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Abstract
In this paper, we further advance a line of work aimed to formally model via epistemic logic (aspects of) the group dynamics of
cooperative agents. In fact, we have previously proposed and here extend a particular logical framework (the Logic of “Inferable”
L-DINF), where a group of cooperative agents can jointly perform actions. I.e., at least one agent of the group can perform the
action, either with the approval of the group or on behalf of the group. In this paper, we introduce agents’ roles within a group.
We choose to model roles in terms of the actions that each agent is enabled by its group to perform. We extend the semantics
and the proof of strong completeness of our logic, and we show the usefulness of the new extension via a significant example.
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1. Introduction
This paper falls within a research effort whose overall
objective is to devise a comprehensive framework based
upon epistemic logic, so as to allows a designer to formal-
ize and formally verify agents and Multi-Agent Systems
(MAS). We have been particularly interested in modelling
the capability to construct and execute joint plans within a
group of agents. However, such a logical framework will
really be useful if it will be immersed (either fully or in
parts) into a real agent-oriented programming language.1

To this aim, we have taken all along into particular ac-
count the connection between theory and practice, so as
to make our logic actually usable by a system’s designers.

Cooperation among agents in a MAS allow agents to
achieve better and faster results, and it is often the case
that a group can fulfil objectives that are out of reach for
the single agent. Often, each participating agent is not able
to solve a whole problem or to reach an overall goal by
itself, but can only cope with a small subproblem/subgoal
for which it has the required competence. The overall
result/goal is accomplished by means of cooperation with
other agents. This is the motivation that led us to develop
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1Note that several agent-oriented programming languages and sys-
tems exist, where, since our approach is logic-based, we are inter-
ested in those of them which are based upon computational logic
(cf., e.g., [1, 2, 3] for recent surveys on such languages), and thus
endowed (at least in principle) with a logical semantics.

logics where agents belong to groups, and it is possible
for agents to reason about what their group of agents can
do and what they themselves are able to do or prefer to do
(in terms of actions to perform) and which cost they are
able to pay for the execution of a costly action, whereas
however, in case of insufficient budget, an agent can be
supported by its group.

In this paper, we introduce roles that agents may assume
within the group (concerning which actions they are both
able and enabled to perform). I.e., within a group, an
action can be performed only by agents which are allowed
by the group to do so (supposedly, because they have the
right competences).

This paper continues, in fact, a long-lasting line of work
aimed to formally model via epistemic logic (aspects of)
the group dynamics of cooperative agents via the Logic of
“Inferable” L-DINF (first introduced in [4]). As mentioned,
in past work we have taken into consideration actions’ cost
[5], and the preferences that each agent can have for what
concerns performing each action [6].

The key assumption underlying our approach is that, al-
though logic has proved a good tool to express the seman-
tics underlying (aspects of) agent-oriented programming
languages, in order to foster a practical adoption there are,
at least, the following requirements. (i) It is important to
keep the complexity of the logic low enough to be practi-
cally manageable. (ii) It is important to ensure modularity,
as it allows programmers to better organize the definition
of the application at hand, and allows an agent-systems’
definition to be more flexible and customizable. Notice,
moreover, that modularity can be an advantage for ex-
plainability, in the sense of making the explanation itself
modular. (iii) It is important not to overload syntax, as a
cumbersome syntax can discourage practical adoption.

So, our approach tries to join the rigour of logic and a
attention to practical aspects. Thus, we allow a designer
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to define in a separate way at the semantic level which
actions are allowed for each agent to perform at each
stage, with which degree of preference and, now, taking
the agent’s role within the group into account. So far in
fact, the specification was missing about which actions
an agent is allowed to perform: in practical situations
in fact, it will hardly be the case that every agent can
perform every action, meaning being “able to perform”
and “allowed to perform”. This is in fact the new feature
that we introduce here.

For an in-depth discussion on the relationship of logic L-
DINF with related work, the reader may refer to [5]. One
may notice that the logic presented here has no explicit
time. We tackled however the issue of time in previous
work, discussed in [7, 8, 9].

The paper is organized as follows. In Sect. 2 we intro-
duce syntax and semantics of L-DINF, together with an
axiomatization of the proposed logical system.2 In Sect. 3
we discuss an example of application of the new logic. In
Sect. 4 we present our definition of canonical model of an
L-DINF theory. Finally, in Sect. 5 we conclude.

2. Logical framework
The logic L-DINF consists of a static component and a
dynamic one. The former, called L-INF, is a logic of ex-
plicit beliefs and background knowledge. The dynamic
component, called L-DINF, extends the static one with dy-
namic operators capturing the consequences of the agents’
inferential actions on their explicit beliefs as well as a
dynamic operator capturing what an agent can conclude
by performing inferential actions in its repertoire.

2.1. Syntax
Let Atm = {𝑝, 𝑞, . . .} be a countable set of atomic propo-
sitions. By 𝑃𝑟𝑜𝑝we denote the set of all propositional for-
mulas, i.e. the set of all Boolean formulas built out of the
set of atomic propositions Atm . A set Atm𝐴 represents
the physical actions that an agent can perform, includ-
ing “active sensing” actions (e.g., “let’s check whether it
rains”, “let’s measure the temperature”). The language of
L-DINF, denoted by ℒL-DINF, is defined as follows:

𝜙,𝜓 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜓 | B𝑖 𝜙 | K𝑖 𝜙 |
𝑑𝑜𝑖(𝜑𝐴) | 𝑑𝑜𝑃𝑖 (𝜑𝐴) | 𝑐𝑎𝑛_𝑑𝑜𝑖(𝜑𝐴) |
𝑑𝑜𝐺(𝜑𝐴) | 𝑑𝑜𝑃𝐺(𝜑𝐴) | 𝑐𝑎𝑛_𝑑𝑜𝐺(𝜑𝐴) |
intend 𝑖(𝜑𝐴) | intend𝐺(𝜑𝐴) |
exec𝑖(𝛼) | exec𝐺(𝛼) | [𝐺 : 𝛼]𝜙 |
pref _do𝑖(𝜑𝐴, 𝑑) | pref _do𝐺(𝑖, 𝜑𝐴)

𝛼 ::= ⊢(𝜙,𝜓) | ∩(𝜙,𝜓) | ↓(𝜙,𝜓) | ⊣(𝜙,𝜓)
2Note that the part on syntax is reported almost literally from previous
work, as the enhancements presented here lead to modifications of
the semantics only.

where 𝑝 ranges over Atm , 𝑖 ∈ Agt , 𝜑𝐴 ∈ Atm𝐴, and
𝑑 ∈ N. (Other Boolean operators are defined from ¬
and ∧ in the standard manner. Moreover, for simplicity,
whenever 𝐺 = {𝑖} we will write 𝑖 as subscript in place
of {𝑖}.) The language of inferential actions of type 𝛼
is denoted by ℒACT. The static part L-INF of L-DINF,
includes only those formulas not having sub-formulas of
type 𝛼, namely, no inferential operation are admitted.

