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Abstract

Several studies have recently reported on deep learning-based side-channel attacks (DL-SCA) against
symmetric cryptography such as AES. However, there are relatively few studies on DL-SCA against
public-key cryptography such as RSA, and threat assessment for such attacks is insufficient. The
dummy multiplication countermeasure is a simple side-channel attack countermeasure for software-
implemented RSA that adopts binary exponentiation. The countermeasure expects that typical side-
channel attacks (e.g., timing attacks and simple power analysis) can-not distinguish the differences
in operations depending on the exponential bit. In this paper, we report DL-SCA against software-
implemented RSA with a simple dummy multiplication countermeasure. A deep neural network-based
classifier distinguishes between true and dummy multiplication with high accuracy, and an adversary
reveals secret keys.
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1. Introduction

Side-channel attacks (SCA) have been reported to reveal secret keys by analyzing side-channel
information contained in data regarding power consumption and electromagnetic emission on
cryptographic circuits. In the conventional SCA, an attacker designs leakage models to estimate
secret keys in accordance with the architecture of the circuits.

Deep learning-based side-channel attacks (DL-SCA), applying deep lerning to SCAs, are
proposed [1]. Several studies have recently reported on DL-SCA. In contrast to conventional
SCA, DL-SCA learns models expressing the relationship between leakage and internal values
through deep learning techniques. The introduction of DL-SCA is expected to reduce the expert
knowledge (e.g., leakage modeling and details on circuit architectures) required for attackers. In
addition, several studies have reported that DL-SCA can attack implementations of side-channel
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attack countermeasures. Cagli et al. reported profiling DL-SCA against software-implemented
AES with random jitter countermeasures. They claim that the DL-SCA can skip the alignment
process required for conventional SCA [2]. DL-SCA has been evaluated mainly on symmetric
cryptography such as AES, while there are few studies on public-key cryptography such as
RSA.

There are several studies on DL-SCA against RSA [3, 4, 5, 6]. Carbone et al. [3] evaluated
DL-SCA against software-implemented RSA with countermeasures, that is the modulus ran-
domization, input randomization, exponent randomization, and square-and-multiply-always
algorithms. Lei et al. [4] focused on a decryption process for RSA with the left to the right binary
method implemented on the Java Card. They trained a deep neural network (DNN) to classify
power consumption waveforms into square or multiply operations. Saito et al. [5] trained a
DNN to classify load and dummy load operations from power consumption waveforms that were
acquired from CRT-RSA implemented in a 32-bit microcontroller. This implementation used
the fixed window (FW) method for fast modular exponentiation and constant time operation.
Barenghi et al. [6] reported DL-SCA against the decryption process for software-implemented
RSA on 32-bit microcontrollers. This implementation used the square-and-multiply-always
algorithm countermeasure. They applied a collision technique in which the correlation of
consecutive instruction operands is used to identify dummy multiply operations.

In this paper, we evaluate DL-SCA against the decryption process for software-implemented
RSA that uses the left to the right binary method for modular exponentiation and square-and-
multiply-always algorithm for a side-channel attack countermeasure. An attacker collects
power consumption waveforms from profiling devices and trains DNNs for classifying the
waveforms into normal multiply operations and dummy multiply operations. We discuss
which point of the waveforms the DNN focuses on when it makes a decision by using a
simple 8-bit microcontroller as a fundamental study. For the same reason, side-channel attack
countermeasures and faster arithmetic methods other than square-and-multiply-always are not
used in our implementation. Our experimental results show that DL-SCA successfully classifies
normal and dummy operations, and an attacker can then estimate all the bits of the secret
key. Conventional SCA methods, such as simple timing attacks [7] and simple power analysis
(8], have difficulty identifying dummy operations. We also analyze a trained DNN model by
using gradient visualization, and we discuss where the DNN finds leakage points from our
implementation with the countermeasure.

