
Argumentation Frameworks Induced by
Assumption-Based Argumentation: Relating Size and
Complexity

Anna Rapberger1, Markus Ulbricht2 and Johannes P. Wallner3

1TU Wien, Institute of Logic and Computation
2Leipzig University, Department of Computer Science
3Graz University of Technology, Institute of Software Technology

Abstract
A key ingredient of computational argumentation in AI is the generation of arguments in favor or against claims under scrutiny.
In this paper we look at the complexity of the argument generation procedure in the prominent structured formalism of
assumption-based argumentation (ABA). We show several results connecting expressivity of ABA fragments and number
of constructed arguments. First, for several NP-hard fragments of ABA, the number of generated arguments is not bounded
polynomially. Even under equivalent rewritings of the given ABA framework there are situations where one cannot avoid an
exponential blow-up. We establish a weaker notion of equivalence under which this blow-up can be avoided. As a general tool
for analyzing ABA frameworks and resulting arguments and their conflicts, we extend results regarding dependency graphs of
ABA frameworks, from which one can infer structural properties on the induced attacks among arguments.

1. Introduction
Computational models of argumentation are a central ap-
proach within non-monotonic reasoning [1] with a variety
of applications [2] in, e.g., legal or medical reasoning.
Key to many approaches to computational argumentation
are formalisms in what is called structured argumenta-
tion which specify formal argumentative workflows, with
assumption-based argumentation (ABA) [3], ASPIC+ [4],
defeasible logic programming (DeLP) [5], and deduc-
tive argumentation [6] among the prominent approaches
in the field. Reasoning within these formalisms is of-
tentimes carried out by instantiating argument structures
and conflicts among these arguments from (rule-based)
knowledge bases in a principled manner. The resulting
arguments and (directed) conflicts are referred to as ar-
gumentation frameworks (AFs) [7]. Argumentation se-
mantics define argumentative acceptability on an AF s.t.
conclusions can be drawn for the original knowledge base.

In the present paper, we will focus on ABA [8] which
is well studied and has applications in, e.g., decision mak-
ing [9, 10, 11]. Argumentative reasoning can be carried
out by instantiating arguments as derivations in the given
rule base and attacks between arguments based on con-
traries among the derivations.

Constructing an AF corresponding to a given knowl-
edge base has several advantages. From a technical point
of view, there is an abundance of research concerned with
AFs (see [1] for an overview) which can be applied to

NMR 2022: 20th InternationalWorkshop on Non-Monotonic Reason-
ing, August 07–09, 2022, Haifa, Israel

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

assess the instantiated AF. Thus, many typical research
questions can be answered out of the box after converting
the knowledge base. Moreover, since AFs are directed
graphs, they are accessible and user-friendly; much infor-
mation encoded in the knowledge base is made explicit
and clear within the graphical framework.

Let us consider the following situation. Suppose we
plan to model the behavior of the propositional CNF-
formula 𝜑 = (𝑥1 ∨ ¬𝑥2) ∧ (¬𝑥1 ∨ 𝑥2) via an ABA
knowledge base (see Section 2 for a formal introduction
to ABA). For this, we identify 𝜑 with the set {𝐶1, 𝐶2}
of clauses 𝐶1 = {𝑥1,¬𝑥2} and 𝐶2 = {¬𝑥1, 𝑥2}. A
natural representation would make use of assumptions
corresponding to the four occurring literals, i.e. 𝒜 =
{𝑥1, 𝑥2, 𝑥

′
1, 𝑥

′
2}. Then, rules model satisfaction of the

given clauses; we construct

𝑟1 = 𝐶1 ← 𝑥1. 𝑟3 = 𝐶2 ← 𝑥′
1.

𝑟2 = 𝐶1 ← 𝑥′
2. 𝑟4 = 𝐶2 ← 𝑥2.

with the intuitive meaning that e.g. 𝐶1 can be derived if 𝑟1
or 𝑟2 is applicable which in turn is the case if the assump-
tion 𝑥1 or the assumption ¬𝑥2 is set to true, respectively.
Lastly, the rule “𝑟5 = 𝜑 ← 𝐶1, 𝐶2.” models that 𝜑 can
be derived if both 𝐶1 and 𝐶2 can. When constructing
the argumentation framework corresponding to this ABA
knowledge base, we would make the conditions under
which 𝜑 can be derived (i.e. what satisfying assignments
to the formula exist) visible; indeed, among others, the
following arguments would be obtained:

𝜑

𝑐1 𝑐2

𝑥1 𝑥′
1

𝐴1:

𝜑

𝑐1 𝑐2

𝑥1 𝑥2

𝐴2:

𝜑

𝑐1 𝑐2

𝑥′
2 𝑥′

1

𝐴3:

𝜑

𝑐1 𝑐2

𝑥′
2 𝑥2

𝐴4:

92

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

We can now directly read off that e.g. {𝑥1, 𝑥2} (see 𝐴3)
constitutes a satisfying assignment to 𝜑 since both 𝐶1 and
𝐶2 (and thus 𝜑) can be derived. We can also see that
{𝑥1, 𝑥

′
1} would in principle infer 𝜑 as well, but this set

of literals does not correspond to a well-defined (partial)
assignment; we can not set 𝑥1 to true and false simultane-
ously. We thus see that constructing the arguments helps
visualizing the information encoded in the knowledge
base and makes certain relations explicit. Indeed, sim-
ply inspecting all arguments deriving 𝜑 suffices to decide
whether there is a satisfying assignment to our formula.

However, since checking satisfiability of a given CNF-
formula is the prototypical NP-complete problem, we
expect that this procedure must come with computational
cost elsewhere. Indeed, many structured argumentation
formalisms (including ABA) suffer from the drawback
that the knowledge base gives rise to exponentially many
(or even an infinite amount of) arguments [12, 13, 14]. So,
in a nutshell, the instantiated AF makes information within
the knowledge base explicit, but requires many arguments
to do so. This gives rise to the following question:

Is the argumentation framework induced
by an ABA knowledge base large in size,
but reasoning is easy?

Although this idea is appealing in principle, the answer
turns out to be negative in general: Even if we reduce our
attention to the class of AFs induced by ABA knowledge
bases, reasoning is still intractable in general. Nonethe-
less, we expect an underlying trade-off between size and
complexity which is worth to be investigated. As a high
level observation we expect an ideal ABA knowledge base
to

• induce a large AF, but with reasoning being simple,
or

• a concise AF, in which reasoning is potentially
hard.

If the former is the case, then the instantiation proce-
dure can help displaying relationships encoded within the
knowledge base, as it was the case for our CNF formula
𝜑 from above. If on the other hand the latter case occurs,
then the constructed AF is efficient and easy to capture
visibly. In this paper, we will investigate this trade-off
and examine the relationship between size and complexity
of the induced AF. Most notably, we will show that each
ABA framework can be transferred in a way that either
reasoning becomes easy (Theorem 32) or the AF is of
polynomial size (Proposition 28), but reaching both goals
simultaneously is not possible in general (Theorem 32).

In doing so, our goal is also contributing to a general
formal understanding under which conditions a knowl-
edge base induces large AFs and which techniques might
help avoiding this blow-up. For carrying out reasoning

on ABA via using AFs, both the size of the resulting
AF and complexity of the resulting AF can pose barri-
ers to (automated) argumentative reasoning. On the one
hand size and complexity of AFs are direct challenges
for solvers [15, 16]. On the other hand, a large number
of arguments in an AF can be a barrier to methods sup-
porting argumentative explanations on the AF, due to the
sheer number of arguments. Therefore, investigating for-
mal foundations which provide guidance how to encode
information, depending on the intended behavior of the
induced AF, is a worthwhile endeavor.

The main contributions of the paper can be summarized
as follows.

• We first deal with the case of infinite instantiated
AFs and show that one can restrict attention to
finite cores.

• We relate bounds on the given ABA instance to (i)
size bounds and computability of the constructed
AF and (ii) complexity of reasoning.

• We show that each ABA framework can be rewrit-
ten in a way that reasoning in the induced AF is
tractable, while credulous acceptance of a target
conclusion is preserved.

• We present, for a fairly large class of ABA frame-
works, a general transformation procedure to ob-
tain a translated ABA framework which is equiva-
lent under projection and has a polynomial-sized
AF. We present an impossibility result suggesting
that the notion of equivalence cannot be strength-
ened to full equivalence.

• We extend the notion of dependency graphs on
ABA frameworks (see, e.g., Craven and Toni,
2016) to a general tool for investigating ABA
frameworks able to check structural properties
inducing milder complexity, such as acyclic or
odd-cycle free AFs.

