-
sions of a PCAF. For example, ℛ2(𝐹 ) = (𝐴,𝑅′′, claim)
with 𝑅′′ = {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑎)}, adm2

𝑝(𝐹 ) = {∅, {𝛼},
{𝛽}}, and stb2𝑝(𝐹 ) = {{𝛼}, {𝛽}}.

It is easy to see that basic relations between seman-

tics carry over from CAFs, as, if we have 𝜎𝑐(𝐹 ) ⊆
𝜏𝑐(𝐹 ) for two semantics 𝜎, 𝜏 and all CAFs 𝐹 , then

also 𝜎𝑖
𝑝(𝐹 ) ⊆ 𝜏 𝑖

𝑝(𝐹 ) for all PCAFs 𝐹 . It thus holds

that for all 𝑖 ∈ {1, 2, 3, 4}, stb𝑖𝑝(𝐹 ) ⊆ sem𝑖
𝑝(𝐹 ) ⊆

prf 𝑖𝑝(𝐹 ) ⊆ adm𝑖
𝑝(𝐹 ) as well as stb𝑖𝑝(𝐹 ) ⊆ stg𝑖

𝑝(𝐹 ) ⊆
naive𝑖

𝑝(𝐹 ) ⊆ cf 𝑖𝑝(𝐹 ).

Remark 1. In this paper we require the underlying CAF
of a PCAF to be well-formed. The reason for this is that we
are interested in whether the benefits of well-formed CAFs
are preserved when preferences have to be taken into ac-
count. Even from a technical perspective, admitting PCAFs
with a non-well-formed underlying CAF is not very inter-
esting with respect to the questions addressed in this pa-
per. Indeed, any CAF could be obtained from such general
PCAFs, regardless of which preference reduction we are us-
ing, by simply specifying the desired CAF and an empty
preference relation. Thus, such general PCAFs have the
same properties regarding I-maximality and complexity as
general CAFs.

4. Characterization &
Expressiveness

Our first step towards understanding the effect of prefer-

ences on wfCAFs is to examine the impact of resolving

preferences on the structure of the underlying CAF. To

this end, we consider four new CAF classes which are

obtained from applying the reductions of Definition 7 to

PCAFs.

𝑎𝛼 𝑏 𝛼 𝑎𝛼 𝑏 𝛼 𝑎𝛼 𝑏 𝛼

Figure 2: CAFs contained only in ℛ1-CAF, ℛ2-CAF, and

ℛ4-CAF respectively. Solid arrows are attacks, dashed ar-

rows indicate where attacks are missing for the CAF to be

well-formed.

Definition 9. ℛ𝑖-CAF denotes the set of CAFs that
can be obtained by applying Reduction 𝑖 to PCAFs, i.e.,
ℛ𝑖-CAF = {ℛ𝑖(𝐹 ) | 𝐹 is a PCAF}.

It is easy to see that ℛ𝑖-CAF, with 𝑖 ∈ {1, 2, 3, 4},

contains all wfCAFs (we can simply specify the desired

wfCAF and an empty preference relation). However,

not all CAFs are contained in ℛ𝑖-CAF. For example,

𝐹 = ({𝑎, 𝑏}, {(𝑎, 𝑏), (𝑏, 𝑎)}, claim) with claim(𝑎) =
claim(𝑏) can not be obtained from a PCAF 𝐹 ′

: such 𝐹 ′

would need to contain either (𝑎, 𝑏) or (𝑏, 𝑎). But then,

since the underlying CAF of a PCAF must be well-formed,

𝐹 ′
would have to contain a self-attack which can not be

removed by any of the reductions. This is enough to con-

clude
1

that the four new classes are located in-between

wfCAFs and general CAFs:

Proposition 1. Let CAF be the set of all CAFs and
wfCAF the set of all wfCAFs. For all 𝑖 ∈ {1, 2, 3, 4}
it holds that wfCAF ⊂ ℛ𝑖-CAF ⊂ CAF.

Furthermore, the new classes are all distinct from each

other, i.e., we are indeed dealing with four new CAF

classes:

Proposition 2. For all 𝑖 ∈ {1, 2, 4} and all 𝑗 ∈
{1, 2, 3, 4} such that 𝑖 ̸= 𝑗 it holds that ℛ𝑖-CAF ̸⊆
ℛ𝑗-CAF and ℛ3-CAF ⊂ ℛ𝑖-CAF.

Proof sketch. Figure 2 shows CAFs that are in only

one of ℛ1-CAF, ℛ2-CAF, and ℛ4-CAF. Consider

the PCAF 𝐹 = ({𝑎, 𝑏}, {(𝑎, 𝑏), (𝑏, 𝑏)}, claim,≻) with

claim(𝑎) = claim(𝑏) = 𝛼 and 𝑏 ≻ 𝑎. Then ℛ1(𝐹 ),
ℛ2(𝐹 ), and ℛ4(𝐹 ) are the CAFs of Figure 2. Since self-

attacks are not removed or introduced by any reduction,

and the underlying CAF must be well-formed, 𝐹 is the

only PCAF from which ℛ1(𝐹 ), ℛ2(𝐹 ), and ℛ4(𝐹 ) can

be obtained. Note that ℛ3(𝐹 ) is simply the underly-

ing CAF of 𝐹 . ℛ3-CAF ⊂ ℛ𝑖-CAF follows by the

fact that if an attack (𝑎, 𝑏) is removed by Reduction 3

from some PCAF 𝐺, then (𝑏, 𝑎) ∈ 𝐺. In this case, all

reductions behave in the same way (cf. Definition 7 or

Figure 1).

1
Although many proof sketches are provided in this text, a preprint

of this paper with full proofs in the appendix can be accessed at

https://arxiv.org/abs/2204.13305.
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While the classes ℛ1-CAF, ℛ2-CAF,

and ℛ4-CAF are incomparable we observe

ℛ3-CAF ⊂ ℛ𝑖-CAF which reflects that Reduc-

tion 3 is the most conservative of the four reductions,

removing attacks only when there is a counter-attack

from the stronger argument.