The expression intend 𝑖(𝜑𝐴) indicates the intention of
agent 𝑖 to perform the physical action 𝜑𝐴 in the sense
of the BDI agent model [10]. This intention can be part
of an agent’s knowledge base from the beginning, or it
can be derived later. We do not cope with the formaliza-
tion of BDI, for which the reader may refer, e.g., to [11].
So, we treat intentions rather informally, assuming also
that intend𝐺(𝜑𝐴) holds whenever all agents in group 𝐺
intend to perform the action 𝜑𝐴.

The formula doi(𝜑𝐴) indicates actual execution of
the action 𝜑𝐴 by the agent 𝑖. This fact is automatically
recorded by the new belief 𝑑𝑜𝑃𝑖 (𝜑𝐴) (postfix “𝑃 ” stand-
ing for “past” action). By precise choice, doi and doP

i

(and similarly doG and doP
G ) are not axiomatized. In fact,

we assume they are realized in a way that is unknown at
the logical level. Hence, the axiomatization concerns only
the relationship between doing and being enabled to do.

The expressions can_doi(𝜑𝐴) and pref _do𝑖(𝜑𝐴, 𝑑)
are closely related to doi(𝜑𝐴). In fact, can_doi(𝜑𝐴)
is to be seen as an enabling condition, indicating that
agent 𝑖 is enabled to execute action 𝜑𝐴, while in-
stead pref _doi(𝜑𝐴, 𝑑) indicates the level 𝑑 of pref-
erence/willingness of agent 𝑖 to perform that action.
pref _doG(𝑖, 𝜑𝐴) indicates that agent 𝑖 exhibits the maxi-
mum level of preference on performing action 𝜑𝐴 within
all members of its group 𝐺. Notice that, if a group of
agents intends to perform an action 𝜑𝐴, this will entail
that the entire group intends to do 𝜑𝐴, that will be enabled
to be actually executed only if at least one agent 𝑖 ∈ 𝐺
can do it, i.e., it can derive can_doi(𝜑𝐴).

Formulas of the form B𝑖 𝜙 represent beliefs of agent 𝑖,
while those of the form K𝑖 𝜙 express background knowl-
edge. Explicit beliefs, i.e., facts and rules acquired via
perceptions during an agent’s operation are kept in the
working memory of the agent. Unlike explicit beliefs, an
agent’s background knowledge is assumed to satisfy om-
niscience principles, such as closure under conjunction
and known implication, and closure under logical con-
sequence, and introspection. In fact, K𝑖 is actually the
well-known S5 modal operator often used to model/rep-
resent knowledge. The fact that background knowledge
is closed under logical consequence is justified because
we conceive it as a kind of stable reliable knowledge base,
or long-term memory. We assume the background knowl-
edge to include: facts (formulas) known by the agent from
the beginning, and facts the agent has later decided to
store in its long-term memory (by means of some decision
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mechanism not treated here) after having processed them
in its working memory. We therefore assume background
knowledge to be irrevocable, in the sense of being stable
over time.

A formula of the form [𝐺 : 𝛼]𝜙, with 𝐺 ∈ 2Agt , and
where 𝛼 must be an inferential action, states that “𝜙 holds
after action 𝛼 has been performed by at least one of the
agents in 𝐺, and all agents in 𝐺 have common knowledge
about this fact”.

Remark 1. If an inferential action is performed by an
agent 𝑖 ∈ 𝐺, the others agents belonging to the same
group 𝐺 have full visibility of this action and, therefore,
as we suppose agents to be cooperative, it is as if they had
performed the action themselves.

Borrowing from [12], we distinguish four types of infer-
ential actions 𝛼 which allow us to capture some of the dy-
namic properties of explicit beliefs and background knowl-
edge: ↓(𝜙,𝜓), ∩(𝜙,𝜓), ⊣(𝜙,𝜓), and ⊢(𝜙,𝜓), These ac-
tions characterize the basic operations of forming explicit
beliefs via inference:

↓(𝜙,𝜓): this inferential action infers 𝜓 from 𝜙 in case 𝜙
is believed and, according to agent’s background
knowledge, 𝜓 is a logical consequence of 𝜙. If
the execution succeeds, the agent starts believing
𝜓.

∩(𝜙,𝜓): this action closes the explicit beliefs 𝜙 and 𝜓
under conjunction. I.e., 𝜙 ∧ 𝜓 is deduced from 𝜙
and 𝜓.

⊣(𝜙,𝜓): this inferential action performs a simple form
of “belief revision”. It removes 𝜓 from the work-
ing memory in case 𝜙 is believed and, according
to agent’s background knowledge, ¬𝜓 is logical
consequence of 𝜙. Both 𝜓 and 𝜙 are required to
be ground atoms.

⊢ (𝜙,𝜓): this inferential action adds 𝜓 to the work-
ing memory in case 𝜙 is believed and, according
to agent’s working memory, 𝜓 is logical conse-
quence of 𝜙. Notice that, unlike ∩(𝜙,𝜓), this
action operates directly on the working memory
without retrieving anything from the background
knowledge.

Formulas of the forms execi(𝛼) and exec𝐺(𝛼) express
executability of inferential actions either by agent 𝑖, or by
a group 𝐺 of agents (which is a consequence of any of the
group members being able to execute the action). It has
to be read as: “𝛼 is an inferential action that agent 𝑖 (resp.
an agent in 𝐺) can perform”.

Remark 2. In the mental actions ⊢(𝜙,𝜓) and ↓(𝜙,𝜓),
the formula 𝜓 which is inferred and asserted as a new
belief can be 𝑐𝑎𝑛_𝑑𝑜𝑖(𝜑𝐴) or 𝑑𝑜𝑖(𝜑𝐴), which denote the

possibility of execution or actual execution of physical ac-
tion 𝜑𝐴. In fact, we assume that when inferring 𝑑𝑜𝑖(𝜑𝐴)
(from 𝑐𝑎𝑛_𝑑𝑜𝑖(𝜑𝐴) and possibly other conditions) then
the action is actually executed, and the corresponding
belief 𝑑𝑜𝑃𝑖 (𝜑𝐴) is asserted, possibly augmented with a
time-stamp. Actions are supposed to succeed by default;
in case of failure, a corresponding failure event will be
perceived by the agent. The 𝑑𝑜𝑃𝑖 beliefs constitute a his-
tory of the agent’s operation, so they might be useful for
the agent to reason about its own past behaviour, and/or,
importantly, they may be useful to provide explanations to
human users.

Remark 3. Explainability in our approach can be di-
rectly obtained from proofs. Let us assume for simplicity
that inferential actions can be represented in infix form
as 𝜙𝑛 𝑂𝑃 𝜙𝑛+1. Also, execi(𝛼) means that the mental
action 𝛼 is executable by agent 𝑖 and it is indeed executed.
If, for instance, the user wants an explanation of why the
physical action 𝜑𝐴 has been performed, the system can
respond by exhibiting the proof that has lead to 𝜑𝐴, put
in the explicit form:
(execi (𝜙1𝑂𝑃1 𝜙2) ∧ . . . ∧ execi (𝜙𝑛−1𝑂𝑃𝑛 𝜙𝑛)∧
execi (𝜙𝑛𝑂𝑃𝑛 𝑐𝑎𝑛_𝑑𝑜𝑖(𝜑𝐴)) ∧ 𝑖𝑛𝑡𝑒𝑛𝑑𝑖(𝜑𝐴)) ⊢ 𝑑𝑜𝑖(𝜑𝐴)
where each 𝑂𝑃𝑖 is one of the (mental) actions discussed
above. The proof can possibly be translated into natural
language, and declined either top-down or bottom-up.