2. Assumption-based
Argumentation

We recall preliminaries for assumption-based argumen-
tation (ABA) [8, 3] and argumentation frameworks
(AFs) [7].

The first ingredient of ABA is that of a deductive system
(ℒ,ℛ), with ℒ a formal language andℛ a set of inference
rules over ℒ. In this work we assume that ℒ is a set of
atoms. A rule 𝑟 ∈ ℛ is of the form 𝑠 ← 𝑎1, . . . , 𝑎𝑛

with 𝑎𝑖 ∈ ℒ. A shorthand for the head of a rule 𝑟 is
defined by ℎ𝑒𝑎𝑑(𝑟) = {𝑠}, and for the (possibly empty)
body via 𝑏𝑜𝑑𝑦(𝑟) = {𝑎1, . . . , 𝑎𝑛}. An ABA framework
contains a deductive system and specifies which atoms
are assumptions and what are contraries of assumptions.

93

Definition 1. An ABA framework is a tuple 𝐷 =
(ℒ,ℛ,𝒜,), where (ℒ,ℛ) is a deductive system,𝒜 ⊆ ℒ
a non-empty set of assumptions, and a function map-
ping assumptions 𝑎 ∈ 𝒜 to atoms 𝑠 ∈ ℒ (the contrary
function).

In this work, we focus on ABA frameworks which are
(i) flat, i.e., for each rule 𝑟 ∈ ℛ it holds that ℎ𝑒𝑎𝑑(𝑟) /∈ 𝒜
(no assumptions can be derived), (ii) ℒ,ℛ, and 𝑏𝑜𝑑𝑦(𝑟)
for each 𝑟 ∈ 𝑅 is finite, and (iii) each rule inℛ is stated
explicitly (given as input).

Semantics of ABA frameworks can be defined on sub-
sets of the assumptions or via translation to arguments
and attacks. Below, we recall both notions.

Arguments in an ABA framework 𝐷 = (ℒ,ℛ,𝒜,)
are based on proof trees (derivations). Due to our focus on
computational aspects, we will in later sections consider
a different representation of arguments, hence we refer
to arguments based directly on proof trees as “tree-based
arguments”. Formally, a tree-based argument, denoted by
𝐴 ⊢ℛ 𝑠, with 𝐴 ⊆ 𝒜 and 𝑠 ∈ ℒ based on 𝐷 is defined
as a finite labeled rooted tree s.t. the root is labeled with
𝑠, each leaf is labeled by an assumption 𝑎 ∈ 𝒜 or a
dedicated symbol ⊤ /∈ ℒ s.t. the set of all labels of leaves
is 𝐴, and each internal node is labeled with ℎ𝑒𝑎𝑑(𝑟) of a
rule 𝑟 ∈ ℛ s.t. the set of labels of children of this node
is equal to 𝑏𝑜𝑑𝑦(𝑟) or ⊤ if the body is empty. Moreover,
if 𝑎 ∈ 𝒜, then {𝑎} ⊢ℛ 𝑎 is also a tree-based argument
(special case without using any derivation rules). In brief,
a tree-based argument represents a derivation using rules
inℛ to derive 𝑠 starting from assumptions in 𝒜. We say
that 𝑠 is the claim of the tree-based argument. We remark
that there can be multiple tree-based arguments with the
same set of assumptions and claim.

Given an ABA framework 𝐷 = (ℒ,ℛ,𝒜,), deriv-
ability for a set of assumptions 𝐴 ⊆ 𝒜 is defined via
Th𝐷(𝐴) = {𝑠 | there is a tree-based argument 𝐴′ ⊢ℛ
𝑠,𝐴′ ⊆ 𝐴}. That is, Th𝐷(𝐴) contains all atoms that
can be derived (via tree-based arguments) using assump-
tions in 𝐴. We omit subscripts 𝐷 andℛ if clear from the
context.

We now recall conflicts, admissible sets, and subse-
quently the corresponding definitions on tree-based argu-
ments.

Definition 2. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work, and 𝐴,𝐵 ⊆ 𝒜 be two sets of assumptions. Assump-
tion set 𝐴 attacks assumption set 𝐵 in 𝐷 if 𝑏 ∈ Th(𝐴)
for some 𝑏 ∈ 𝐵.

In words, an assumption set 𝐴 attacks assumption set
𝐵 if it is possible to derive from 𝐴 the contrary of some
assumption in 𝐵.

Definition 3. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work. An assumption set 𝐴 ⊆ 𝒜 is conflict-free in 𝐷 iff

𝐴 does not attack itself. Set 𝐴 defends assumption set
𝐵 ⊆ 𝒜 in 𝐷 iff for all 𝐶 ⊆ 𝒜 that attack 𝐵 it holds that
𝐴 attacks 𝐶.

In this paper, we focus on the central semantical con-
cept of admissibility.

Definition 4. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work. A set of assumptions 𝐴 ⊆ 𝒜 is admissible iff 𝐴 is
conflict-free and 𝐴 defends itself.

We move on to tree-based arguments.

Definition 5. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work, and (𝐴 ⊢ 𝑠) and (𝐵 ⊢ 𝑡) two tree-based argu-
ments based on 𝐷. Tree-based argument (𝐴 ⊢ 𝑠) attacks
(𝐵 ⊢ 𝑡) if there is an assumption 𝑏 ∈ 𝐵 s.t. 𝑏 = 𝑠.

Collecting all tree-based arguments and attacks based
on an ABA results in an argumentation framework corre-
sponding to the given ABA.

Definition 6. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work. The pair (A,R) is called the argumentation frame-
work (AF) corresponding to 𝐷 if A is the set of all tree-
based arguments based on 𝐷, and R is the set of all
attacks based on 𝐷.

Below we recall the analogous notions of conflict-
freeness, defense and admissibility in AFs.

Definition 7. Let 𝐷 be an ABA framework, 𝐹 = (A,R)
the corresponding AF, and 𝐻 ⊆ A a set of tree-based
arguments of 𝐹 . The set 𝐻 is conflict-free (in 𝐹) if there
are no arguments (𝐴 ⊢ 𝑠), (𝐵 ⊢ 𝑡) ∈ 𝐻 s.t. (𝐴 ⊢
𝑠) attacks (𝐵 ⊢ 𝑡). A conflict-free set 𝐻 defends an
argument (𝐴 ⊢ 𝑠) (in 𝐹) if for each argument (𝐵 ⊢ 𝑡) ∈
A that attacks (𝐴 ⊢ 𝑠) it holds that there is an argument
(𝐶 ⊢ 𝑢) ∈ 𝐻 s.t. (𝐶 ⊢ 𝑢) attacks (𝐵 ⊢ 𝑡). Moreover, 𝐻
is admissible (in 𝐹) if it is conflict-free and defends itself.

Claims of tree-based arguments are collected via
cl(𝐻) = {𝑠 | (𝐴 ⊢ 𝑠) ∈ 𝐻} for a set of tree-
based arguments 𝐻 , and assumptions via asms(𝐻) =⋃︀

(𝐴⊢𝑠)∈𝐻 𝐴.
To clearly distinguish semantics, we say that 𝐴 ⊆ 𝒜

is an admissible assumption set (or an adm-assumption
set) and that a set of tree-based arguments 𝐸 is an admis-
sible extension (or adm-extension for short). We refer
to all adm-assumption sets of 𝐷 via adm(𝐷), and to
all adm-extensions of an AF 𝐹 by adm(𝐹). There is a
direct correspondence between semantics via assumption
sets and sets of tree-based arguments (see, e.g., Čyras
et al., 2018).

Proposition 8. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work and 𝐹 = (A,R) the corresponding AF.

94

• If 𝐸 ∈ adm(𝐷) then {(𝐴 ⊢ 𝑠) | 𝐴 ⊆
𝐸, (𝐴 ⊢ 𝑠) is a tree-based argument in 𝐷} ∈
adm(𝐹), and

• if 𝐻 ∈ adm(𝐹) then asms(𝐻) ∈ adm(𝐷).

An important reasoning task on ABA and AFs is cred-
ulous reasoning under admissibility. An atom 𝑠 is cred-
ulously accepted under admissibility in an ABA 𝐷 iff
there is an adm-assumption-set 𝐸 s.t. 𝑠 ∈ Th(𝐸). For a
given AF (A,R) and 𝛼 ∈ A, it holds that 𝛼 is credulously
accepted under admissibility in 𝐹 iff there is an adm-
extension 𝐻 containing 𝛼. We remark that credulous
acceptance of tree-based arguments in a given AF can be
directly generalized to ask for acceptance of claims 𝑠 of
tree-based arguments, i.e., asking whether there is some
adm-extension containing some tree-based argument 𝛼
with claim 𝑠.