We now know that applying preferences to wfCAFs

results in four distinct CAF-classes that lie in-between

wfCAFs and general CAFs. It is still unclear, however,

how to determine whether some CAF belongs to one

of these classes or not. Especially for ℛ2-CAF and

ℛ4-CAF this is not straightforward, since Reductions 2

and 4 not only remove but also introduce attacks and

therefore allow for many possibilities to obtain a particu-

lar CAF as result. We tackle this problem by characteriz-

ing the new classes via the so-called wf-problematic part

of a CAF.

Definition 10. A pair of arguments (𝑎, 𝑏) is wf-
problematic in a CAF 𝐹 = (𝐴,𝑅, claim) if 𝑎, 𝑏 ∈ 𝐴,
(𝑎, 𝑏) ̸∈ 𝑅, and there is 𝑎′ ∈ 𝐴 with claim(𝑎′) =
claim(𝑎) and (𝑎′, 𝑏) ∈ 𝑅. The set wfp(𝐹 ) =
{(𝑎, 𝑏) | (𝑎, 𝑏) is wf-problematic in 𝐹} is called the wf-
problematic part of 𝐹 .

Intuitively, the wf-problematic part of a CAF 𝐹 con-

sists of those attacks that are missing for 𝐹 to be well-

formed (cf. Figure 2). Indeed, 𝐹 is a wfCAF if and only if

wfp(𝐹 ) = ∅. The four new classes can be characterized

as follows:

Proposition 3. Let 𝐹 = (𝐴,𝑅, claim) be a CAF. Then

• 𝐹 ∈ ℛ1-CAF iff (𝑎, 𝑏) ∈ wfp(𝐹 ) implies
(𝑏, 𝑎) ̸∈ wfp(𝐹 );

• 𝐹 ∈ ℛ2-CAF iff there are no arguments
𝑎, 𝑎′, 𝑏, 𝑏′ in 𝐹 with claim(𝑎) = claim(𝑎′)
and claim(𝑏) = claim(𝑏′) such that (𝑎, 𝑏) ∈
wfp(𝐹 ), (𝑏, 𝑎) ̸∈ 𝑅, (𝑎′, 𝑏) ∈ 𝑅, and either
(𝑏, 𝑎′) ∈ 𝑅 or ((𝑎′, 𝑏′) ̸∈ 𝑅 and (𝑏′, 𝑎′) ̸∈ 𝑅);

• 𝐹 ∈ ℛ3-CAF iff (𝑎, 𝑏) ∈ wfp(𝐹 ) implies
(𝑏, 𝑎) ∈ 𝑅;

• 𝐹 ∈ ℛ4-CAF iff there are no arguments
𝑎, 𝑎′, 𝑏, 𝑏′ in 𝐹 with claim(𝑎) = claim(𝑎′)
and claim(𝑏) = claim(𝑏′) such that (𝑎, 𝑏) ∈
wfp(𝐹 ), (𝑏, 𝑎) ̸∈ 𝑅, (𝑎′, 𝑏) ∈ 𝑅, and either
(𝑏, 𝑎′) ̸∈ 𝑅 or ((𝑎′, 𝑏′) ̸∈ 𝑅 and (𝑏′, 𝑎′) ̸∈ 𝑅).

Proof sketch. Regarding ℛ1-CAF, observe that Reduc-

tion 1 can only delete but not introduce attacks. If

(𝑎, 𝑏) ∈ wfp(𝐹 ) implies (𝑏, 𝑎) ̸∈ wfp(𝐹 ) then we can

construct a PCAF 𝐹 ′
with 𝑅′ = 𝑅 ∪ {(𝑎, 𝑏) | (𝑎, 𝑏) ∈

wfp(𝐹 )} and 𝑏 ≻ 𝑎 iff (𝑎, 𝑏) ∈ 𝑅′ ∖𝑅. Observe that ≻
is asymmetric. Conversely, a CAF 𝐺 with arguments 𝑎, 𝑏
such that (𝑎, 𝑏) ∈ wfp(𝐺) and (𝑏, 𝑎) ∈ wfp(𝐺) can not

be obtained via Reduction 1 from a PCAF 𝐺′
, since 𝐺′

would have to contain both the attacks (𝑎, 𝑏), (𝑏, 𝑎) as

well as the preferences 𝑏 ≻ 𝑎, 𝑎 ≻ 𝑏. The argument for

ℛ3-CAF is similar.

For ℛ2-CAF, suppose there are 𝑎, 𝑎′, 𝑏 with

claim(𝑎) = claim(𝑎′), (𝑎, 𝑏) ∈ wfp(𝐹 ), (𝑏, 𝑎) ̸∈ 𝑅,

and (𝑎′, 𝑏) ∈ 𝑅. Assume there is a PCAF 𝐹 ′ =
(𝐴,𝑅′, claim,≻) such that ℛ2(𝐹

′) = 𝐹 . Since Reduc-

tion 2 can not completely remove conflicts, (𝑎, 𝑏) ̸∈ 𝑅′

and (𝑏, 𝑎) ̸∈ 𝑅′
. If (𝑏, 𝑎′) ∈ 𝑅, then (𝑎′, 𝑏) ∈ 𝑅′

and (𝑏, 𝑎′) ∈ 𝑅′
since Reduction 2 can not introduce

symmetric attacks. But then (𝐴,𝑅′, claim) is not well-

formed. Now suppose (𝑏, 𝑎′) ̸∈ 𝑅, but there is some

𝑏′ with claim(𝑏) = claim(𝑏′), (𝑎′, 𝑏′) ̸∈ 𝑅, and

(𝑏′, 𝑎′) ̸∈ 𝑅. Then also (𝑎′, 𝑏′) ̸∈ 𝑅′
and (𝑏′, 𝑎′) ̸∈ 𝑅′

.

But since (𝑎′, 𝑏) ∈ 𝑅 we have either (𝑎′, 𝑏) ∈ 𝑅′

or (𝑏, 𝑎′) ∈ 𝑅′
, which means that (𝐴,𝑅′, claim) is

not well-formed. In all other cases we can construct a

PCAF 𝐹 ′′ = (𝐴,𝑅′′, claim,≻) such that ℛ2(𝐹
′′) = 𝐹 :

first revert all attacks (𝑎′, 𝑏) in 𝐹 for which there is

some 𝑎 with claim(𝑎) = claim(𝑎′) and (𝑎, 𝑏) ̸∈ 𝑅,

(𝑏, 𝑎) ̸∈ 𝑅; then, add all remaining pairs (𝑎, 𝑏) that

are still wf-problematic as attacks. Define 𝑏 ≻ 𝑎 iff

(𝑎, 𝑏) ∈ 𝑅′′ ∖ 𝑅. It can be verified that (𝐴,𝑅′′, claim)
is well-formed, ≻ is asymmetric, and ℛ2(𝐹

′′) = 𝐹 . The

argument for ℛ4-CAF is similar.