As said in the Introduction, we model agents which, to
execute an action, may have to pay a cost, so they must
have a consistent budget available. Our agents, moreover,
are entitled to perform only those physical actions that
they conclude they can do. In our approach, an action can
be executed by a group of agents if at least one agent in
the group can do, and the group has the necessary bud-
get available, sharing the cost according to some policy.
Being our agent cooperative, among the agents that are
able to do some physical action, one is selected (with any
deterministic rule) among those which best prefer to per-
form that action. We assume that agents are aware of and
agree with the cost-sharing policy.

We have not introduced costs and budget, feasibility
of actions and willingness to perform them, in the lan-
guage for two reasons: to keep the complexity of the logic
reasonable, and to make such features customizable in
a modular way.3 So, as seen below, costs and budget
are coped with at the semantic level which easily allows
modular modification, for instance to define modalities of
cost sharing are different from the one shown here, where
group members share an action cost in equal parts. For
3We intend to use this logic in practice, to formalize memory in DALI
agents, where DALI is a logic-based agent-oriented programming
language [13, 14, 15]. So, computational effectiveness and modu-
larity are crucial. Assuming that agents share the cost is reasonable
when agents share resources, or cooperate to a common goal, as
discussed, e.g., in [16, 17].
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brevity we introduce a single budget function, and thus,
implicitly, a single resource to be spent. Several budget
functions, each one concerning a different resource, might
be plainly defined.

2.2. Semantics
Definition 2.1 introduces the notion of L-INF model,
which is then used to introduce semantics of the static
fragment of the logic.

Notice that many relevant aspects of an agent’s be-
haviour are specified in the definition of L-INF model,
including which mental and physical actions an agent can
perform, which is the cost of an action and which is the
budget that the agent has available, which is the preference
degree of the agent to perform each action. This choice
has the advantages of keeping the complexity of the logic
under control, and of making these aspects modularly
modifiable. In this paper, we introduce new function 𝐻
that, for each agent 𝑖 belonging to a group, enables the
agent to perform a certain set of actions, so, in this way, it
specifies the role of 𝑖 within the group.

As before let Agt be the set of agents.

Definition 2.1. A model is a tuple 𝑀 = (𝑊,𝑁,ℛ, 𝐸,
𝐵,𝐶,𝐴,𝐻, 𝑃, 𝑉 ) where:

∙ 𝑊 is a set of worlds (or situations);
∙ ℛ = {𝑅𝑖}𝑖∈Agt is a collection of equivalence rela-

tions on 𝑊 : 𝑅𝑖 ⊆𝑊 ×𝑊 for each 𝑖 ∈ Agt;
∙ 𝑁 : Agt ×𝑊 −→ 22

𝑊

is a neighborhood function
such that, for each 𝑖 ∈ Agt , each 𝑤, 𝑣 ∈𝑊 , and each
𝑋 ⊆𝑊 these conditions hold:

(C1) if 𝑋∈𝑁(𝑖, 𝑤) then 𝑋⊆{𝑣 ∈𝑊 | 𝑤𝑅𝑖𝑣},
(C2) if 𝑤𝑅𝑖𝑣 then 𝑁(𝑖, 𝑤) = 𝑁(𝑖, 𝑣);

∙ 𝐸 : Agt ×𝑊 −→ 2ℒACT is an executability function
of mental actions such that, for each 𝑖 ∈ Agt and
𝑤, 𝑣 ∈𝑊 , it holds that:

(D1) if 𝑤𝑅𝑖𝑣 then 𝐸(𝑖, 𝑤) = 𝐸(𝑖, 𝑣);

∙ 𝐵 : Agt ×𝑊 −→ N is a budget function such that,
for each 𝑖 ∈ Agt and 𝑤, 𝑣 ∈𝑊 , the following holds

(E1) if 𝑤𝑅𝑖𝑣 then 𝐵(𝑖, 𝑤) = 𝐵(𝑖, 𝑣);

∙ 𝐶 : Agt × ℒACT ×𝑊 −→ N is a cost function such
that, for each 𝑖 ∈ Agt , 𝛼 ∈ ℒACT, and 𝑤, 𝑣 ∈ 𝑊 , it
holds that:

(F1) if 𝑤𝑅𝑖𝑣 then 𝐶(𝑖, 𝛼, 𝑤) = 𝐶(𝑖, 𝛼, 𝑣);

∙ 𝐴 : Agt ×𝑊 −→ 2Atm𝐴 is an executability function
for physical actions such that, for each 𝑖 ∈ Agt and
𝑤, 𝑣 ∈𝑊 , it holds that:

(G1) if 𝑤𝑅𝑖𝑣 then 𝐴(𝑖, 𝑤) = 𝐴(𝑖, 𝑣);

∙ 𝐻 : Agt ×𝑊 −→ 2Atm𝐴 is an enabling function
for physical actions such that, for each 𝑖 ∈ Agt and
𝑤, 𝑣 ∈𝑊 , it holds that:

(G2) if 𝑤𝑅𝑖𝑣 then 𝐻(𝑖, 𝑤) = 𝐻(𝑖, 𝑣);

∙ 𝑃 : Agt×𝑊×Atm𝐴 −→ N is a preference function
for physical actions 𝜑𝐴 such that, for each 𝑖 ∈ Agt
and 𝑤, 𝑣 ∈𝑊 , it holds that:

(H1) if 𝑤𝑅𝑖𝑣 then 𝑃 (𝑖, 𝑤, 𝜑𝐴) = 𝑃 (𝑖, 𝑣, 𝜑𝐴);

∙ 𝑉 :𝑊 −→ 2Atm is a valuation function.

To simplify the notation, let 𝑅𝑖(𝑤) denote the set {𝑣 ∈
𝑊 | 𝑤𝑅𝑖𝑣}, for 𝑤 ∈ 𝑊 . The set 𝑅𝑖(𝑤) identifies the
situations that agent 𝑖 considers possible at world 𝑤. It is
the epistemic state of agent 𝑖 at 𝑤. In cognitive terms, it
can be conceived as the set of all situations that agent 𝑖
can retrieve from its long-term memory and reason about.

While 𝑅𝑖(𝑤) concerns background knowledge,
𝑁(𝑖, 𝑤) is the set of all facts that agent 𝑖 explicitly be-
lieves at world 𝑤, a fact being identified with a set of
worlds. Hence, if 𝑋 ∈ 𝑁(𝑖, 𝑤) then, the agent 𝑖 has
the fact 𝑋 under the focus of its attention and believes it.
𝑁(𝑖, 𝑤) is the explicit belief set of agent 𝑖 at world 𝑤.