Complexity results for reasoning in ABA and AFs were
established (see, e.g., Dvořák and Dunne, 2018, for an
overview) when the corresponding structure is given (in
particular for AFs the full AF is given as input). For both
assumption sets and extensions, credulous acceptance un-
der admissibility is NP -complete.

Example 9. We formalize the introductory example. The
ABA framework 𝐷 = (ℒ,ℛ,𝒜,) is given by

ℒ = {𝑐1, 𝑐2, 𝜑} ∪ 𝒜,

𝒜 = {𝑥1, 𝑥
′
1, 𝑥2, 𝑥

′
2} with 𝑥𝑖 = 𝑥′

𝑖, 𝑥
′
𝑖 = 𝑥𝑖,

moreover, the rulesℛ of the given ABA are

𝑐1 ← 𝑥1; 𝑐1 ← 𝑥′
2; 𝑐2 ← 𝑥′

1;

𝑐2 ← 𝑥2; 𝜑← 𝑐1, 𝑐2.

It holds that each 𝐴 ⊆ 𝒜 is admissible whenever
{𝑥𝑖, 𝑥

′
𝑖} ̸⊆ 𝐴 for 𝑖 ∈ {1, 2} (no “complementary lit-

erals”). Moreover, the literal 𝜑 is credulously accepted
under admissibility, since, e.g. {𝑥1, 𝑥2} is admissible and
𝜑 ∈ Th({𝑥1, 𝑥2}).

3. Infinite AFs, Cores, and
Representation

In general it can be the case that an AF 𝐹 corresponding
to a given ABA 𝐷 is not finite. We first recall some basic
properties of such (possibly) infinite corresponding AFs.

We say that an AF 𝐹 = (A,R) is infinite if A is infinite.
An AF 𝐹 is finitary [7] if it holds that each argument
𝛼 ∈ A is attacked by a finite number of arguments (but
the overall number of arguments may still be infinite).

Example 10. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work with 𝒜 = {𝑎, 𝑏}, ℒ = {𝑥, 𝑦} ∪ 𝒜, four rules
(𝑥 ← 𝑎), (𝑥 ← 𝑥), (𝑦 ← 𝑦), and (𝑦 ← 𝑏), and 𝑎 = 𝑦

and 𝑏 = 𝑥. There are infinitely (countably) many tree-
based arguments based on 𝐷 (via chaining rules arbitrary
many times), and argument {𝑎} ⊢ 𝑎 is attacked by all
tree-based arguments concluding 𝑦 (of which there are
infinitely many).

This leads to the simple observation stated next. That
there are countably many tree-based arguments can be
seen since one can write (for a given ABA) each argument
as a string over a restricted alphabet.

Observation 11. Given an ABA framework, the corre-
sponding AF can be (countably) infinite and non-finitary.

Nevertheless, as one can see intuitively in the example,
AFs corresponding to an ABA framework can be “cut
down” to a finite core by removing “duplicates” of ar-
guments. This observation is sometimes assumed to be
folklore in the research community and stated for other
forms of structured argumentation [12].

Let us formalize how to obtain such a duplicate-free
core. Tree-based arguments in an ABA framework are
defined as proof trees, with each argument (𝐴 ⊢ 𝑠) based
on a set of assumptions and a claim. While rules are driv-
ing derivability, they are not important when evaluating
arguments: conflicts between arguments are solely spec-
ified via assumptions 𝐴 and claim 𝑠. A natural way to
represent arguments is thus by using only 𝐴 and 𝑠. From
now on, we mean by arguments pairs (𝐴, 𝑠) but insist that
there is a corresponding proof tree (𝐴 ⊢ 𝑠) in the given
ABA framework. We call the resulting set of arguments
the core of an ABA.

Definition 12. Let 𝐷 = (ℒ,ℛ,𝒜,) be
an ABA framework. Let A = {(𝐴, 𝑠) |
there is a tree-based argument (𝐴 ⊢ 𝑠) in 𝐷}. An
argument (𝐴, 𝑠) attacks an argument (𝐵, 𝑡) (in 𝐷) if
∃𝑏 ∈ 𝐵 s.t. 𝑏 = 𝑠, with R being the set of all such attacks.
The AF 𝐹 = (A,R) is called the core of 𝐷.

Claims and assumptions of a set of arguments 𝐻 ⊆
A are defined similarly as for tree-based arguments:
cl(𝐻) = {𝑠 | (𝐴, 𝑠) ∈ 𝐻} and asms(𝐻) =⋃︀

(𝐴,𝑠)∈𝐻 𝐴. Given an ABA 𝐷 its corresponding AF 𝐹

and core 𝐹 ′, in addition to the core being finite it follows
directly that

• for each tree-based argument (𝐴 ⊢ 𝑠) there is an
argument (𝐴, 𝑠) and vice versa, and thus

• 𝐹 has an admissible set of tree-based arguments
𝐻 with cl(𝐻) = 𝑆 and asms(𝐻) = 𝐴 iff 𝐹 ′ has
an admissible set of arguments 𝐻 ′, cl(𝐻 ′) = 𝑆
and asms(𝐻 ′) = 𝐴.

If one is not interested in the actual derivation of a claim,
representing an argument as a pair (𝐴, 𝑠) narrows down
the argument to the information required in order to con-
struct the corresponding AF (the core) and perform the

95

standard reasoning tasks. To some extent surprising per-
haps, we can find a complexity-theoretic result supporting
the intuition that the core is a more efficient representa-
tion: while deciding whether a proof tree constitutes a
tree-based argument for a given ABA is immediate, it is
NP-hard to decide whether a pair (𝐴, 𝑠) occurs in the
core.

Proposition 13. It is NP-hard to decide whether there is
a proof tree from a given set of assumptions to a given
claim.

Proof. Let 𝜑 = 𝑐1∧· · ·∧𝑐𝑚 be a Boolean formula in con-
junctive normal form over vocabulary 𝑋 = {𝑥1, . . . , 𝑥𝑛}
with 𝐶 = {𝑐1, . . . , 𝑐𝑚} the set of clauses. We construct
an ABA framework 𝐷 with 𝒜 = 𝐶, atoms 𝐶 together
with literals over 𝑋 and {𝑑𝑥1 , . . . , 𝑑𝑥𝑛}, and the follow-
ing rules (note that “¬𝑥” is a symbol in ABA and has no
meaning attached to the negation sign):

𝑥← {𝑐 ∈ 𝐶|𝑥 ∈ 𝑐}, and

¬𝑥← {𝑐 ∈ 𝐶|¬𝑥 ∈ 𝑐} for each 𝑥 ∈ 𝑋

𝑑𝑥 ← 𝑥 and 𝑑𝑥 ← ¬𝑥 for each 𝑥 ∈ 𝑋

𝑓 ← 𝑑𝑥1 , . . . , 𝑑𝑥𝑛

Contraries are assigned to literals not appearing in any
rules (for the task of argument construction, contraries are
not relevant). It can be shown that (𝐶, 𝑓) is an argument
of the resulting ABA framework iff 𝜑 is satisfiable.

We want to emphasize that this result does not imply
that it is harder to compute the core compared to a corre-
sponding AF, since one can directly extract the core from
the corresponding AF. Rather, Proposition 13 formalizes
that skipping computation of the proof trees in order to
construct the core is a hard task in general.

From now on, we restrict our attention to cores, and
assume that, for a given ABA, we operate exclusively on
a core, unless explicitly mentioned otherwise.

4. Bounds on Assumption-based
Frameworks

In this section we study the impact of bounding certain
parts of the input ABA on the complexity of reasoning
and size of cores (and corresponding AFs in cases). We
consider bounds on derivation-depth and bodies of rules.

When investigating size of cores, we make use of the
following definition. Given an ABA 𝐷 the size of 𝐷 (|𝐷|)
is the length of a (direct) string representation of 𝐷. Let
𝒟 be a set of ABA frameworks. We say that the cores of
𝒟 are polynomially bounded if there is a polynomial 𝑝 s.t.
𝑝(|𝐷|) ≥ |A| for all 𝐷 ∈ 𝒟 with 𝐹 = (A,R) the core of
𝐷. We will see below that the cores of the set of all ABA
frameworks are not polynomially bounded.

4.1. Bounds and Complexity of
Reasoning

First, we consider bounds on (i) the depth of chaining
rules and (ii) the size of bodies of rules. We show that
restricting derivation-depth or rule-size does not yield
milder complexity regarding credulous reasoning under
admissibility.