The above characterizations give us some insights into

the effect of the various reductions on wfCAFs. Indeed,

the similarity between the characterizations of ℛ1-CAF
and ℛ3-CAF, resp. ℛ2-CAF and ℛ4-CAF, can intu-

itively be explained by the fact that Reductions 1 and 3

only remove attacks, while Reductions 2 and 4 can also

introduce attacks. Furthermore, Proposition 3 allows us

to decide in polynomial time whether a given CAF 𝐹
can be obtained by applying one of the four preference

reductions to a PCAF.

But what happens if we restrict ourselves to transitive

preferences? Analogously to ℛ𝑖-CAF, by ℛ𝑖-CAFtr

we denote the set of CAFs obtained by applying Re-

duction 𝑖 to PCAFs with a transitive preference rela-

tion. It is clear that ℛ𝑖-CAFtr ⊆ ℛ𝑖-CAF for all

𝑖 ∈ {1, 2, 3, 4}. Interestingly, the relationship be-

tween the classes ℛ𝑖-CAFtr is different to that between

ℛ𝑖-CAF (Proposition 2). Specifically, ℛ3-CAFtr is

not contained in the other classes. Intuitively, this is be-

cause, in certain PCAFs 𝐹 , transitivity can force 𝑎1 ≻ 𝑎𝑛

via 𝑎1 ≻ 𝑎2 ≻ . . . ≻ 𝑎𝑛 such that (𝑎𝑛, 𝑎1) ∈ 𝐹 but

(𝑎1, 𝑎𝑛) ̸∈ 𝐹 . In this case, only Reduction 3 leaves the

attacks between 𝑎1 and 𝑎𝑛 unchanged.

Proposition 4. For all 𝑖, 𝑗 ∈ {1, 2, 3, 4} such that 𝑖 ̸= 𝑗
it holds that ℛ𝑖-CAFtr ̸⊆ ℛ𝑗-CAFtr .

We will not characterize all four classes ℛ𝑖-CAFtr .

However, capturing ℛ1-CAFtr will prove useful when

analyzing the computational complexity of PCAFs using
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Reduction 1 (see Section 6). Note that wfp(𝐹 ) can be

seen as a directed graph, with an edge between vertices

𝑎 and 𝑏 whenever (𝑎, 𝑏) ∈ wfp(𝐹 ). Thus, we may use

notions such as paths and cycles in the wf-problematic

part of a CAF.

Proposition 5. 𝐹 ∈ ℛ1-CAFtr for a CAF 𝐹 if and
only if (1) wfp(𝐹 ) is acyclic and (2) (𝑎, 𝑏) ∈ 𝐹 implies
that there is no path from 𝑎 to 𝑏 in wfp(𝐹 ).

Proof sketch. Assume there is a cycle (𝑎1, . . . , 𝑎𝑛, 𝑎1) in

wfp(𝐹 ). Then, since Reduction 1 can not introduce at-

tacks, if there is a PCAF 𝐹 ′
such that ℛ1(𝐹

′) = 𝐹 ,

we have (𝑎1, 𝑎2), . . . , (𝑎𝑛, 𝑎1) ∈ 𝐹 ′
. This implies

𝑎1 ≻ 𝑎𝑛 ≻ 𝑎𝑛−1 ≻ · · · ≻ 𝑎1, i.e., ≻ is not asymmet-

ric. Similarly, if there is a path (𝑎1, . . . , 𝑎𝑛) in wfp(𝐹 )
we have to define 𝑎𝑛 ≻ · · · ≻ 𝑎1 in 𝐹 ′

. But then

(𝑎1, 𝑎𝑛) ̸∈ ℛ1(𝐹
′).

If wfp(𝐹 ) is acyclic and there is no path from 𝑎 to 𝑏
in wfp(𝐹 ) such that (𝑎, 𝑏) ∈ 𝐹 , then we can construct

a PCAF 𝐹 ′
such that ℛ1(𝐹

′) = 𝐹 in the same way as

when ≻ is not transitive (cf. proof of Proposition 3).

From the high-level point of view, our characterization

results yield insights into the expressiveness of argumen-

tation formalisms that allow for preferences. Proposi-

tions 3 and 5 show which situations can be captured

by formalisms which (i) constructs attacks based on the

claim of the attacking argument (i.e., formalisms with

well-formed attack relation) and (ii) incorporate asym-

metric or transitive preference relations on arguments

using one of the four reductions.

5. I-Maximality
One of the advantages of wfCAFs over general

CAFs is that they preserve I-maximality under most

maximization-based semantics (cf. Table 1), which leads

to more intuitive behavior of these semantics when con-

sidering extensions on the claim-level. We now investi-

gate whether these advantages are preserved when pref-

erences are introduced.

Definition 11. 𝜎𝑖
𝑝 is I-maximal for a class 𝒞 of PCAFs

if, for all 𝐹 in 𝒞 and all 𝑆, 𝑇 ∈ 𝜎𝑖
𝑝(𝐹 ), 𝑆 ⊆ 𝑇 implies

𝑆 = 𝑇 .

From known properties of wfCAFs (cf. Table 1) it fol-

lows directly that naive𝑖
𝑝 is not I-maximal for PCAFs.

It remains to investigate the I-maximality of prf 𝑖𝑝, stb𝑖𝑝,

sem𝑖
𝑝, and stg𝑖

𝑝 for PCAFs. For convenience, given a

CAF 𝐹 = (𝐴,𝑅, claim) and 𝐸 ⊆ 𝐴, we sometimes

write 𝐸 ∈ 𝜎(𝐹 ) for 𝐸 ∈ 𝜎((𝐴,𝑅)).