The executability of inferential actions is determined
by the function 𝐸. For an agent 𝑖, 𝐸(𝑖, 𝑤) is the set of in-
ferential actions that agent 𝑖 can execute at world 𝑤. The
value 𝐵(𝑖, 𝑤) is the budget the agent has available to per-
form inferential actions. Similarly, the value 𝐶(𝑖, 𝛼, 𝑤)
is the cost to be paid by agent 𝑖 to execute the inferential
action 𝛼 in the world 𝑤. The executability of physical
actions is determined by the function 𝐴. For an agent 𝑖,
𝐴(𝑖, 𝑤) is the set of physical actions that agent 𝑖 can ex-
ecute at world 𝑤. 𝐻(𝑖, 𝑤) instead is the set of physical
actions that agent 𝑖 is enabled by its group to perform.
Which means, 𝐻 defines the role of an agent in its group,
via the actions that it is allowed to execute.

Agent’s preference on executability of physical actions
is determined by the function 𝑃 . For an agent 𝑖, and
a physical action 𝜑𝐴, 𝑃 (𝑖, 𝑤, 𝜑𝐴) is an integer value 𝑑
indicating the degree of willingness of agent 𝑖 to execute
𝜑𝐴 at world 𝑤.

Constraint (C1) imposes that agent 𝑖 can have explicit
in its mind only facts which are compatible with its cur-
rent epistemic state. Moreover, according to constraint
(C2), if a world 𝑣 is compatible with the epistemic state
of agent 𝑖 at world 𝑤, then agent 𝑖 should have the same
explicit beliefs at 𝑤 and 𝑣. In other words, if two situa-
tions are equivalent as concerns background knowledge,
then they cannot be distinguished through the explicit be-
lief set. This aspect of the semantics can be extended in
future work to allow agents make plausible assumptions.
Analogous properties are imposed by constraints (D1),
(E1), and (F1). Namely, (D1) imposes that agent 𝑖 always
knows which inferential actions it can perform and those it
cannot. (E1) states that agent 𝑖 always knows the available
budget in a world (potentially needed to perform actions).
(F1) determines that agent 𝑖 always knows how much
it costs to perform an inferential action. (G1) and (H1)
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determine that an agent 𝑖 always knows which physical
actions it can perform and those it cannot, and with which
degree of willingness, where (G2) specifies that an agent
also knows whether its group gives it the permission to
execute a certain action or not, i.e., if that action pertains
to its role in the group.

Truth values of L-DINF formulas are inductively de-
fined as follows.

Given a model 𝑀 = (𝑊,𝑁,ℛ, 𝐸,𝐵,𝐶,𝐴,𝐻, 𝑃, 𝑉 ),
𝑖 ∈ Agt , 𝐺 ⊆ Agt , 𝑤 ∈ 𝑊 , and a formula 𝜙 ∈ ℒL-INF,
we introduce the following shorthand notation:

‖𝜙‖𝑀𝑖,𝑤 = {𝑣 ∈𝑊 : 𝑤𝑅𝑖𝑣 and 𝑀, 𝑣 |= 𝜙}

whenever 𝑀, 𝑣 |= 𝜙 is well-defined (see below). Then,
we set:

(t1) 𝑀,𝑤 |= 𝑝 iff 𝑝 ∈ 𝑉 (𝑤)

(t2) 𝑀,𝑤 |= execi(𝛼) iff 𝛼 ∈ 𝐸(𝑖, 𝑤)

(t3) 𝑀,𝑤 |= exec𝐺(𝛼) iff ∃𝑖∈𝐺 with 𝛼 ∈ 𝐸(𝑖, 𝑤)

(t4) 𝑀,𝑤 |= can_do𝑖(𝜑𝐴) iff 𝜑𝐴∈𝐴(𝑖, 𝑤)∩𝐻(𝑖, 𝑤)

(t5) 𝑀,𝑤 |= can_do𝐺(𝜑𝐴) iff ∃𝑖∈𝐺
with 𝜑𝐴 ∈ 𝐴(𝑖, 𝑤) ∩𝐻(𝑖, 𝑤)

(t6) 𝑀,𝑤 |= pref _do𝑖(𝜑𝐴, 𝑑) iff 𝜑𝐴 ∈ 𝐴(𝑖, 𝑤) and
𝑃 (𝑖, 𝑤, 𝜑𝐴) = 𝑑

(t7) 𝑀,𝑤 |= pref _do𝐺(𝑖, 𝜑𝐴) iff
𝑀,𝑤 |= pref _do𝑖(𝜑𝐴, 𝑑)
for 𝑑 = max{𝑃 (𝑗, 𝑤, 𝜑𝐴) |
𝑗 ∈ 𝐺 ∧ 𝜑𝐴 ∈ 𝐴(𝑗, 𝑤) ∩𝐻(𝑗, 𝑤)}

(t8) 𝑀,𝑤 |= ¬𝜙 iff 𝑀,𝑤 ̸|= 𝜙

(t9) 𝑀,𝑤 |= 𝜙 ∧ 𝜓 iff 𝑀,𝑤 |= 𝜙 and 𝑀,𝑤 |= 𝜓

(t10) 𝑀,𝑤 |= B𝑖 𝜙 iff ||𝜙||𝑀𝑖,𝑤 ∈ 𝑁(𝑖, 𝑤)

(t11) 𝑀,𝑤 |= K𝑖 𝜙 iff 𝑀, 𝑣 |= 𝜙 for all 𝑣 ∈ 𝑅𝑖(𝑤)

As seen above, a physical action can be performed by a
group of agents if at least one agent of the group can do it,
and the level of preference for performing this action is
set to the maximum among those of the agents enabled to
do this action. For any inferential action 𝛼 performed by
any agent 𝑖, we set:

𝑀,𝑤 |= [𝐺 : 𝛼]𝜙 iff 𝑀 [𝐺:𝛼], 𝑤 |= 𝜙

With𝑀 [𝐺:𝛼]=⟨𝑊,𝑁 [𝐺:𝛼],ℛ, 𝐸,𝐵[𝐺:𝛼], 𝐶,𝐴,𝐻, 𝑃, 𝑉 ⟩.
Such model 𝑀 [𝐺:𝛼] represents the fact that the execution
of an inferential action 𝛼 affects the sets of beliefs of
agent 𝑖 and modifies the available budget. Such operation
can add new beliefs by direct perception, by means of
one inference step, or as a conjunction of previous beliefs.
Hence, when introducing new beliefs (i.e., performing
mental actions), the neighborhood must be extended
accordingly.

The following property enabled𝑤(𝐺,𝛼) (for a world
𝑤, an action 𝛼 and a group of agents 𝐺) concerns a key
aspect in the definition of the logic. Specifically, it states
when an inferential action is enabled, i.e., under which

conditions, and by which agent(s), an action may be per-
formed:
enabled𝑤(𝐺,𝛼) : ∃𝑗 ∈ 𝐺 (𝛼 ∈ 𝐸(𝑗, 𝑤)∧

𝐶(𝑗,𝛼,𝑤)
|𝐺| ≤ minℎ∈𝐺𝐵(ℎ,𝑤)).