Formally, an ABA 𝐷 is bounded by 𝑘-derivation-depth
if each proof tree of 𝐷 has height at most 𝑘 (i.e., the
longest path from assumptions to claim is at most 𝑘). A
rule of the form 𝑠← 𝑏1, . . . , 𝑏𝑛 is bounded by 𝑘 if 𝑛 ≤ 𝑘;
an ABA 𝐷 is rule-size bounded by 𝑘 if each rule in 𝐷 is
bounded by 𝑘.

In order to show that bounding derivation-depth is in-
tractable, we reduce the Boolean Satisfiability Problem
via the following reduction:

Reduction 14. Let 𝜑 = 𝑐1 ∧ · · · ∧ 𝑐𝑚 be a Boolean for-
mula in conjunctive normal form (CNF) over clauses 𝐶 =
{𝑐1, . . . , 𝑐𝑚} and Boolean variables 𝑋 = {𝑥1, . . . , 𝑥𝑛}.
Define 𝑋 ′ = {𝑥′ | 𝑥 ∈ 𝑋}. Construct 𝐷 = (ℒ,ℛ,𝒜,)
by

• ℒ = 𝑋 ∪𝑋 ′ ∪ 𝐶 ∪ {𝜑},
• 𝒜 = 𝑋 ∪𝑋 ′,
• 𝑥 = 𝑥′ and 𝑥′ = 𝑥 for each 𝑥 ∈ 𝑋 , and
• let the set of rules be composed of 𝜑 ←
𝑐1, . . . , 𝑐𝑚, and 𝑐𝑖 ← 𝑧 with 𝑧 = 𝑥 and 𝑥 ∈ 𝑐𝑖
or 𝑧 = 𝑥′ and ¬𝑥 ∈ 𝑐𝑖.

The resulting ABA framework is bounded by 2-
derivation-depth as each proof tree has height at most
2. We observe that the presented reduction formalizes our
introductory example:

Example 15. Given the CNF-formula 𝜑 = (𝑥1 ∨¬𝑥2)∧
(¬𝑥1∨𝑥2) from the introduction. Following Reduction 14,
we obtain an ABA framework 𝐷 = (ℒ,ℛ,𝒜,) which
contains the assumptions 𝒜 = {𝑥1, 𝑥2, 𝑥

′
1, 𝑥

′
2} and the

rules 𝜙← 𝑐1, 𝑐2 and

• 𝑐1 ← 𝑥1, 𝑐1 ← 𝑥′
2 (since 𝑥1,¬𝑥2 ∈ 𝑐1) as well

as
• 𝑐2 ← 𝑥′

1, 𝑐2 ← 𝑥2 (since 𝑥′
1, 𝑥2 ∈ 𝑐2)

Moreover, the ABA framework assigns symmetric con-
traries, i.e., 𝑥𝑖 = 𝑥′

𝑖 and 𝑥′
𝑖 = 𝑥𝑖 for 𝑖 ∈ {1, 2}. The

resulting framework indeed coincides with the introduc-
tory example (cf. Example 9).

It can be shown that the special atom 𝜑 is credulously
accepted under admissible semantics in the ABA frame-
work iff the formula 𝜑 is satisfiable.

Observe that tree-based arguments in the correspond-
ing AF in Reduction 14 have derivation-depth of at most
2. We obtain that credulous reasoning is NP-complete

96

𝑥1 𝑥′
1

𝑥2 𝑥′
2

𝑐1

𝑥1

𝑐1

𝑥′
2

𝑐2

𝑥′
1

𝑐2

𝑥2

𝜑

𝑐1 𝑐2

𝑥1 𝑥′
1

𝜑

𝑐1 𝑐2

𝑥1 𝑥2

𝜑

𝑐1 𝑐2

𝑥′
2 𝑥′

1

𝜑

𝑐1 𝑐2

𝑥′
2 𝑥2

Figure 1: AF instantiation of the ABA framework from
Example 15 for the formula 𝜑 = (𝑥1 ∨ ¬𝑥2) ∧ (¬𝑥1 ∨ 𝑥2)
(cf. Reduction 14).

even when restricting ABA frameworks to be bounded by
𝑘-derivation-depth for some constant 𝑘 ≥ 2. Moreover,
in general Reduction 14 yields cores which are not poly-
nomially bounded by the given ABA framework: for a
formula 𝜙 with 𝑚 clauses and 𝑘 variables per clause, we
construct up to 𝑘𝑚 many arguments with conclusion 𝜙.
Figure 1 depicts the core (equivalent to the corresponding
AF) of the constructed ABA framework from Example 15.
Here, we have 22 many arguments with conclusion 𝜙.

A slight adaption of the reduction shows that credu-
lous reasoning under admissibility remains NP -complete,
when bounding instead the body-size of the rules by 2.

Theorem 16. Credulous reasoning under admissibility
remains NP-hard even if restricted to derivation-depth
bounded or rule-size bounded ABA frameworks.

A closer inspection of the ABAs constructed from Re-
duction 14 points to another class of ABA frameworks
with notable properties. In this reduction, we construct
ABA frameworks with a symmetric contrary function, i.e.,
𝑎 = 𝑏 iff 𝑏 = 𝑎 for all 𝑎, 𝑏 ∈ 𝒜. We call these ABA
frameworks symmetric. First, observe that credulous rea-
soning in this framework is NP -hard (following directly
from Theorem 16).

Corollary 17. Credulous reasoning under admissibility
is NP -hard for symmetric ABA frameworks.

On the other hand, we observe that the computational
hardness in symmetric ABAs stems entirely from the con-
struction of arguments: indeed, constructing the cores
results in AFs with |𝒜|/2 many even cycles of length 2 (a
cycle for every assumption and its negation) satisfying
that all arguments with claim 𝑠 /∈ 𝒜 have only incoming
attacks. For an example we refer to Figure 1. Credulous
reasoning under admissibility in such AFs is decidable
in time polynomial in the number of arguments, since it
suffices to check if there exists an argument having the
queried claim that is not attacked by both arguments in a
2-cycle.

Proposition 18. Credulous reasoning under admissibility
is decidable in polynomial time in cores of symmetric
ABAs.

4.2. Size of the Constructed AF
From identifying arguments as pairs of assumption sets
and claims we directly obtain that the number of argu-
ments in cores is bounded by 2|𝒜| · |ℒ ∖ 𝒜| + |𝒜| for
each ABA framework 𝐷 = (ℒ,ℛ,𝒜,). We establish a
bound on the number of tree-based arguments that consid-
ers derivation-depth and rule-size and show that bound-
ing both derivation-depth and rule-size yields ABAs with
polynomially bounded cores.

The number of tree-based arguments that can be con-
structed from a given ABA framework 𝐷 depends on the
number of rules, derivation-depth, rule-size, and number
of rules with same heads, as follows.

Theorem 19. For each 𝑚-derivation-depth and 𝑘-rule-
size bounded ABA framework 𝐷 = (ℒ,ℛ,𝒜,) with
|{𝑟 ∈ ℛ | ℎ𝑒𝑎𝑑(𝑟) = 𝑠}| ≤ 𝑙 for all 𝑠 ∈ ℒ, there are at
most 𝑙𝑝 · |ℒ ∖ 𝒜|+ |𝒜| many tree-based arguments with
𝑝 =

∑︀𝑚−1
𝑖=0 𝑘𝑖.

Proof. To prove the statement, we show that the number
of all possible trees constructible from 𝐷 is bounded by
𝑛 · 𝑙𝑝 with 𝑝 =

∑︀𝑚−1
𝑖=0 𝑘𝑖 and 𝑛 = |ℒ ∖ 𝒜|. Here, we

do not require that the leaves of the trees are labelled as
assumptions. Observe that the set of all tree-based argu-
ments is a subset of the number of all trees constructible
from 𝐷.

For each literal 𝑠 ∈ ℒ ∖ 𝒜 which appears as head of
a rule in 𝐷, there are at most 𝑙 · 𝑥𝑘 many trees where
𝑥 is the maximum number of trees with head 𝑐 for a
literal 𝑐 ∈ 𝑏𝑜𝑑𝑦(𝑟) for some rule 𝑟 with ℎ𝑒𝑎𝑑(𝑠). Indeed,
there are at most 𝑙 rules with head 𝑠, all bounded by 𝑘. We
express this correspondence via the function 𝑓(𝑥) = 𝑙 ·𝑥𝑘.
The total number of trees with root 𝑠 constructible from
𝐷 after 𝑚 steps is thus given by 𝑓𝑚(1). We show that
𝑓𝑚(1) = 𝑙

∑︀𝑚−1
𝑖=0 𝑘𝑖

via induction over 𝑚.
For 𝑚 = 1, we have 𝑓(1) = 𝑙.
Now assume the statement holds true for rule depth

𝑚− 1.