Lemma 6. Let 𝐹 = (𝐴,𝑅, claim,≻) be a PCAF
and 𝐸 ⊆ 𝐴. 𝐸 ∈ cf (ℛ𝑖(𝐹 )) if and only if 𝐸 ∈
cf ((𝐴,𝑅, claim)) for 𝑖 ∈ {2, 3, 4}.

𝑎𝛼

𝑎′

𝛼

𝑏𝛽

𝑐𝛾

𝑎𝛼

𝑎′ 𝛼𝑏𝛽

𝑏′ 𝛽

𝑎′′ 𝛼

Figure 3: CAFs used as counter examples for I-maximality (cf.

Proposition 8 and 9). Dashed arrows are edges in wfp(𝐹 ).

In other words, Reductions 2, 3, and 4 preserve conflict-

freeness. It is easy to see that this is not the case for

Reduction 1. In fact, Reduction 1 has been deemed prob-

lematic for exactly this reason when applied to regular

AFs [21], although it is still discussed and considered

in the literature alongside the other reductions [6]. We

first consider Reduction 3, and show that it preserves

I-maximality for some, but not all, semantics.

Proposition 7. prf 3𝑝, stb3𝑝, and sem3
𝑝 are I-maximal for

PCAFs.

Proof. By stb3𝑝(𝐹 ) ⊆ sem3
𝑝(𝐹 ) ⊆ prf 3𝑝(𝐹 ) it suffices to

consider prf 3𝑝. Towards a contradiction, assume there is a

PCAF 𝐹 = (𝐴,𝑅, claim,≻) such that 𝑆 ⊂ 𝑇 for some

𝑆, 𝑇 ∈ prf 3𝑝(𝐹 ). Then there are 𝑆′, 𝑇 ′ ⊆ 𝐴 such that

𝑆′ ∈ prf (ℛ3(𝐹 )), claim(𝑆′) = 𝑆, 𝑇 ′ ∈ prf (ℛ3(𝐹 )),
and claim(𝑇 ′) = 𝑇 . 𝑆′ ̸⊆ 𝑇 ′

since 𝑆′ ∈ prf (ℛ3(𝐹 )).
Thus, there is 𝑥 ∈ 𝑆′

such that 𝑥 ̸∈ 𝑇 ′
. But claim(𝑥) ∈

𝑇 , i.e., there is 𝑥′ ∈ 𝑇 ′
with claim(𝑥′) = claim(𝑥).

There are two possibilities for why 𝑥 ̸∈ 𝑇 ′
.

Case 1: 𝑇 ′ ∪ {𝑥} ̸∈ cf (ℛ3(𝐹 )), i.e., there exists

𝑦 ∈ 𝑇 ′
such that 𝑦 ̸∈ 𝑆′

and either (𝑥, 𝑦) ∈ 𝐹 or

(𝑦, 𝑥) ∈ 𝐹 . In fact, (𝑥, 𝑦) ̸∈ 𝐹 : otherwise, by the

well-formedness of (𝐴,𝑅, claim), we have (𝑥′, 𝑦) ∈ 𝐹
and, by Lemma 6, 𝑇 ′ ̸∈ cf (ℛ3(𝐹 )). Thus, (𝑦, 𝑥) ∈ 𝐹 .

By the definition of Reduction 3, (𝑦, 𝑥) ∈ ℛ3(𝐹 ). 𝑆′

must defend 𝑥 in ℛ3(𝐹 ), i.e., there exists 𝑧 ∈ 𝑆′
such

that (𝑧, 𝑦) ∈ ℛ3(𝐹 ). Then (𝑧, 𝑦) ∈ 𝐹 . Since 𝑆 ⊂ 𝑇
there exists 𝑧′ ∈ 𝑇 ′

such that claim(𝑧′) = claim(𝑧).
(𝑧′, 𝑦) ∈ 𝐹 by the well-formedness of (𝐴,𝑅, claim).
But then 𝑇 ′ ̸∈ cf (ℛ3(𝐹 )). Contradiction.

Case 2: 𝑥 is not defended by 𝑇 ′
, i.e., there exists 𝑦 ∈ 𝐴

that is not attacked by 𝑇 ′
and such that (𝑦, 𝑥) ∈ ℛ3(𝐹 ).

By the same argument as above, there is 𝑧′ ∈ 𝑇 ′
with

(𝑧′, 𝑦) ∈ 𝐹 . It cannot be that (𝑧′, 𝑦) ∈ ℛ3(𝐹 ), i.e.,

𝑦 ≻ 𝑧′. By the definition of Reduction 3, (𝑦, 𝑧′) ∈ 𝐹
and thus (𝑦, 𝑧′) ∈ ℛ3(𝐹 ). But then 𝑇 ′ ̸∈ adm(ℛ3(𝐹 )).
Contradiction.

Of course, positive results regarding the I-maximality

of PCAFs with arbitrary preferences, such as in the above

proposition, still hold for PCAFs with transitive prefer-

ence orderings. Conversely, for negative results, it suf-

fices to show that I-maximality is not preserved on tran-

sitive orderings to obtain results for the more general

case.
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Table 3
I-maximality of PCAFs. Results also hold when considering

only PCAFs with transitive preferences.

naive𝑖𝑝 stb𝑖𝑝 prf 𝑖𝑝 sem𝑖
𝑝 stg𝑖𝑝

𝑖∈{1, 2, 4} x x x x x

𝑖=3 x ✓ ✓ ✓ x

Proposition 8. stg3
𝑝 is not I-maximal for PCAFs, even

when considering only transitive preferences.

Proof sketch. Let 𝐹 be the CAF shown on the left

in Figure 3. Observe that 𝐹 ∈ ℛ3-CAFtr since

ℛ3(𝐹
′) = 𝐹 for the PCAF 𝐹 ′

with the same argu-

ments as 𝐹 , attacks {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎), (𝑎′, 𝑏), (𝑏, 𝑎′)}
and 𝑏 ≻ 𝑎′

. Moreover, it can be verified that stg3
𝑝(𝐹

′) =
{{𝛼}, {𝛼, 𝛾}, {𝛽}}.

In contrast to Reduction 3, under Reductions 1, 2, and 4

we lose I-maximality for all semantics.