2. Conventional side-channel attacks against RSA with
square-and-multiply-always algorithm

In public-key cryptography such as RSA, the binary exponentiation method is often used because
it reduces the operation time. Binary representation of the exponent bit is performed bit by
bit from the most to the least significant bit using the left to right binary method. A square
operation is performed when the exponent bit is “0,” and square and multiply operations are
performed when the exponent bit is “1”

The timing attack [7] and simple power analysis (SPA) [8] are reported as conventional SCA
methods against RSA. They mainly exploit the differences in operation between exponent bit
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Figure 1: Part of acquired power waveform from software-implemented RSA without countermeasures

values. Figure 1 shows the power consumption waveform from software-implemented RSA
without countermeasures when the exponent bits are “0” and “1.” As shown in the figure, the
attacker easily identifies the presence or absence of the multiply operation from the characteristic
differences in the waveform and can estimate whether the exponent bit is “0” or “1”

The square-and-multiply-always algorithm is a simple countermeasure against these conven-
tional SCAs. The algorithm performs a dummy multiply operation when the exponent bit is “0.”
That is, square and multiply operations are performed on every bit whether the exponent bit
is “0” or “1” This makes it difficult to distinguish between them in terms of operation time or
power waveform. The dummy multiply operation stores the result into a dummy register so
as not to contaminate the correct results. Algorithm 1 shows the square-and-multiply-always
algorithm. The A and D are registers that store correct and dummy results, respectively, and
“«” represents a store operation. The A - A in line 3 represents a square operation. The d; is the
i-th bit of the secret key d. The result is assigned to either register A or register D depending on
the bit. Note that the dummy register D does not affect the result of RSA.

Algorithm 1 Square-and-Multiply-Always
Input: m,d = (dj_q,-,dy,dy), N
Output: m? mod N

1: A«1
2: fori=l-1to 1 do
3: A« (A-A)mod N
4: if d; =1 then
5 A« (A-m)mod N
6: else
7
8
9

D« (A-m)mod N
end if
: end for
0: return A

—_
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3. ldentification of dummy multiply operations by waveform
classification using deep learning techniques

We apply DL-SCA to RSA in order to break the square-and-multiply-always countermeasure.
Our DL-SCA is for a profiling attack scenario. We expect an attacker to have a profiling device
that can be freely accessed by them. A DL-SCA in the profiling scenario consists of a profiling
phase and an attack phase.

First is the profiling phase. The attacker performs the RSA decryption process on the profiling
device with a known secret key and collects power consumption waveforms. Then, the attacker
divides the waveforms into square and (dummy) multiply operation pairs (i.e., operations per
exponent bit) and labels them with “0” and “1” in accordance with the secret key. The start time
of each operation is specified by the template matching algorithm with the sum of absolute
difference (SAD). The power consumption waveform from the square operation is used for
the template. SAD calculates the similarity between the target waveform (T) and the template
waveform (T()) as follows:

I-1
SAD;= YT = ), (1)
i=0
where i and j represent sample points. Sample points where the SAD score becomes lower
than the threshold level are expected to indicate the start time of the square operation. The
waveform is cut out so that it includes the start of the square operation to (dummy) multiply
operation as points of interest (POI). The attacker trains a binary classifier using a deep neural
network (DNN) for distinguishing the square and multiply operation and square and dummy
multiply operation by inputting the POIs of the power consumption waveforms.

The second is the attack phase. The attacker acquires power consumption waveforms from
the RSA decryption process that is performed on the target device with an unknown secret key.
The attacker divides the acquired waveforms into POIs with the same procedures as the profiling
phase. The POIs are input to the trained DNN, and it classifies the POIs into square and multiply
or square and dummy multiply operations. The attacker identifies whether the exponent bit is
“0” or “1” for the operation from the classification result, and the attacker recovers the secret
key from a series of the results.

4. Experiments and results

4.1. Experimental setup

ChipWhisperer!, developed by New AE Technology for evaluating embedded device security,
was used in our experiment. Figure 2 shows a photograph of the experimental environment and
a block diagram. Software-implemented RSA with the square-and-multiply-always counter-
measure was executed on a CW308T-XMEGA (operating frequency: 7.38 MHz) mounted on a
CW308-UFO-Target board. The RSA decryption process was written in C language and compiled
by AVR-GCC version 5.4.0. The secret key length for RSA was set to 1,024 bits. We acquired

'https://www.newae.com/chipwhisperer
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Figure 2: Experimental environment for acquiring power waveforms

Table 1

Structure of DNN for DL-SCA
Input layer  Convolution layer x 6 Fully connected layer x 2 Output layer
500 Size x filters =3 x 10 32 neurons 2 neurons

Stride = 3, ReLU Tanh Softmax

power consumption waveforms during the RSA decryption process by using ChipWhisperer-Lite
with a 29-MS/s sampling rate.