𝑓𝑚(1) = 𝑙 · (𝑓𝑚−1(1))𝑘

= 𝑙 · (𝑙
∑︀𝑚−2

𝑖=0 𝑘𝑖

)𝑘

= 𝑙 · 𝑙𝑘(
∑︀𝑚−2

𝑖=0 𝑘𝑖)

= 𝑙
∑︀𝑚−1

𝑖=0 𝑘𝑖

.

We thus obtain that the number of all possible trees
constructible from 𝐷 is bounded by 𝑙𝑝 · 𝑛 with 𝑝 =∑︀𝑚−1

𝑖=0 𝑘𝑖.

97

Intuitively, exponentiality of the number of tree-based
arguments stems from 𝑝, and thus from derivation-depth
and rule-size. Moreover, it is clear that the result extends
to the number of arguments in the cores of derivation-
depth and rule-size bounded ABA frameworks. Bounding
both parameters thus yields polynomially bounded cores.

Corollary 20. The cores of the set of ABA frameworks
which are both derivation-depth and rule-size bounded by
some constant 𝑘 are polynomially bounded.

Bounding derivation-depth or rule-size individually,
however, does not yield cores that are polynomially
bounded.

Proposition 21. The cores of ABA frameworks which
are derivation-depth bounded by some constant 𝑘 are not
polynomially bounded. Likewise, the cores of rule-size
bounded ABA frameworks are not polynomially bounded.

4.3. Computation of the Core
As the reader might have noticed, having polynomially
bounded cores does not (directly) imply the existence of
a polynomial-time algorithm that can actually obtain the
core in question. We show that for ABA frameworks
which are rule-size bounded an algorithm can be ob-
tained that enumerates arguments in polynomial-time re-
garding size of input and number of arguments. This
can be achieved by a direct algorithm: for each rule
𝑟 with 𝑏𝑜𝑑𝑦(𝑟) = {𝑠1, . . . , 𝑠𝑛} and already computed
(tree-based) arguments {𝛼1, . . . , 𝛼𝑚} loop through each
𝑛-sized subset 𝑋 of {𝛼1, . . . , 𝛼𝑚} and check whether
cl(𝑋) = 𝑏𝑜𝑑𝑦(𝑟). If so, attach it to a potential new argu-
ment concluding ℎ𝑒𝑎𝑑(𝑟). If this argument is fresh, add
it to the output. If 𝑛 ≤ 𝑘 for a constant 𝑘, this search is
bounded polynomially by the given ABA and size of core.

Theorem 22. The cores of ABA frameworks whose rule-
size is bounded by a constant can be constructed in poly-
nomial time w.r.t. the size of the given ABA and core.

Proof. Consider the following brute-force procedure.

• loop through each rule 𝑟 ∈ ℛ as long as new
arguments are added.

– given 𝑏𝑜𝑑𝑦(𝑟) = {𝑎1, . . . , 𝑎𝑡}, for each
subset 𝑥1, . . . , 𝑥𝑡 of the already con-
structed arguments s.t. cl(𝑥𝑖) = 𝑎𝑖

* if the corresponding argument 𝐴 ⊢
ℎ𝑒𝑎𝑑(𝑟) is not yet constructed, add it
to the list;

* otherwise break;

By definition, this algorithm constructs the correct argu-
ments in 𝐹 . The outer loop over each rule can be left
once there was one iteration which did not induce any

new argument. Therefore, after at most |A|+ 1 iterations
we are done. Each iteration visits |ℛ| rules. Consider one
particular rule 𝑟. For each body literal, we need to search
through at most |A| arguments. Since |𝑏𝑜𝑑𝑦(𝑟)| ≤ 𝑘,
this is in 𝒪(|A|𝑘). In order to decide whether or not the
induced argument 𝐴 ⊢ ℎ𝑒𝑎𝑑(𝑟) needs to be added, we
again search through the at most |A| already constructed
arguments and compare. In summary, we visit rules at
most (|A|+ 1) · |ℛ| times and thereby, we can perform
the necessary computations in time in 1𝒪(|A|𝑘+1).

The preceding result together with Corollary 20 yields
a procedure to obtain a polynomially bounded core in
polynomial time for rule-size bounded and derivation-
depth bounded ABA frameworks.

Corollary 23. The cores of the set of rule-size and
derivation-depth bounded ABA frameworks can be com-
puted in polynomial time in size of the given ABA frame-
work.

We remark that it is currently not known whether the
condition of rule-size boundedness in Theorem 22 can
be dropped; we conjecture that the condition is required.
In any case, Theorem 22 also yields the result that enu-
merating arguments in the core of a rule-size bounded
ABA framework has incremental polynomial time com-
plexity [19], i.e., one can in polynomial time w.r.t. the
given ABA and partially enumerated arguments find a
fresh argument or conclude that all arguments were enu-
merated.

5. Transformations and
Complexity Trade-offs

We saw that ABA frameworks may yield a core not poly-
nomially bounded, but with polynomial-time reasoning
(under the credulous view and admissibility), e.g., when
looking at Reduction 14. In this section we look at possi-
bility results and an impossibility result of transforming
a given ABA to another ABA framework whose core is
polynomially bounded or allows for polynomial-time rea-
soning.

5.1. Tractable Reasoning in Core
Recall that one of our main goals was to formalize the
idea that one could construct ABA frameworks in a way
that the induced AF might be large, but yields tractable
reasoning in return. As we already mentioned, the ABA
framework constructed in the motivating example corre-
sponds to applying Reduction 14. Our intuition is that the
ABA frameworks constructed according to this reduction
indeed yield AFs with tractable reasoning (though in the
potential exponential size of the AF). This intuition can

98

be confirmed as follows: First, observe hat Reduction 14
yields symmetric ABA frameworks (by definition). Thus
by Proposition 18 stating that reasoning in symmetric AFs
is indeed tractable, we obtain the desired outcome.

However, this only states that a certain class of ABA
frameworks possesses this property. We would like to go
one step further and transform an arbitrary given ABA
framework s.t. the corresponding AF behaves this way. It
turns out that this can be achieved indeed, at least if we
restrict our attention to some target conclusion, say 𝑥 ∈ ℒ.
The underlying idea is surprisingly simple: Suppose we
want to transform the ABA framework 𝐷. Since the SAT
problem is NP-complete, we can in polynomial time con-
struct a formula 𝜑 which is satisfiable iff 𝑥 is credulously
accepted in 𝐷. Now, our Reduction 14 translates 𝜑 into
an ABA framework with the behavior we wish to obtain.
All these steps can be performed in polynomial time. This
yields the following main theorem.

Theorem 24. For each ABA framework 𝐷 =
(ℒ,ℛ,𝒜,) and 𝑥 ∈ ℒ one can construct an ABA frame-
work 𝐷′ in polynomial time s.t.

• under admissibility, 𝑥 is credulously accepted in
𝐷 iff 𝑥 is credulously accepted in 𝐷′,

• reasoning in the corresponding AF 𝐹 is tractable
in the size of 𝐹 .

We want to mention however that this procedure as
given above is rather theoretical. We believe that finding
a constructive proof for this result is an exciting future
work direction.

5.2. Obtaining a Polynomial Core
Now we turn our attention to the opposite direction: We
present a general polynomial-time procedure which under
mild conditions transforms a given ABA framework 𝐷 s.t.
(i) the translated framework is equivalent under projection
to 𝐷 and (ii) the core of the translated ABA framework
is polynomially bounded. That is, this time we do not try
to obtain an AF with tractable reasoning, but we wish to
prevent the exponential blow-up which might be caused
from the instantiation procedure.

We take the definition of circular tree-based arguments
(proof trees) from Craven and Toni (2016).

Definition 25. A tree-based argument is circular if there
is a path from a leaf to the root which contains two dis-
tinct vertices with the same label. An ABA framework is
circular if there is a circular tree-based argument for this
framework.

We remark that ABA frameworks obtained from Re-
duction 14 are non-circular and all atoms are derivable
(independently of whether the underlying formula is satis-
fiable).