Proposition 9. 𝜎𝑖
𝑝, with 𝜎 ∈ {prf , stb, sem, stg} and

𝑖 ∈ {1, 2, 4}, is not I-maximal for PCAFs, even when con-
sidering only transitive preferences.

Proof sketch. We only need to show this for stb𝑖𝑝 since

stb𝑖𝑝(𝐹 ) ⊆ sem𝑖
𝑝(𝐹 ) ⊆ prf 𝑖𝑝(𝐹 ) and stb𝑖𝑝(𝐹 ) ⊆

stg𝑖
𝑝(𝐹 ).

For 𝑖 ∈ {1, 4}, consider 𝐹 ′
from Example 1. 𝐹 ′ ∈

ℛ1-CAFtr by Proposition 5, and 𝐹 ′ ∈ ℛ4-CAFtr

since ℛ4(𝐹 ) = 𝐹 for 𝐹 = ({𝑎, 𝑎′, 𝑏}, {(𝑏, 𝑎)},
claim,≻) with 𝑎 ≻ 𝑏. It can be verified that stb𝑐(𝐹

′) =
{{𝛼}, {𝛼, 𝛽}}.

For 𝑖 = 2, let 𝐺 be the CAF shown on the right in

Figure 3. 𝐺 ∈ ℛ2-CAFtr since ℛ2(𝐺
′) = 𝐺 for the

PCAF 𝐺′
with attacks {(𝑏, 𝑎), (𝑏, 𝑎′), (𝑏′, 𝑎), (𝑏′, 𝑎′)}

and preferences 𝑎 ≻ 𝑏 and 𝑎′ ≻ 𝑏′. stb𝑐(𝐺) =
{{𝛼}, {𝛼, 𝛽}}.

Table 3 summarizes our I-maximality results. Reduc-

tion 3 manages to preserve I-maximality in most cases. It

is also the most conservative of the reductions, preserving

conflict-freeness and not adding new attacks. Interest-

ingly, the other three reductions lose I-maximality for all
semantics.

6. Computational Complexity
In this section, we investigate the impact of preferences

on the computational complexity of claim-based rea-

soning. To this end, we adapt the decision problems

introduced in Section 2 to PCAFs as follows: given

a preference Reduction 𝑖 ∈ {1, 2, 3, 4}, we define

CredPCAF
𝜎,𝑖 , SkeptPCAF

𝜎,𝑖 , and VerPCAF
𝜎,𝑖 analogously to

CredCAF
𝜎 , SkeptCAF

𝜎 , and VerCAF
𝜎 , except that we take

𝑎𝐹

𝑎

𝑎𝑇

𝑎

𝑏𝐹

𝑏

𝑏𝑇

𝑏

𝑐𝐹

𝑐

𝑐𝑇

𝑐

𝑎1

1

𝑎2

2

𝑎3

3

𝑏1

1

𝑏2

2

𝑏4

4

𝑐3

3

𝑐4

4

Figure 4: Reduction of 3-Sat-instance 𝐶1 = {𝑎, 𝑏, 𝑐}, 𝐶2 =
{¬𝑎,¬𝑏}, 𝐶3 = {¬𝑎, 𝑐}, 𝐶4 = {𝑏,¬𝑐}, to an instance

(𝐹, 𝑆) of VerPCAF
cf ,1 (cf. Proof of Proposition 10). Dashed ar-

rows are attacks deleted in ℛ1(𝐹 ), i.e., they are edges in

wfp(ℛ1(𝐹 )).

a PCAF instead of a CAF as input and appeal to the

𝜎𝑖
𝑝 semantics instead of the 𝜎𝑐 semantics. Member-

ship results for PCAFs can be inferred from results

for general CAFs (recall that the preference reductions

from PCAFs to the respective CAF class can be done

in polynomial time), and hardness results from results

for wfCAFs. Thus, the complexity of credulous and

skeptical acceptance follows immediately from known

results for CAFs and wfCAFs: given 𝑖 ∈ {1, 2, 3, 4}
and 𝜎 ∈ {cf , adm, com,naive, stb, prf , sem, stg}, the

problemsCredPCAF
𝜎,𝑖 andSkeptPCAF

𝜎,𝑖 have the same com-

plexity as CredwfCAF
𝜎 and SkeptwfCAF

𝜎 respectively (cf.

Table 2).

The computational complexity of the verification prob-

lem, on the other hand, is one level higher for general

CAFs when compared to wfCAFs (cf. Table 2), i.e., the

bounds that existing results yield for PCAFs are not tight.

In the following, we examine the complexity ofVerPCAF
𝜎,𝑖

for each of the considered reductions and semantics. Let

us first consider Reduction 1.

Proposition 10. VerPCAF
𝜎,1 is NP-complete for 𝜎 ∈ {cf ,

naive}, even for transitive preferences.

Proof sketch. NP-membership follows from known re-

sults for general CAFs. NP-hardness: let 𝜙 be an arbi-

trary instance of 3-Sat given as a set {𝐶1, . . . , 𝐶𝑚} of

clauses over variables 𝑋 . We construct a PCAF 𝐹 =
(𝐴,𝑅, claim,≻) and a set of claims 𝑆 = {1, . . . ,𝑚} ∪
𝑋 as follows:

• 𝐴 = 𝑉 ∪ 𝑉 ∪𝐻 where

𝑉 = {𝑥𝑖 | 𝑥 ∈ 𝐶𝑖, 1 ≤ 𝑖 ≤ 𝑚},

𝑉 = {𝑥𝑖 | ¬𝑥 ∈ 𝐶𝑖, 1 ≤ 𝑖 ≤ 𝑚}, and

𝐻 = {𝑥𝑇 , 𝑥𝐹 | 𝑥 ∈ 𝑋};

• 𝑅 = {(𝑥𝑇 , 𝑥𝑖), (𝑥𝐹 , 𝑥𝑖) | 𝑥𝑖 ∈ 𝑉 } ∪
{(𝑥𝑇 , 𝑥𝑖), (𝑥𝐹 , 𝑥𝑖) | 𝑥𝑖 ∈ 𝑉 };

• claim(𝑥𝑖) = claim(𝑥𝑖) = 𝑖 for 𝑥𝑖, 𝑥𝑖 ∈ 𝑉 ∪ 𝑉 ,

claim(𝑥𝑇 ) = claim(𝑥𝐹 ) = 𝑥 for 𝑥 ∈ 𝑋 ;

• 𝑥𝑖 ≻ 𝑥𝑇 for all 𝑥𝑖 ∈ 𝑉 and 𝑥𝑖 ≻ 𝑥𝐹 for all

𝑥𝑖 ∈ 𝑉 .
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Figure 4 illustrates the above construction. It can be

verified that 𝜙 is satisfiable if and only if 𝑆 ∈ cf 1𝑝(𝐹 ).