In the above particular formulation (that is not fixed, but
can be customized to the specific application domain)
if at least an agent can perform it; and if the “payment”
due by each agent, obtained by dividing the action’s cost
equally among all agents of the group, is within each
agent’s available budget. In case more than one agent
in 𝐺 can execute an action, we implicitly assume the
agent 𝑗 performing the action to be the one correspond-
ing to the lowest possible cost. Namely, 𝑗 is such that
𝐶(𝑗, 𝛼, 𝑤) = minℎ∈𝐺 𝐶(ℎ, 𝛼,𝑤). This definition re-
flects a parsimony criterion reasonably adoptable by co-
operative agents sharing a crucial resource such as, e.g.,
energy or money. Other choices might be viable, so varia-
tions of this logic can be easily defined simply by devising
some other enabling condition and, possibly, introducing
differences in neighborhood update. Notice that the def-
inition of the enabling function basically specifies the
“concrete responsibility” that agents take while concurring
with their own resources to actions’ execution. Also, in
case of specification of various resources, different corre-
sponding enabling functions might be defined.

Our contribution to modularity is that functions 𝐴, 𝑃
and 𝐻 , i.e., executability of physical actions, preference
level of an agent about performing each action, and per-
mission concerning which actions to actually perform,
are not meant to be built-in. Rather, they can be defined
via separate sub-theories, possibly defined using different
logics, or, in a practical approach, even via pieces of code.
This approach can be extended to function 𝐶, i.e., the cost
of mental actions instead of being fixed may in principle
vary, and be computed upon need.

2.3. Belief Update
In the logic defined so far, updating an agent’s beliefs
accounts to modify the neighborhood of the present world.
The updated neighborhood 𝑁 [𝐺:𝛼] resulting from execu-
tion of a mental action 𝛼 is specified as follows.

∙ If 𝛼 is ↓(𝜓, 𝜒), then, for each 𝑖 ∈ Agt and 𝑤 ∈𝑊 ,

𝑁 [𝐺:↓(𝜓,𝜒)](𝑖, 𝑤) = 𝑁(𝑖, 𝑤) ∪ {||𝜒||𝑀𝑖,𝑤}

if 𝑖∈𝐺 and enabled𝑤(𝐺, ↓(𝜓, 𝜒)) and 𝑀,𝑤 |=
B𝑖𝜓 ∧ K𝑖(𝜓 → 𝜒). Otherwise, the neighborhood
does not change (i.e., 𝑁 [𝐺:↓(𝜓,𝜒)](𝑖, 𝑤) = 𝑁(𝑖, 𝑤)).

∙ If 𝛼 is ∩(𝜓,𝜒), then, for each 𝑖 ∈ Agt and 𝑤 ∈𝑊 ,

𝑁 [𝐺:∩(𝜓,𝜒)](𝑖, 𝑤) = 𝑁(𝑖, 𝑤) ∪ {||𝜓 ∧ 𝜒||𝑀𝑖,𝑤}

if 𝑖∈𝐺 and enabled𝑤(𝐺,∩(𝜓,𝜒)) and 𝑀,𝑤 |=
B𝑖𝜓 ∧ B𝑖𝜒. Otherwise, the neighborhood remains
unchanged (i.e., 𝑁 [𝐺:∩(𝜓,𝜒)](𝑖, 𝑤) = 𝑁(𝑖, 𝑤)).
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∙ If 𝛼 is ⊣ (𝜓, 𝜒), then, for each 𝑖 ∈ Agt and 𝑤 ∈𝑊 ,

𝑁 [𝐺:⊣(𝜓,𝜒)](𝑖, 𝑤) = 𝑁(𝑖, 𝑤) ∖ {||𝜒||𝑀𝑖,𝑤}

if 𝑖∈𝐺 and enabled𝑤(𝐺,⊣(𝜓, 𝜒)) and 𝑀,𝑤 |=
B𝑖𝜓 ∧K𝑖(𝜓 → ¬𝜒). Otherwise, the neighborhood
does not change (i.e., 𝑁 [𝐺:⊣(𝜓,𝜒)](𝑖, 𝑤) = 𝑁(𝑖, 𝑤)).

∙ If 𝛼 is ⊢(𝜓,𝜒), then, for each 𝑖 ∈ Agt and 𝑤 ∈𝑊 ,

𝑁 [𝐺:⊢(𝜓,𝜒)](𝑖, 𝑤) = 𝑁(𝑖, 𝑤) ∪ {||𝜒||𝑀𝑖,𝑤}

if 𝑖∈𝐺 and enabled𝑤(𝐺,⊢(𝜓,𝜒)) and 𝑀,𝑤 |=
B𝑖𝜓 ∧ B𝑖(𝜓 → 𝜒). Otherwise, the neighborhood
remains unchanged: 𝑁 [𝐺:⊢(𝜓,𝜒)](𝑖, 𝑤) = 𝑁(𝑖, 𝑤).

Notice that, after an inferential action 𝛼 has been per-
formed by an agent 𝑗 ∈ 𝐺, all agents 𝑖 ∈ 𝐺 see the
same update in the neighborhood. Conversely, for any
agent ℎ ̸∈ 𝐺 the neighborhood remains unchanged (i.e.,
𝑁 [𝐺:𝛼](ℎ,𝑤) = 𝑁(ℎ,𝑤)). However, even for agents in
𝐺, the neighborhood remains unchanged if the required
preconditions, on explicit beliefs, knowledge, and budget,
do not hold (and hence the action is not executed).

Notice also that we might devise variations of the logic
by making different decisions about neighborhood up-
date to implement, for instance, partial visibility within a
group.

Since each agent in 𝐺 has to contribute to cover the
costs of execution by consuming part of its available bud-
get, an update of the budget function is needed. For an
action 𝛼 we assume that 𝑗 ∈ 𝐺 executes 𝛼. Hence, for
each 𝑖 ∈ Agt and each 𝑤 ∈𝑊 , we set

𝐵[𝐺:𝛼](𝑖, 𝑤) = 𝐵(𝑖, 𝑤)− 𝐶(𝑗, 𝛼, 𝑤)/|𝐺|,

if 𝑖∈𝐺 and enabled𝑤(𝐺,𝛼) and, depending on 𝛼,

𝑀,𝑤 |= B𝑖𝜓 ∧K𝑖(𝜓 → 𝜒) if 𝛼 is ↓(𝜓, 𝜒), or
𝑀,𝑤 |= B𝑖𝜓 ∧B𝑖𝜒 if 𝛼 is ∩ (𝜓,𝜒)), or
𝑀,𝑤 |= B𝑖𝜓 ∧K𝑖(𝜓 → ¬𝜒) if 𝛼 is ⊣(𝜓, 𝜒), or
𝑀,𝑤 |= B𝑖𝜓 ∧B𝑖(𝜓 → 𝜒) if 𝛼 is ⊢(𝜓,𝜒).

Otherwise, 𝐵[𝐺:𝛼](𝑖, 𝑤)=𝐵(𝑖, 𝑤), i.e., the budget is pre-
served.

We write |=L-DINF 𝜙 to denote that 𝑀,𝑤 |= 𝜙 holds
for all worlds 𝑤 of every model 𝑀 .