The transformation is defined as follows. Intuitively, for
each conclusion 𝑠 derivable from a given ABA framework
𝐷, we introduce fresh assumptions 𝑠𝑑 (’𝑠 is derivable’)
and 𝑠𝑛𝑑 (’𝑠 is not derivable’) that simulate derivations.
The resulting ABA framework 𝐷′ contains only rules
with assumptions in the body, each of which gives rise
to exactly one tree-based argument. Since no rule in 𝐷′

contains non-assumptions, each proof tree is of height 1.

Definition 26. Let 𝐷 = (ℒ,ℛ,𝒜,) be a non-circular
ABA framework such that each 𝑠 ∈ ℒ is in Th𝐷(𝒜). We
define 𝐷′ = (ℒ′,ℛ′,𝒜′, ′) as the AF-sensitive ABA
framework of 𝐷 as follows. For each 𝑠 ∈ ℒ ∖ 𝒜

• let 𝑠𝑑 and 𝑠𝑛𝑑 be two fresh assumptions, with
• 𝑠𝑑 = 𝑠𝑛𝑑 and 𝑠𝑛𝑑 = 𝑠 in ′.

Let 𝒜′ = 𝒜 ∪ {𝑠𝑑, 𝑠𝑛𝑑 | 𝑠 ∈ ℒ ∖ 𝒜} and ℒ′ = ℒ ∪ 𝒜′.
Contraries in 𝐷′ are defined as for 𝐷, except for the
new assumptions as above. For each rule 𝑟 ∈ ℛ, let 𝑟′

being 𝑟 except that if 𝑏𝑜𝑑𝑦(𝑟) contains a non-assumption
𝑠, replace 𝑠 by 𝑠𝑑. Finally, setℛ′ = {𝑟′ | 𝑟 ∈ ℛ}.

Let us consider an example.

Example 27. Consider an ABA framework 𝐷 =
(ℒ,ℛ,𝒜,) with assumptions 𝒜 = {𝑎, 𝑏}, rulesℛ:

𝑟1 : 𝑝← 𝑞; 𝑟2 : 𝑞 ← 𝑎; 𝑟3 : 𝑠← 𝑏;

and contraries 𝑎 = 𝑟 and 𝑏 = 𝑝. In 𝐷, both {𝑎} and {𝑏}
are admissible as they symmetrically attack each other.

Following Definition 26, we obtain the corresponding
ABA 𝐷′ = (ℒ′,ℛ′,𝒜′, ′) with assumptions 𝑎, 𝑏, and
additional assumptions 𝑝𝑑, 𝑝𝑛𝑑, 𝑞𝑑, 𝑞𝑛𝑑, 𝑠𝑑, 𝑠𝑛𝑑; and
rulesℛ′:

𝑟′1 : 𝑝← 𝑞𝑑; 𝑟′2 : 𝑞 ← 𝑎; 𝑟′3 : 𝑠← 𝑏.

The assumption 𝑞𝑑 is defended by each assumption set
that derives 𝑞 (since 𝑞𝑑 is attacked by 𝑞𝑛𝑑 which is in
turn attacked by all assumption sets that derive 𝑞). Conse-
quently, {𝑞𝑑, 𝑎} is admissible since it derives 𝑞 and 𝑝 and
thus defeats the attackers 𝑏 and 𝑞𝑛𝑑. Likewise, {𝑏, 𝑞𝑛𝑑}
is admissible in 𝐷′ as it defends itself against the attack
from 𝑞𝑑 and 𝑎.

As we have seen in the above example, restricting the
outcome to the initial set of assumptions yields the original
extensions. This is not a coincidence, as we show next:
admissible assumption sets and derivations are preserved
when projecting to 𝒜 of the original ABA framework.

Proposition 28. Let 𝐷 = (ℒ,ℛ,𝒜,) be a non-circular
ABA framework such that each 𝑠 ∈ ℒ is in Th𝐷(𝒜) and
𝐷′ the AF-sensitive ABA framework of 𝐷. It holds that

• if 𝐸 ∈ adm(𝐷), then there is an 𝐸′ ∈ adm(𝐷′)
with 𝐸 = 𝐸′∩𝒜 and Thℛ(𝐸) = Thℛ′(𝐸′)∩ℒ,
and

99

𝑥1 𝑥′
1

𝑥2 𝑥′
2

𝑐1

𝑥1

𝑐1

𝑥′
2

𝑐2

𝑥′
1

𝑐2

𝑥2

(𝑐1)𝑛𝑑 (𝑐2)𝑛𝑑(𝑐1)𝑑 (𝑐2)𝑑

𝜑

(𝑐1)𝑑 (𝑐2)𝑑

Figure 2: Constructed ABA framework from Example 15
when applying the construction from Definition 26.

• if 𝐸′ ∈ adm(𝐷′), then 𝐸 = 𝐸′ ∩ 𝒜 ∈ adm(𝐷)
and Thℛ(𝐸) ⊇ Thℛ′(𝐸′) ∩ ℒ.

We note that Thℛ(𝐸) and Thℛ′(𝐸′)∩ℒ are not equal
but in subset-relation in the second bullet since deriva-
tions are potentially cut off in the construction of an AF-
sensitive ABA framework. Consider the ABA frameworks
𝐷 and 𝐷′ in Example 27. In 𝐷, the assumption 𝑎 derives
𝑝 and 𝑞 while in 𝐷′, the assumption 𝑎 derives only 𝑞. Thus
Thℛ({𝑎}) = {𝑎, 𝑝, 𝑞} ⊇ {𝑎, 𝑞} = Thℛ′({𝑎})(∩ℒ).

From the construction of AF-sensitive frameworks, it
follows that the cores are polynomially bounded. Indeed,
since each assumption as well as each rule corresponds
to precisely one tree-based argument, we obtain that the
corresponding AF has at most |𝒜′|+|ℛ′|many arguments
in the core.

Proposition 29. Let 𝒟 be the set of all non-circular ABA
frameworks with all atoms derivable, and 𝒟′ the set of
AF-sensitive ABA frameworks from 𝒟. It holds that the
cores of 𝒟′ are polynomially bounded.

Example 30. Let us consider again our ABA framework
from Example 15. Applying the above construction, we
obtain an ABA 𝐷′ with additional assumptions (𝑐1)𝑑,
(𝑐1)𝑛𝑑, (𝑐2)𝑑, (𝑐2)𝑛𝑑; moreover, we replace rule 𝜙 ←
𝑐1, 𝑐2 with the rule 𝜙 ← (𝑐1)𝑑, (𝑐2)𝑑. The resulting AF
is given in Figure 2.

We can now gather our results to infer our desired theo-
rem. Due to Proposition 29 the AF-sensitive ABA frame-
work induces an AF with polynomial size and Proposi-
tion 28 ensures that applying this constructions preserves
admissible reasoning under projection. Combining these
insights yields the following central result.

Theorem 31. There is some polynomial 𝑝 such that each
non-circular ABA framework 𝐷 = (ℒ,ℛ,𝒜,) with
ℒ ⊆ Th𝐷(𝒜) can be transformed in polynomial time
into an ABA framework 𝐷′ where

• if 𝐸 ∈ adm(𝐷), then there is an 𝐸′ ∈ adm(𝐷′)
with 𝐸 = 𝐸′∩𝒜 and Thℛ(𝐸) = Thℛ′(𝐸′)∩ℒ,

• if 𝐸′ ∈ adm(𝐷′), then 𝐸′ ∩ 𝒜 ∈ adm(𝐷) and
Thℛ(𝐸) ⊇ Thℛ′(𝐸′) ∩ ℒ, and

• the size of the AF corresponding to 𝐷′ is bounded
by 𝑝(|𝐷′|).

5.3. Trade-Off: Size and Complexity
In Section 5.1 the central idea was to start off with Reduc-
tion 14 modeling a CNF-formula. We could try to do the
same here and then apply Theorem 31 in order to avoid
the exponential blow-up in size of the AF. However, if we
could proceed like this with one-to-one correspondence
of the semantics, we would end up solving an NP-hard
problem in polynomial time. Therefore, the condition of
equivalence under projection in Theorem 31 seems neces-
sary. We present an impossibility result stating that one
cannot transform a given ABA framework to an equiva-
lent one with polynomially bounded cores and bounded
rule-size, at least under standard complexity-theoretic as-
sumptions.

Theorem 32. Assuming 𝑃 ̸= NP , there is no constant 𝑘
and polynomial-time algorithm which translates a given
ABA framework 𝐷 to another ABA framework 𝐷′ s.t.

• adm(𝐷) = adm(𝐷′),
• Thℛ(𝐸) = Thℛ′(𝐸) for 𝐸 ∈ adm(𝐷),
• 𝐷′ has rule-size bounded by 𝑘, and
• the cores of the set of ABA frameworks 𝒟′ trans-

lated by the algorithm are bounded polynomially.