The same can be shown for naive1
𝑝. Informally, the set

𝑆 forces us to have, for each 𝑥 ∈ 𝑋 , 𝑥𝑇 or 𝑥𝐹 in 𝑆
thus simulating a guess for an interpretation. Due to the

removed attacks all corresponding occurrences 𝑥𝑖 (resp.

𝑥𝑖) can be added to 𝑆 without conflict. Now it amounts

to check whether these occurrences cover all 𝑖, i.e., make

all clauses true under the actual guess.

Note that the “trick” in above construction to guess

an interpretation does not work for admissible-based

semantics, since the occurrences of 𝑥𝑖 resp. 𝑥𝑖 in 𝑆 would

remain undefended. Indeed, we need a more involved

construction next.

Proposition 11. VerPCAF
𝜎,1 is NP-complete for 𝜎 ∈

{stb, adm, com}, even for transitive preferences.

Proof sketch. We show NP-hardness. Let 𝜙 be a 3-Sat-

instance given as a set {𝐶1, . . . , 𝐶𝑚} of clauses over

variables 𝑋 . For convenience, we directly construct a

CAF 𝐹 = (𝐴,𝑅, claim) with 𝐹 ∈ ℛ1-CAFtr instead

of providing a PCAF 𝐹 ′
such that ℛ1(𝐹

′) = 𝐹 . This

is legitimate, as, by our characterization of ℛ1-CAFtr

(see Proposition 5), we can obtain 𝐹 ′
by simply adding

all edges in wfp(𝐹 ) to 𝑅 and defining ≻ accordingly.

• 𝐴 = 𝑉 ∪ 𝑉 ∪𝐻 where

𝑉 = {𝑥𝑖 | 𝑥 ∈ 𝐶𝑖, 1 ≤ 𝑖 ≤ 𝑚},

𝑉 = {𝑥𝑖 | ¬𝑥 ∈ 𝐶𝑖, 1 ≤ 𝑖 ≤ 𝑚}, and

𝐻 = {𝑥𝑘
𝑖,𝑗 , 𝑥̂

𝑘
𝑖,𝑗 | 1 ≤ 𝑘 ≤ 4, 𝑥𝑖 ∈ 𝑉, 𝑥𝑗 ∈ 𝑉 };

• 𝑅 = {(𝑥𝑖, 𝑥
1
𝑖,𝑗), (𝑥

1
𝑖,𝑗 , 𝑥

2
𝑖,𝑗), (𝑥

2
𝑖,𝑗 , 𝑥𝑗), (𝑥𝑗 , 𝑥

3
𝑖,𝑗),

(𝑥3
𝑖,𝑗 , 𝑥

4
𝑖,𝑗), (𝑥

4
𝑖,𝑗 , 𝑥𝑖) | 𝑥𝑖 ∈ 𝑉, 𝑥𝑗 ∈ 𝑉 };

• claim(𝑥𝑖) = claim(𝑥𝑖) = 𝑖 for all 𝑥𝑖, 𝑥𝑖,

claim(𝑥𝑘
𝑖,𝑗) = claim(𝑥̂𝑘

𝑖,𝑗) = 𝑥𝑘
𝑖,𝑗 for all

𝑥𝑘
𝑖,𝑗 , 𝑥̂

𝑘
𝑖,𝑗 .

For verification consider the set 𝑆 = {1, . . . ,𝑚} ∪
{claim(𝑎) | 𝑎 ∈ 𝐻}. Figure 5 illustrates the above

construction. It can be verified that (1) 𝐹 ∈ ℛ1-CAFtr ;

(2) 𝜙 is satisfiable iff 𝑆 ∈ stb𝑐(𝐹 ). Likewise for adm𝑐

and com𝑐. Intuitively, for each 𝑥𝑖, 𝑥𝑗 , the helper argu-

ments 𝑥𝑘
𝑖,𝑗 and the corresponding cycle ensures that only

one of 𝑥𝑖, 𝑥𝑗 can be chosen. Note that 𝑥𝑖 and 𝑥𝑗 must not

attack each other directly because of well-formedness in

the original CAF.

In fact, when applying Reduction 1, we lose the advan-

tages of wfCAFs for all investigated semantics, since also

for the remaining semantics verification remains harder

than in the case of wfCAFs.

Proposition 12. VerPCAF
𝜎,1 is ΣP

2 -complete for 𝜎 ∈
{prf , sem, stg}, even for transitive preferences.
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Figure 5: Reduction of 3-Sat-instance 𝐶1 = {𝑎}, 𝐶2 =
{¬𝑎, 𝑏}, 𝐶3 = {¬𝑏, 𝑐}, to an instance (𝐹 ′, 𝑆) of VerPCAF

stb,1
(cf. Proof of Proposition 11). Dashed arrows are attacks

deleted from 𝐹 ′
, i.e., they are edges in wfp(ℛ1(𝐹 ′)).

The proposition can be proven by adapting the stan-

dard translation for skeptical acceptance of preferred-

semantics [25, Reduction 3.7].

We now turn our attention to Reductions 2, 3, and 4.

Since these reductions do not remove conflicts between

arguments, it is easy to see that verification for conflict-

free and naive semantics remains tractable.

Proposition 13. VerPCAF
𝜎,𝑖∈{2,3,4} is in P for 𝜎 ∈ {cf ,

naive}.

Proof sketch. By Lemma 6, given a PCAF 𝐹 , it suffices to

test if 𝐶 is conflict-free (resp. naive) in the underlying

CAF of 𝐹 . This problem is in P for wfCAFs (cf. Table 2).