We introduce below relevant consequences of our for-
malization. For lack of space we omit the proof, that can
be developed analogously to what done in [5]. As con-
sequence of previous definitions, for any set of agents 𝐺
and each agent 𝑖 ∈ 𝐺, we have the following:

|=L-INF (K𝑖(𝜙→ 𝜓)) ∧B𝑖 𝜙) → [𝐺 : ↓(𝜙,𝜓)]B𝑖 𝜓.

Namely, if the agent 𝑖 has 𝜙 among beliefs and
K𝑖(𝜙 → 𝜓) in its background knowledge, then
as a consequence of the action ↓(𝜙,𝜓) the agent
𝑖 and its group 𝐺 start believing 𝜓.

|=L-INF (K𝑖(𝜙→ ¬𝜓)) ∧B𝑖 𝜙) → [𝐺 : ⊣(𝜙,𝜓)]¬B𝑖 𝜓.

Namely, if the agent 𝑖 has 𝜙 among beliefs and
K𝑖(𝜙 → ¬𝜓) in its background knowledge (for
𝜙,𝜓 ground atoms), then, as a consequence of the
action ↓(𝜙,𝜓) the agent 𝑖 and its group 𝐺 stop
believing 𝜓.

|=L-INF (B𝑖𝜙 ∧B𝑖𝜓) → [𝐺 : ∩(𝜙,𝜓)]B𝑖(𝜙 ∧ 𝜓).

Namely, if the agent 𝑖 has 𝜙 and 𝜓 as beliefs, then
as a consequence of the action ∩(𝜙,𝜓) the agent
𝑖 and its group 𝐺 start believing 𝜙 ∧ 𝜓.

|=L-INF (B𝑖(𝜙→ 𝜓)) ∧B𝑖 𝜙) → [𝐺 : ⊢(𝜙,𝜓)]B𝑖, 𝜓.

Namely, if the agent 𝑖 has 𝜙 among its beliefs and
B𝑖(𝜙 → 𝜓) in its working memory, then as a
consequence of the action ⊢(𝜙,𝜓) the agent 𝑖 and
its group 𝐺 start believing 𝜓.

2.4. Axiomatization
Below we introduce the axiomatization of our logic. The
L-INF and L-DINF axioms and inference rules are the
following, together with the usual axioms of propositional
logic (where 𝐺 ⊆ Agt and 𝑖 ∈ Agt):

1. (K𝑖 𝜙 ∧K𝑖(𝜙→ 𝜓)) → K𝑖 𝜓;
2. K𝑖 𝜙→ 𝜙;
3. ¬K𝑖(𝜙 ∧ ¬𝜙);
4. K𝑖 𝜙→ K𝑖K𝑖 𝜙;
5. ¬K𝑖 𝜙→ K𝑖 ¬K𝑖 𝜙;
6. B𝑖 𝜙 ∧K𝑖 (𝜙↔ 𝜓) → B𝑖 𝜓;
7. B𝑖 𝜙→ K𝑖B𝑖 𝜙;
8. 𝜙

K𝑖 𝜙
;

9. [𝐺 : 𝛼]𝑝↔ 𝑝;
10. [𝐺 : 𝛼]¬𝜙↔ ¬[𝐺 : 𝛼]𝜙;
11. exec𝐺(𝛼) → K𝑖 (exec𝐺(𝛼));
12. [𝐺 : 𝛼](𝜙 ∧ 𝜓) ↔ [𝐺 : 𝛼]𝜙 ∧ [𝐺 : 𝛼]𝜓;
13. [𝐺 : 𝛼]K𝑖 𝜙↔ K𝑖 ([𝐺 : 𝛼]𝜙);
14. [𝐺 : ↓(𝜙,𝜓)]B𝑖 𝜒↔ B𝑖 ([𝐺 : ↓(𝜙,𝜓)]𝜒) ∨(︀

(B𝑖 𝜙 ∧K𝑖 (𝜙→ 𝜓)) ∧
K𝑖 ([𝐺 : ↓(𝜙,𝜓)]𝜒↔ 𝜓)

)︀
;

15. [𝐺 : ∩(𝜙,𝜓)]B𝑖 𝜒↔ B𝑖 ([𝐺 : ∩(𝜙,𝜓)]𝜒) ∨(︀
(B𝑖 𝜙 ∧B𝑖 𝜓) ∧

K𝑖 [𝐺 : ∩(𝜙,𝜓)]𝜒↔ (𝜙 ∧ 𝜓)
)︀
;

16. [𝐺 : ⊢(𝜙,𝜓)]B𝑖 𝜒↔ B𝑖 ([𝐺 : ⊢(𝜙,𝜓)]𝜒) ∨(︀
(B𝑖 𝜙 ∧B𝑖 (𝜙→ 𝜓)) ∧

K𝑖 ([𝐺 : ⊢(𝜙,𝜓)]𝜒↔ 𝜓)
)︀
;

17. [𝐺 : ⊣(𝜙,𝜓)]¬B𝑖 𝜒↔ B𝑖 ([𝐺 : ⊣(𝜙,𝜓)]𝜒) ∨(︀
(B𝑖 𝜙 ∧K𝑖 (𝜙→ ¬𝜓)) ∧
K𝑖 ([𝐺 : ⊣(𝜙,𝜓)]𝜒↔ 𝜓)

)︀
;

18. intendG(𝜑A) ↔ ∀𝑖 ∈ 𝐺 intendi(𝜑A);
19. do𝐺(𝜑𝐴) → can_do𝐺(𝜑𝐴);
20. do𝑖(𝜑𝐴) → can_do𝑖(𝜑𝐴) ∧ pref _doG(i , 𝜑A);

75



21. 𝜓↔𝜒
𝜙↔𝜙[𝜓/𝜒] .

We write L-DINF ⊢𝜙 to denote that 𝜙 is a theorem of
L-DINF. It is easy to verify that the above axiomatization
is sound for the class of L-INF models, namely, all axioms
are valid and inference rules preserve validity. In particu-
lar, soundness of axioms 14–17 immediately follows from
the semantics of [𝐺:𝛼]𝜙, for each inferential action 𝛼, as
previously defined.

Notice that, by abuse of notation, we have axiomatized
the special predicates concerning intention and action
enabling. Axioms 18–20 concern in fact physical actions,
stating that: what is intended by a group of agents is
intended by them all; and, neither an agent nor a group of
agents can do what it is not enabled to do. Such axioms
are not enforced by the semantics, but are supposed to be
enforced by a designer’s/programmer’s encoding of parts
of an agent’s behaviour. In fact, axiom 18 enforces agents
in a group to be cooperative. Axioms 19 and 20 ensure
that agents will attempt to perform actions only if their
preconditions are satisfied, i.e., if they can do them.

We do not handle such properties in the semantics as
done, e.g., in dynamic logic, because we want agents’
definition to be independent of the practical aspect, so we
explicitly intend to introduce flexibility in the definition
of such parts.

3. Problem Specification and
Inference: An example

In this section, we propose an example to explain the
usefulness of the new extension. For the sake of simplicity
of illustration and of brevity, the example is in “skeletal”
form.