Proof. Suppose that such an algorithm 𝑇 exists. Let
𝜑 = 𝑐1 ∧ · · · ∧ 𝑐𝑚 be a Boolean formula in CNF over
clauses 𝐶 = {𝑐1, . . . , 𝑐𝑚} and Boolean variables 𝑋 =
{𝑥1, . . . , 𝑥𝑛}. Let 𝐷 be the ABA framework obtained
from Reduction 14, and let 𝐷′ = 𝑇 (𝐷) be the outcome
of the algorithm. Note that 𝐷′ can be constructed in time
polynomial w.r.t. size of 𝜑. By Reduction 14 and second
item, it holds that 𝜑 is satisfiable iff there is an admissible
assumption set 𝐴 with 𝜑 ∈ Thℛ′(𝐴).

Each admissible assumption-set 𝐵 in 𝐷 satisfies 𝐵 ⊆
𝑋 ∪ {𝑥′ | 𝑥 ∈ 𝑋}, moreover, 𝐵 does not contain both
𝑥 and 𝑥′ for any 𝑥 ∈ 𝑋 Also note that each conflict-free
assumption-set is admissible since Reduction 14 yields a
symmetric ABA framework.

By the first item, 𝐷′ has the same admissible assump-
tion sets as 𝐷′. It holds that there is an argument (𝐵,𝜑) in
𝐷′ and 𝐵 does not contain both 𝑥 and 𝑥′ for any 𝑥 ∈ 𝑋
iff 𝜑 is credulously accepted under admissible semantics
in 𝐷′ iff 𝜑 is credulously accepted under admissible se-
mantics in 𝐷 iff 𝜑 is satisfiable. Thus, if one finds an
argument (𝐵,𝜑) for 𝐷′ without “complementary literals”
(i.e., without any 𝑥 ∈ 𝑋 s.t. both 𝑥 and 𝑥′ are in 𝐵) we

100

conclude that 𝜑 is satisfiable, and if 𝜑 is unsatisfiable no
such argument in 𝐷′ exists.

By Theorem 22 and due to the third item, one can enu-
merate all arguments of 𝐷′ in polynomial time. Overall,
we can search the space of all arguments in 𝐷′ in time
polynomial to size of 𝜑, implying that we can decide
satisfiability of 𝜑 in polynomial time, a contradiction to
𝑃 ̸= NP .

6. Dependency Graphs on ABA
We look at dependencies induced by the rules of a given
ABA framework, inspired by dependency graphs in logic
programming, and related but different to the dependency
graph notion existing for ABA [17].

Definition 33. The dependency graph G𝐷 = (𝑉,𝐸, 𝑙)
for a given ABA 𝐷 = (ℒ,ℛ,𝒜,) is an edge-labelled
graph with

• 𝑉 = ℒ is the set of vertices,
• edge 𝑒 = (𝑠, 𝑡) ∈ 𝐸 iff i) there is some rule
𝑟 ∈ ℛ with 𝑠 ∈ 𝑏𝑜𝑑𝑦(𝑟) and ℎ𝑒𝑎𝑑(𝑟) = {𝑡}, in
this case 𝑙(𝑒) = +; or ii) 𝑡 ∈ 𝒜 and 𝑡 = 𝑠, in this
case, 𝑙(𝑒) = −.

In brief, vertices represent atoms, and positive edges
connect body elements and heads of rules, while negative
edges correspond to contraries.

Example 34. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work with 𝒜 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, distinct contraries 𝑥 = �̄�
for each 𝑥 ∈ 𝒜 and the following rules:

�̄�← 𝑎 �̄�← 𝑎 �̄�← 𝑏

�̄�← 𝑐 �̄�← 𝑑 �̄�← 𝑒

Then the dependency graph G𝐷 is given as follows.

𝑎 �̄� 𝑏

�̄�𝑐�̄�

�̄�𝑑

�̄� 𝑒

+ −

+

−+

−

+−

+

− +

A path (cycle) in G𝐷 is defined as usual; the length of
a path (cycle) is the number of edges labeled “−”. The
relation between paths in G𝐷 and the core 𝐹 of 𝐷 is very
close as formalized in the following lemma.

Lemma 35. Let 𝐷 be an ABA framework with core 𝐹 =
(A,R) and dependency graph G𝐷 . If (𝛼, 𝛽) ∈ R, then
there is a path of length one from cl(𝛼) to cl(𝛽) in G𝐷 .

The observation can be extended to the following result.

Proposition 36. Let 𝐷 be an ABA framework with core
𝐹 and dependency graph G𝐷 . i) If G𝐷 is acyclic, then so
is 𝐹 . ii) If G𝐷 is odd-cycle free, then so is 𝐹 .

Proof. Suppose there is a cycle in 𝐹 . Then there is also a
cycle 𝑥1, . . . , 𝑥𝑛 in 𝐹 where cl(𝑥𝑖) ̸= cl(𝑥𝑗) for 𝑖 ̸= 𝑗
which can be seen as follows. If cl(𝑥𝑖) = cl(𝑥𝑗), then
(supposing 𝑖 < 𝑗) there is an attack from 𝑥𝑖 to 𝑥𝑗+1

and we can simply remove the sub-sequence consisting
of 𝑥𝑖+1, . . . 𝑥𝑗 . This procedure can be iterated until we
obtain the sub-sequence with the two required properties.

We now prove the two statements. i) By iteratively
applying Lemma 35 we find a cycle in G𝐷 . ii) By utilizing
cl(𝑥𝑖) ̸= cl(𝑥𝑗) for 𝑖 ̸= 𝑗, Lemma 35 even guarantees
that the length is preserved which yields an odd cycle in
G𝐷 if 𝑥1, . . . , 𝑥𝑛 is odd.

The above proposition does not hold for even cycles.
As a counter-example consider the even-cycle free de-
pendency graph of Example 34. In contrast, the core 𝐹
possesses an even cycle. Vice versa, given a cycle in the
dependency graph, we can construct a cycle of the same
length in 𝐹 .

Proposition 37. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work such that each 𝑠 ∈ ℒ is in Th(𝒜), 𝐹 be the core
and G𝐷 the dependency graph. If 𝑝1, . . . , 𝑝𝑛 is a cycle
in G𝐷 , then there is a cycle of the same length in 𝐹 .

Proof. For 2 ≤ 𝑖 ≤ 𝑛 let 𝑝𝑖 be an assumption. By con-
struction of G𝐷 , 𝑝𝑖−1 = 𝑝𝑖. Since 𝐷 is trim, there is
an argument 𝑥1 with conclusion cl(𝑥1) = 𝑝𝑖−1. Now
let 𝑗 be minimal s.t. 𝑖 < 𝑗 and 𝑝𝑗 is an assumption.
Again since 𝐷 is trim, there is also an argument 𝑥2 with
cl(𝑥2) = 𝑝𝑗−1 = 𝑝𝑗 . Observe that 𝑥2 is attacked by
arguments with conclusion 𝑝𝑖−1. Thus, we have an at-
tack from 𝑥1 to , 𝑥2 in 𝐹 . In G𝐷 , the length of the path
𝑝𝑖−1, . . . 𝑝𝑗−1 equals one since by choice of 𝑗 we have
{𝑝𝑖−1, . . . 𝑝𝑗−1}∩𝒜 = {𝑝𝑖}. If we continue analogously
we find a cycle in 𝐹 having the same length as our cycle
𝑝1, . . . , 𝑝𝑛.

The dependency graph can be utilized to obtain approx-
imations for several bounds we considered throughout this
paper.

Proposition 38. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA frame-
work and G𝐷 = (𝑉,𝐸, 𝑙) the dependency graph. i) For
the rule size 𝑘 of 𝐷 we have 𝑘 ≤ max𝑒∈𝑉 |{𝑒′ ∈ 𝑉 |
(𝑒′, 𝑒) ∈ 𝐸}|. ii) If G𝐷 is acyclic, then the derivation-
depth of 𝐷 is bounded by the size of the longest path
(counting “+” labels) in G𝐷 .

Finally, we get a tighter approximation for the size of
the core than our previously established term 2|𝒜| · |ℒ∖𝒜|.

Proposition 39. Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABA
framework, 𝐹 = (A,R) be the core and G𝐷 the de-
pendency graph. For each 𝑠 ∈ ℒ let 𝑝(𝑠) = {𝑎 ∈
𝒜 | 𝑎 has a path in G𝐷 to 𝑠}. Then |A| ≤ |𝒜| +∑︀

𝑠∈ℒ∖𝐴 2|𝑝(𝑠)|.