As it turns out, with Reductions 2, 3, and 4 we retain

the benefits of wfCAFs over general CAFs for almost

all investigated semantics with respect to computational

complexity. In short, verification for wfCAFs is easier

than on general CAFs because, given a wfCAF 𝐹 and a

set of claims 𝐶 , a set of arguments 𝑆 can be constructed

in polynomial time such that 𝑆 is the unique maximal ad-

missible set in 𝐹 with claim claim(𝑆) = 𝐶 [14]. Making

use of the fact that Reductions 2, 3, and 4 do not alter con-

flicts between arguments, we can construct such a max-

imal set of arguments also for PCAFs: given a PCAF 𝐹
and set 𝐶 of claims, we define the set 𝐸0(𝐶) containing

all arguments of 𝐹 with a claim in 𝐶 ; the set 𝐸𝑖
1(𝐶) is ob-

tained from 𝐸0(𝐶) by removing all arguments attacked

by 𝐸0(𝐶) in the underlying CAF of 𝐹 ; finally, the set

𝐸𝑖
*(𝐶) is obtained by repeatedly removing all arguments

not defended by 𝐸𝑖
1(𝐶) in ℛ𝑖(𝐹 ) until a fixed point is

reached. Recall that 𝑆+
(𝐴,𝑅) = {𝑎 | (𝑏, 𝑎) ∈ 𝑅, 𝑏 ∈ 𝑆}

denotes the arguments attacked by 𝑆 in (𝐴,𝑅).
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Definition 12. Given a PCAF 𝐹 = (𝐴,𝑅, claim,≻), a
set of claims 𝐶 , and 𝑖 ∈ {2, 3, 4}, we define

𝐸0(𝐶) ={𝑎 ∈ 𝐴 | claim(𝑎) ∈ 𝐶};

𝐸𝑖
1(𝐶) =𝐸0(𝐶) ∖ 𝐸0(𝐶)+(𝐴,𝑅);

𝐸𝑖
𝑘(𝐶) ={𝑥 ∈ 𝐸𝑖

𝑘−1(𝐶) | 𝑥 is defended by 𝐸𝑖
𝑘−1(𝐶)

in ℛ𝑖(𝐹 )} for 𝑘 ≥ 2;

𝐸𝑖
*(𝐶) =𝐸𝑖

𝑘 for 𝑘 ≥ 2 such that 𝐸𝑖
𝑘(𝐶) = 𝐸𝑖

𝑘−1(𝐶).

The above definition is based on [14, Definition 5], but

with the crucial differences that undefended arguments

are (a) computed w.r.t. ℛ𝑖(𝐹 ) and (b) are iteratively re-

moved until a fixed point is reached.

For conflict-free based semantics we observe that the

conflicts are not affected by the reductions and thus

one can use existing results for well-formed CAFs [14,

Lemma 1] to obtain that 𝐸𝑖
1(𝐶) is the unique candidate

for the maximal conflict-free set of arguments that real-

izes the claim set 𝐶 .

Lemma 14. Let 𝐹 be a PCAF, 𝐶 be a set of claims
and 𝑖 ∈ {2, 3, 4}. We have that 𝐶 ∈ cf 𝑖𝑝(𝐹 ) iff
claim(𝐸𝑖

1(𝐶)) = 𝐶 . Moreover, if 𝐶 ∈ cf 𝑖𝑝(𝐹 ) then
𝐸𝑖

1(𝐶) is the unique maximal conflict-free set 𝑆 in ℛ𝑖(𝐹 )
such that claim(𝑆)=𝐶 .

Regarding admissible semantics we are looking for

a conflict-free set that defends all its arguments. Thus

we start from the conflict-free set 𝐸𝑖
1(𝐶). Notice that

arguments that are not in 𝐸𝑖
1(𝐶) cannot be contained

in any admissible set 𝑆 with claim(𝑆) = 𝐶 . We can

then obtain the maximal admissible set realizing 𝐶 in

ℛ𝑖(𝐹 ) by iteratively removing arguments that are not

defended by the current set of arguments. Once we reach

a fixed-point we have an admissible set, but need to check

whether we still cover all the claims of 𝐶 .

Lemma 15. Let 𝐹 be a PCAF, 𝐶 be a set of claims
and 𝑖 ∈ {2, 3, 4}. We have that 𝐶 ∈ adm𝑖

𝑝(𝐹 ) iff
claim(𝐸𝑖

*(𝐶)) = 𝐶 . Moreover, if 𝐶 ∈ adm𝑖
𝑝(𝐹 ) then

𝐸𝑖
*(𝐶) is the unique maximal admissible set 𝑆 in ℛ𝑖(𝐹 )

such that claim(𝑆)=𝐶 .

By computing the maximal conflict-free (resp. admis-

sible) extensions 𝐸𝑖
1(𝐶) (resp. 𝐸𝑖

*(𝐶)) for a set of claims

𝐶 , the verification problem becomes easier for most se-

mantics.

Proposition 16. VerPCAF
𝜎,𝑖∈{2,3,4} is in P for

𝜎 ∈ {adm, stb}. It is coNP-complete for
𝜎 ∈ {prf , sem, stg}, even when considering only
transitive preferences.

Proof sketch. Let 𝐹 = (𝐴,𝑅, claim,≻) be a PCAF, let

𝐶 be a set of claims, and let 𝑖 ∈ {2, 3, 4}. We can com-

pute ℛ𝑖(𝐹 ), 𝐸𝑖
1(𝐶), and 𝐸𝑖

*(𝐶) in polynomial time.
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Figure 6: ℛ4(𝐹 ) from the proof of Proposition 17, 𝜙 = ((𝑎∨
𝑏)∧ (¬𝑎∨¬𝑏)). Symmetric attacks drawn in gray and thick

have been introduced by Reduction 4.

For adm , by Lemma 15, it suffices to test whether

claim(𝐸𝑖
*(𝐶)) = 𝐶 . For stb, we first check whether

𝐶 ∈ adm𝑖
𝑝(𝐹 ). If not, 𝐶 ̸∈ stb𝑖𝑝(𝐹 ). If yes, then, by

Lemma 15, claim(𝐸𝑖
*(𝐶)) = 𝐶 . We can check in poly-

nomial time if 𝐸𝑖
*(𝐶) ∈ stb(ℛ𝑖(𝐹 )). If yes, we are done.