Consider a group of four agents, who are the crew of an
ambulance, including a driver, two nurses, and a medical
doctor. The driver is the only one enabled to drive the
ambulance. The nurses are enabled to perform a number
of tasks, such as, e.g., administer a pain reliever, or clean,
disinfect and bandage a wound, measure vital signs. It
is however the task of a doctor to make a diagnosis, to
prescribe medications, to order, perform, and interpret
diagnostic tests, and to perform complex medical proce-
dures.

Imagine that the hospital received notice of a car acci-
dent with an injured person. Then, it will inform the group
of the fact that a patient needs help (how exactly is not
treated here, because this depends on how the multi-agent
system is implemented, but a message exchange will pre-
sumably suffice). The group will reason, and devise the
intention/goal K𝑖(intendG(rescue_patient)).

Among the physical actions that agents in the group
can perform are for instance the following:

diagnose_patient
administer_urgent_treatment
measure_vital_signs
pneumothorax_aspiration
local_anesthesia
bandage_wounds
drive_to_patient
drive_to_hospital .

The group will now be required to perform a planning
activity. Assume that, as a result of the planning phase,
the knowledge base of each agent 𝑖 contains the following
rule, that specifies how to reach the intended goal in terms
of actions to perform and sub-goals to achieve:

K𝑖

(︀
intendG(rescue_patient) →

intendG(drive_to_patient)∧
intendG(diagnose_patient)∧
intendG(stabilize_patient)∧
intendG(drive_to_hospital)

)︀
.

By axiom 18 listed in previous section, every agent will
also have the specialized rule (for 𝑖 ≤ 4)

K𝑖

(︀
intendG(rescue_patient) →

intendi(drive_to_patient)∧
intendi(diagnose_patient)∧
intendi(stabilize_patient)∧
intendi(drive_to_hospital)

)︀
.

Then, the following is entailed for each of the agents:

K𝑖

(︀
intendi(rescue_patient) →

intendi(drive_to_patient)
)︀

K𝑖

(︀
intendi(rescue_patient) →

intendi(diagnose_patient)
)︀

K𝑖

(︀
intendi(rescue_patient) →

intendi(stabilize_patient)
)︀

K𝑖

(︀
intendi(rescue_patient) →

intendi(drive_to_hospital)
)︀
.

While driving to the patient and then back to the hospi-
tal are actions, intendG(stabilize_patient) is a goal.

Assume now that the knowledge base of each agent 𝑖
contains also the following general rules, stating that the
group is available to perform each of the necessary actions.
Which agent will in particular perform each action 𝜑𝐴?

According to items (t4) and (t7) in the definition of truth
values, for L-DINF formulas, this agent will be chosen as
the one which best prefers to perform this action, among
those that can do it. Formally, in the present situation,
pref _doG(i , 𝜑A) returns the agent 𝑖 in the group with
the highest degree of preference on performing 𝐴, and
can_doG(𝜑_A) is true if there is some agent 𝑖 in the
group which is able and allowed to perform 𝜑𝐴, i.e., 𝜑𝐴 ∈
𝐴(𝑖, 𝑤) ∧ 𝜑𝐴 ∈ 𝐻(𝑖, 𝑤).

K𝑖

(︀
intendG(drive_to_patient) ∧

can_doG(drive_to_patient)∧
pref _doG(i , drive_to_patient)

→ doG(drive_to_patient)
)︀
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K𝑖

(︀
intendG(diagnose_patient)∧

can_doG(diagnose_patient)∧
pref _doG(i , diagnose_patient) →

doG(diagnose_patient)
)︀

K𝑖

(︀
intendG(drive_to_hospital)∧

can_doG(drive_to_hospital)∧
pref _doG(i , drive_to_hospital) →

doG(drive_to_hospital)
)︀
.

As before, by axiom 18 such rules can be specialized
to each single agent.

K𝑖

(︀
intendi(drive_to_patient) ∧

can_doi(drive_to_patient)∧
pref _doi(i , drive_to_patient) →

doG(drive_to_patient)
)︀

K𝑖

(︀
intendi(diagnose_patient)∧

can_doi(diagnose_patient)∧
pref _doi(i , diagnose_patient) →

doi(diagnose_patient)
)︀

K𝑖

(︀
intendi(drive_to_hospital)∧

can_doi(drive_to_hospital)∧
pref _doi(i , drive_to_hospital) →

doi(drive_to_hospital)
)︀

So, for each action 𝜑𝐴 required by the plan, there will
be some agent (let us assume for simplicity only one),
for which doi(𝜑A)) will be concluded. In our case, the
agent driver will conclude doi(drive_to_patient)) and
doi(drive_to_hospital)); the agent doctor will conclude
doi(stabilize_patient)).

As previously stated, when an agent derives doi(𝜑A)
for any physical action 𝜑𝐴, the action is supposed to have
been performed via some kind of semantic attachment
which links the agent to the external environment.

Since intendG(stabilize_patient) is not an action but
a sub-goal, the group will have to devise a plan to achieve
it. This will imply sensing actions and forms of reasoning
not shown here. Assume that the diagnosis has been
pneumothorax, and that the patient has also some wounds
which are bleeding. Upon completion of the planning
phase, the knowledge base of each agent 𝑖 contains the
following rule, that specifies how to reach the intended
goal in terms of actions to perform:

K𝑖

(︀
intendG(stabilize_patient) →

intendG(measure_vital_signs)∧
intendG(local_anesthesia)∧
intendG(bandage_wounds)∧

intendG(pneumothorax_aspiration)
)︀
.

As before, these rules will be instantiated and elabo-
rated by the single agents, and there will be some agent
who will finally perform each action. Specifically, the doc-
tor will be the one to perform pneumothorax aspiration,
and the nurses (according to their competences and their

preferences) will measure vital signs, administer local
anesthesia and bandage the wounds. The new function 𝐻 ,
in a sensitive domain such as healthcare, guarantees that
each procedure is administered by one who is capable to
(function 𝐴) but also enabled (function 𝐻), and so can
take responsibility for the action.

An interesting point concerns derogation, i.e., for in-
stance, life or death situations where, unfortunately, no-
one who is enabled to perform some urgently needed ac-
tion is available; in such situations perhaps, anyone who
is capable to perform this action might perform it. For
instance, a nurse, in absence of a doctor, might attempt
urgent pneumothorax aspiration.

From such perspective, semantics could be modified as
follows:

(t4’) 𝑀,𝑤 |= able_do𝑖(𝜑𝐴) iff 𝜑𝐴 ∈ 𝐴(𝑖, 𝑤)

(t4”) 𝑀,𝑤 |= enabled_do𝑖(𝜑𝐴) iff 𝜑𝐴 ∈ 𝐴(𝑖, 𝑤) ∩
𝐻(𝑖, 𝑤)

(t4-new) 𝑀,𝑤 |= can_do𝑖(𝜑𝐴) iff (𝜑𝐴 ∈ 𝐴(𝑖, 𝑤) ∩
𝐻(𝑖, 𝑤)) ∨ (𝜑𝐴 ∈ 𝐴(𝑖, 𝑤) ∧ ̸∃ 𝑗∈𝐺 : 𝜑𝐴 ∈
𝐴(𝑗, 𝑤) ∩𝐻(𝑗, 𝑤))

(t5-new) 𝑀,𝑤 |= can_do𝐺(𝜑𝐴) iff ∃ 𝑖 ∈ 𝐺 s.t. 𝑀,𝑤 |=
can_do𝑖(𝜑𝐴)

4. Canonical Model and Strong
Completeness

In this section, we introduce the notion of canonical model
of our logic, and we outline the proof of strong complete-
ness w.r.t. the proposed class of models (by means of a
standard canonical-model argument). As before, let Agt
be a set of agents.