101

7. Discussion
The computation of a corresponding AF, and different
forms of representing arguments together with optimiza-
tions for structured argumentation have been consid-
ered before, e.g., for ABA [17, 20, 13], and for other
forms of structured argumentation [12, 21]. Moreover,
complexity of ABA was investigated in several direc-
tions [22, 23, 24, 25], potentially exponential AFs arising
from structured argumentation and their issues was dis-
cussed, e.g., by Strass et al. (2019), and infinite arguments
for ABA were investigated [27]. In contrast to these works,
we relate features of the given ABA instance to the size
of the resulting arguments and complexity of reasoning.
We focused on arguments as pair structures (assumptions
and claim).

Considering variants for representing arguments is an
appealing avenue for future work, but it seems that differ-
ent representations arrive at other computational barriers.
For instance, Lehtonen et al. (2017) showed #P-hardness
under subtractive reductions for counting the number of
argument structures for a representation incorporating a
form of minimality on the assumption sets. When requir-
ing a core to contain only arguments with subset-minimal
assumption sets one can show hardness for argument con-
struction, e.g., it is NP -hard to decide whether there is a
subset-minimal argument not yet constructed.

Our results on trade-offs regarding size and complex-
ity of reasoning suggest that it might be worthwhile to
pre-process ABA frameworks in a suitable way before
utilizing AF solvers; also, one may model problems in
ABA such that the corresponding AF is either small in
size or the reasoning in the AF is tractable, depending on
the intention.

The most interesting future work directions we identify
are as follows. First, the results which make use of the
actual semantics are only phrased for admissible sets yet.
In particular generalizing Theorem 31 to the other clas-
sical Dung semantics would contribute to our research.
Moreover, Theorem 24 is not constructive and one needs
to fix a given atom in advance. Finding an analogous
construction which preserves the semantics, similar in
spirit to Theorem 31, would be a great generalization. Fur-
thermore, it would be interesting to investigate to which
extent a pre-processing as suggested by Theorem 31 can
help boosting the performance of ABA solvers. As a final
remark we want to mention that many other structured for-
malisms are similar in their spirit, i.e. induce a potentially
infinite AF which makes information encoded within the
knowledge base explicit. One could therefore examine
whether our results translate to other formalisms as well.

Acknowledgments

We thank the anonymous reviewers of this paper for their
helpful comments. This research was funded in whole, or
in part, by the Austrian Science Fund (FWF) W1255-N23,
by the Vienna Science and Technology Fund (WWTF)
through project ICT19-065, and by the German Federal
Ministry of Education and Research (BMBF, 01/S18026A-
F) by funding the competence center for Big Data and AI
“ScaDS.AI” Dresden/Leipzig.

References
[1] P. Baroni, D. Gabbay, M. Giacomin, L. van der

Torre (Eds.), Handbook of Formal Argumentation,
College Publications, 2018.

[2] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter,
H. Prakken, C. Reed, G. R. Simari, M. Thimm,
S. Villata, Towards artificial argumentation, AI
Magazine 38 (2017) 25–36.

[3] A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni,
An abstract, argumentation-theoretic approach to
default reasoning, Artif. Intell. 93 (1997) 63–101.

[4] S. Modgil, H. Prakken, A general account of argu-
mentation with preferences, Artif. Intell. 195 (2013)
361–397.

[5] A. J. García, G. R. Simari, Defeasible logic pro-
gramming: An argumentative approach, Theory
Pract. Log. Program. 4 (2004) 95–138.

[6] P. Besnard, A. Hunter, Elements of Argumentation,
MIT Press, 2008.

[7] P. M. Dung, On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning,
logic programming and n-person games, Artif. Intell.
77 (1995) 321–358.

[8] K. Čyras, X. Fan, C. Schulz, F. Toni, Assumption-
based argumentation: Disputes, explanations, pref-
erences, in: P. Baroni, D. Gabbay, M. Giacomin,
L. van der Torre (Eds.), Handbook of Formal Argu-
mentation, College Publications, 2018, pp. 365–408.

[9] R. Craven, F. Toni, C. Cadar, A. Hadad,
M. Williams, Efficient argumentation for medical
decision-making, in: Proc. KR, AAAI Press, 2012,
pp. 598–602.

[10] K. Čyras, T. Oliveira, A. Karamlou, F. Toni,
Assumption-based argumentation with preferences
and goals for patient-centric reasoning with inter-
acting clinical guidelines, Argument Comput. 12
(2021) 149–189.

[11] X. Fan, F. Toni, A. Mocanu, M. Williams, Dialog-
ical two-agent decision making with assumption-
based argumentation, in: Proc. AAMAS, IFAA-
MAS/ACM, 2014, pp. 533–540.

[12] L. Amgoud, P. Besnard, S. Vesic, Equivalence in

102

logic-based argumentation, J. Appl. Non Class. Log-
ics 24 (2014) 181–208.

[13] T. Lehtonen, J. P. Wallner, M. Järvisalo, From struc-
tured to abstract argumentation: Assumption-based
acceptance via AF reasoning, in: Proc. ECSQARU,
volume 10369 of LNCS, Springer, 2017, pp. 57–68.

[14] B. Yun, N. Oren, M. Croitoru, Efficient con-
struction of structured argumentation systems, in:
Proc. COMMA, volume 326 of FAIA, IOS Press,
2020, pp. 411–418.

[15] M. Thimm, S. Villata, The first international com-
petition on computational models of argumentation:
Results and analysis, Artif. Intell. 252 (2017) 267–
294.

[16] S. A. Gaggl, T. Linsbichler, M. Maratea, S. Woltran,
Design and results of the second international com-
petition on computational models of argumentation,
Artif. Intell. 279 (2020).

[17] R. Craven, F. Toni, Argument graphs and
assumption-based argumentation, Artif. Intell. 233
(2016) 1–59.

[18] W. Dvořák, P. E. Dunne, Computational problems
in formal argumentation and their complexity, in:
P. Baroni, D. Gabbay, M. Giacomin, L. van der
Torre (Eds.), Handbook of Formal Argumentation,
College Publications, 2018.

[19] D. S. Johnson, C. H. Papadimitriou, M. Yannakakis,
On generating all maximal independent sets, Inf.
Process. Lett. 27 (1988) 119–123.

[20] Z. Bao, K. Čyras, F. Toni, ABAplus: Attack reversal
in abstract and structured argumentation with pref-
erences, in: Proc. PRIMA, volume 10621 of LNCS,
Springer, 2017, pp. 420–437.

[21] B. Yun, S. Vesic, M. Croitoru, Toward a more effi-
cient generation of structured argumentation graphs,
in: Proc. COMMA, volume 305 of FAIA, IOS Press,
2018, pp. 205–212.

[22] Y. Dimopoulos, B. Nebel, F. Toni, On the computa-
tional complexity of assumption-based argumenta-
tion for default reasoning, Artif. Intell. 141 (2002)
57–78.

[23] K. Čyras, Q. Heinrich, F. Toni, Computational com-
plexity of flat and generic assumption-based argu-
mentation, with and without probabilities, Artif.
Intell. 293 (2021) 103449.

[24] T. Lehtonen, J. P. Wallner, M. Järvisalo, Declarative
algorithms and complexity results for assumption-
based argumentation, J. Artif. Intell. Res. 71 (2021)
265–318.

[25] A. Karamlou, K. Čyras, F. Toni, Complexity re-
sults and algorithms for bipolar argumentation, in:
Proc. AAMAS, IFAAMAS, 2019, pp. 1713–1721.

[26] H. Strass, A. Wyner, M. Diller, EMIL: Extract-
ing meaning from inconsistent language: Towards
argumentation using a controlled natural language

interface, Int. J. Approx. Reason. 112 (2019) 55–84.
[27] P. M. Thang, P. M. Dung, J. Pooksook, Infinite argu-

ments and semantics of dialectical proof procedures,
Argument Comput. (2021). In-press.

103

	1 Introduction
	2 Assumption-based Argumentation
	3 Infinite AFs, Cores, and Representation
	4 Bounds on Assumption-based Frameworks
	4.1 Bounds and Complexity of Reasoning
	4.2 Size of the Constructed AF
	4.3 Computation of the Core

	5 Transformations and Complexity Trade-offs
	5.1 Tractable Reasoning in Core
	5.2 Obtaining a Polynomial Core
	5.3 Trade-Off: Size and Complexity

	6 Dependency Graphs on ABA
	7 Discussion