If no, then there is an argument 𝑥 that is not in𝐸𝑖
*(𝐶) but

is also not attacked by 𝐸𝑖
*(𝐶) in ℛ𝑖(𝐹 ). Moreover, there

can be no other 𝑆 ∈ stb(ℛ𝑖(𝐹 )) with claim(𝑆) = 𝐶
since for any such 𝑆 we would have 𝑆 ⊆ 𝐸𝑖

*(𝐶), which

would imply that 𝑆 does not attack 𝑥 and that 𝑥 ̸∈ 𝑆.

The arguments for 𝜎 ∈ {prf , sem, stg} are similar,

but some checks require coNP-time.

For complete semantics, only Reduction 3 retains the

benefits of wfCAFs. Here, the fact that Reductions 2
and 4 can introduce new attacks leads to an increase in

complexity.

Proposition 17. VerPCAF
com,3 is in P. VerPCAF

com,𝑖∈{2,4} is
NP-complete, even for transitive preferences.

Proof sketch. P-membership for VerPCAF
com,3 is similar to

the proof of Proposition 16. We demonstrate NP-

hardness of VerPCAF
com,4 . Let 𝜙 be an arbitrary instance

of 3-Sat given as a set 𝐶 of clauses over variables 𝑋
and let 𝑋 = {𝑥 | 𝑥 ∈ 𝑋}. We construct a PCAF 𝐹 =
(𝐴,𝑅, claim,≻) as well as a set of claims 𝑆 = 𝑋 ∪{𝜙}:

• 𝐴 = {𝜙} ∪ 𝐶 ∪𝑋 ∪𝑋 ∪
{𝑑𝑥 | 𝑥 ∈ 𝑋} ∪ {𝑑′𝑥 | 𝑥 ∈ 𝑋 ∪𝑋};

• 𝑅 = {(𝑐, 𝜙) | 𝑐 ∈ 𝐶} ∪ {(𝑐, 𝑐) | 𝑐 ∈ 𝐶} ∪
{(𝑐, 𝑥) | 𝑥 ∈ 𝑐, 𝑐 ∈ 𝐶} ∪
{(𝑐, 𝑥) | ¬𝑥 ∈ 𝑐, 𝑐 ∈ 𝐶} ∪
{(𝑑′𝑥, 𝑥) | 𝑥∈𝑋 ∪𝑋} ∪
{(𝑑′𝑥, 𝑑𝑥), (𝑑′𝑥, 𝑑𝑥) | 𝑥∈𝑋};

• claim(𝑥) = claim(𝑥) = 𝑥 for 𝑥 ∈ 𝑋 ,

claim(𝑣) = 𝑣 otherwise;

• 𝑥 ≻ 𝑐, 𝑥 ≻ 𝑑′𝑥 for all 𝑥 ∈ 𝑋 ∪𝑋 and all 𝑐 ∈ 𝐶 .

Figure 6 illustrates the above construction. It can be

verified that 𝜙 is satisfiable iff 𝑆 ∈ com𝑐(ℛ4(𝐹 )).

36



Table 4
Complexity ofVerPCAF

𝜎,𝑖 . Results also hold when considering

only PCAFs with transitive preferences.

𝜎 𝑖 = 1 𝑖 ∈ {2, 4} 𝑖 = 3

cf /adm/naive/stb NP-c in P in P

com NP-c NP-c in P

prf /sem/stg ΣP
2 -c coNP-c coNP-c

Table 4 summarizes our complexity results. Reduc-

tion 3 preserves the lower complexity of wfCAFs for

all investigated semantics, while Reductions 2 and 4 pre-

serve the lower complexity for all but complete semantics.

Reduction 1 does not preserve the advantages of wfCAFs,

and rather exhibits the full complexity as general CAFs.

Notice that the lower complexity of the verification prob-

lem is crucial for enumerating extensions. In particular,

the improved enumeration algorithm for wfCAFs [14] is

based on the polynomial time verification of claim-sets

and thus extends to PCAFs under Reductions 2–4.

7. Conclusion
Many approaches to structured argumentation (i) assume

that arguments with the same claims attack the same

arguments and (ii) take preferences into account. Investi-

gations on claim-augmented argumentation frameworks

(CAFs) so far only consider (i), showing that the result-

ing subclass of well-formed CAFs (wfCAFs) has several

desired properties. The research question of this paper

is to analyze whether these properties carry over when

preferences are taken into account, since the incorpora-

tion of preferences can violate the syntactical restriction

of wfCAFs.

To this end, we introduced preference-based claim-

augmented argumentation frameworks (PCAFs) and in-

vestigated the impact of the four preference reductions

commonly used in abstract argumentation when applied

to PCAFs. We examined and characterized CAF-classes

that result from applying these reductions to PCAFs,

yielding insights into the expressiveness of argumen-

tation formalisms that can be instantiated as CAF and

allow for preference incorporation. Furthermore, we in-

vestigated the fundamental properties of I-maximality

and computational complexity for PCAFs. Preserving I-

maximality is desirable since it implies intuitive behavior

of maximization-based semantics, while the complexity

of the verification problem is crucial for the enumeration

of claim-extensions. Insights in terms of both semantical

and computational properties provide necessary foun-

dations towards a practical realization of this particular

argumentation paradigm (we refer to, e.g., [26, 27], for a

similar research endeavor in terms of incomplete AFs).

Our results show that (1) Reduction 3, the most conser-

vative of the four reductions, exhibits the same properties

as wfCAFs regarding computational complexity while

also preserving I-maximality for most of the semantics;

(2) Reductions 2 and 4 retain the advantages of wfCAFs

regarding complexity for all but complete semantics, but

do not preserve I-maximality for any investigated seman-

tics; (3) under Reduction 1, neither complexity properties

nor I-maximality are preserved. The above results hold

even if we restrict ourselves to transitive preferences.

It is worth noting that Reduction 3 behaves favorably

on regular AFs as well, fulfilling many principles for

preference-based semantics laid out by Kaci et al. (2018).

A possible direction for future work is to lift the pref-

erence ordering over arguments to sets of arguments and

select extensions in this way. This has been investigated

for regular AFs in combination with Reduction 2 [21].

Another direction is to extend our studies to alternative

semantics for CAFs [18, 19], where subset-maximization

is handled on the claim-level instead of on the argument-

level.
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