Definition 4.1. A canonical L-INF model is a tuple
𝑀𝑐 = ⟨𝑊𝑐, 𝑁𝑐,ℛ𝑐, 𝐸𝑐, 𝐵𝑐, 𝐶𝑐, 𝐴𝑐, 𝐻𝑐, 𝑃𝑐, 𝑉𝑐⟩ where:

∙ 𝑊𝑐 is the set of all maximal consistent subsets of
ℒL-INF;

∙ ℛ𝑐 = {𝑅𝑐,𝑖}𝑖∈Agt is a collection of equivalence rela-
tions on 𝑊𝑐 such that, for every 𝑖 ∈ Agt and 𝑤, 𝑣 ∈
𝑊𝑐, 𝑤𝑅𝑐,𝑖𝑣 if and only if (for all 𝜙, K𝑖 𝜙 ∈ 𝑤 im-
plies 𝜙 ∈ 𝑣);

∙ For 𝑤 ∈ 𝑊𝑐, 𝜙 ∈ ℒL-INF let 𝐴𝜙(𝑖, 𝑤) =
{𝑣 ∈ 𝑅𝑐,𝑖(𝑤) | 𝜙 ∈ 𝑣}. Then, we put
𝑁𝑐(𝑖, 𝑤)={𝐴𝜙(𝑖, 𝑤) | B𝑖 𝜙 ∈ 𝑤};

∙ 𝐸𝑐 : Agt × 𝑊𝑐 −→ 2ℒACT is such that, for each
𝑖 ∈ Agt and 𝑤, 𝑣 ∈ 𝑊𝑐, if 𝑤𝑅𝑐,𝑖𝑣 then 𝐸𝑐(𝑖, 𝑤) =
𝐸𝑐(𝑖, 𝑣);

∙ 𝐵𝑐 : Agt ×𝑊𝑐 −→ N is such that, for each 𝑖 ∈ Agt
and 𝑤, 𝑣 ∈𝑊𝑐, if 𝑤𝑅𝑐,𝑖𝑣 then 𝐵𝑐(𝑖, 𝑤) = 𝐵𝑐(𝑖, 𝑣);

∙ 𝐶𝑐 : Agt × ℒACT ×𝑊𝑐 −→ N is such that, for each
𝑖 ∈ Agt , 𝛼 ∈ ℒACT, and 𝑤, 𝑣 ∈ 𝑊𝑐, if 𝑤𝑅𝑐,𝑖𝑣 then
𝐶𝑐(𝑖, 𝛼, 𝑤) = 𝐶𝑐(𝑖, 𝛼, 𝑣);
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∙ 𝐴𝑐 : Agt × 𝑊𝑐 −→ 2Atm𝐴 is such that, for each
𝑖 ∈ Agt and 𝑤, 𝑣 ∈ 𝑊𝑐, if 𝑤𝑅𝑐,𝑖𝑣 then 𝐴𝑐(𝑖, 𝑤) =
𝐴𝑐(𝑖, 𝑣);

∙ 𝐻𝑐 : Agt ×𝑊𝑐 −→ 2Atm𝐴 is such that, for each
𝑖 ∈ Agt and 𝑤, 𝑣 ∈ 𝑊𝑐, if 𝑤𝑅𝑐,𝑖𝑣 then 𝐻𝑐(𝑖, 𝑤) =
𝐻𝑐(𝑖, 𝑣);

∙ 𝑃𝑐 : Agt × 𝑊𝑐 × Atm𝐴 −→ N is such that,
for each 𝑖 ∈ Agt and 𝑤, 𝑣 ∈ 𝑊 , if 𝑤𝑅𝑐,𝑖𝑣 then
𝑃𝑐(𝑖, 𝑤, 𝜑𝐴) = 𝑃𝑐(𝑖, 𝑣, 𝜑𝐴);

∙ 𝑉𝑐 :𝑊𝑐 −→ 2Atm is such that 𝑉𝑐(𝑤) = Atm ∩ 𝑤.

Note that, analogously to what done before, 𝑅𝑐,𝑖(𝑤)
denotes the set {𝑣 ∈ 𝑊𝑐 | 𝑤𝑅𝑐,𝑖𝑣}, for each
𝑖 ∈ Agt . It is easy to verify that 𝑀𝑐 is an L-INF
model as defined in Def. 2.1, since, it satisfies condi-
tions (C1),(C2),(D1),(E1),(F1),(G1),(G2),(H1). Hence,
it models the axioms and the inference rules 1–17 and
21 introduced before (while, as mentioned in Section 2.4,
axioms 18–20 are assumed to be enforced by the specifi-
cation of agents behaviour). Consequently, the following
properties hold too. Let 𝑤 ∈𝑊𝑐, then:

∙ given 𝜙 ∈ ℒL-INF, it holds that K𝑖 𝜙 ∈ 𝑤 if and only
if ∀𝑣 ∈𝑊𝑐 such that 𝑤𝑅𝑐,𝑖𝑣 we have 𝜙 ∈ 𝑣;

∙ for 𝜙∈ℒL-INF, if B𝑖𝜙∈𝑤 and 𝑤𝑅𝑐,𝑖𝑣 then B𝑖𝜙∈𝑣.

Thus, 𝑅𝑐,𝑖-related worlds have the same knowledge
and 𝑁𝑐-related worlds have the same beliefs, i.e. there
can be 𝑅𝑐,𝑖-related worlds with different beliefs.

By proceeding similarly to what done in [12], we obtain
the proof of strong completeness. For lack of space, we
list the main theorems but omit lemmas and proofs, that
we have however developed analogously to what done in
previous work [5].

Theorem 4.1. L-INF is strongly complete for the class
of L-INF models.

Theorem 4.2. L-DINF is strongly complete for the class
of L-INF models.

5. Conclusions
In this paper, we discussed the last advances of a line of
work concerning how to exploit a logical formulation for
a formal description of the cooperative activities of groups
of agents. In past work, we had introduced beliefs about
physical actions concerning whether they could, are, or
have been executed, preferences in performing actions,
single agent’s and group’s intentions. So far however, a
limitation was missing about which actions an agent is
allowed to perform; in practical situations, in fact, it will
hardly be the case that every agent can perform every
action.

We have listed some useful properties of the extended
logic, that we have indeed proved, mainly strong com-
pleteness. Since the extension is small and modular, the

complexity of the extended logic has no reason to be
higher than that of the original L-DINF. In future work,
we mean to extend our logic in the direction of describing
multiple groups of agents and their interactions. We also
mean to introduce in L-DINF, based on our past work, an
explicit notion of time and time intervals.
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