The network structure of the DNN is shown in Table 1. The number of nodes on the input
layer was 500, which is the same number of sample points on POIs (divided waveform).

4.2. Profiling phase

We acquired 500 waveforms for each different known secret key. The waveforms of the square
and multiply operations corresponding to each of the 1,023 exponent bits of the secret key,
excluding the most significant bits (MSB), were cut from each waveform and labeled.

We divided the waveforms into 1,023 POIs corresponding to the exponent bits, that is the
secret key without MSB, and we labeled them. The POI during the operation corresponding to
the MSB of the secret key was significantly different from the others so it was excluded from
the training data. Figure 3 shows the average power consumption waveform of the acquired
waveforms and the template for identifying the start time of the square operation. The number
of sample points of the template was 200, and the template covered from the start of the square
operation to the end, as shown in the figure. Figure 4 shows an SAD score when SAD template
matching was performed on one of the power consumption waveforms. The SAD threshold
level was set at 0.5, and the point when the SAD value becomes lower than the level was used
for the start time of the square operation. POIs consisted of 500 points from the start of the
square operation specified by SAD to the end of the multiply operation.

As aresult of these operations, 511,500 POIs were prepared as DNN training datasets. Figure 5
shows the POIs from the waveforms when the labels “0” (square and dummy multiply operation)
and “1” (square and multiply operation) from the data set. We set the batch size to 1,000, the
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Figure 3: (a) Part of mean power consumption waveform acquired from decryption process of software-
implemented RSA with square-and-multiply-always countermeasure. (b) Template for SAD. It corre-
sponds to part of (a) covered by red square.
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Figure 4: SAD score when SAD template matching was performed on one of power consumption
waveforms. Threshold is set to 0.5.

number of training epochs to 100, and the loss function to cross-entropy loss, and we used the
Adam optimizer to train the DNN with a 0.001 learning rate. The test accuracy achieved 99.51%
after the training process.

4.3. Attack phase

We acquired 50 waveforms with different secret keys. We extracted POIs from the waveforms
by using SAD template matching with the same template as the profiling phase. The trained
DNN classified the POIs into “0” and “1,” which corresponded to the exponent bit’s value.

We confirmed that the DNN correctly classified all of the POIs (100% accuracy for 50 different
keys); that is, the DNN could identify the dummy and normal multiply operations. We mentioned
that the waveform of the operation corresponding to the MSB of the secret key was significantly
different but noted that the RSA decryption process always started with exponent bit “1” An
attacker could easily identify the exponent bit of the first operation as “1”
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Figure 5: Enlarged waveform of (a) dummy multiply and (b) multiply operation.

4.4. Discussion

For DL-SCAs, gradient visualization (GV) has been used for analyzing SCA leakage points
learned by a model [9]. We use gradient visualization (GV) to reveal how the trained DNN iden-
tifies the dummy multiply operation (i.e., the waveform positions from which the information
on exponent bits leaks). The GV is represented by Eq. 2.

vr = 27, )

T,

where VT is the partial differentiation of the loss at the i-th sample point of the input waveform
T, and it indicates the contribution of the sample point to the DNN inference result. Lt is the
loss between the DNN’s inference and the correct label when the waveform T'is input.

Figure 6 (a) shows a power consumption waveform around the operation corresponding to
the exponent bit of “1” Figure 6 (b) shows the gradient VT at each sample point based on the
correct label when waveform (a) was input to the DNN model. We found two large peaks of VT.
We denote peak position (A) around time 200 and the peak position (B) around time 300. The
two large peaks of VT appeared during the multiply operation. The DNN was assumed to have
used these two points for identifying the dummy multiply and true multiply operations from
the waveform.

We found that peak position (A) was at the timing of the instruction “in” in additional
experiments in which NOP instructions were inserted into the compiled assembly code. Table
2 shows the assembly code of the multiply operation executed in the normal and the dummy
cases, near peak position (A). Table 3 shows the details on the instruction sets used above. Table
2 indicates that there was a difference between the normal and the dummy multiply operations
where the “adiw” instruction was executed only for dummy multiply as shown in row 4.

Figure 7 (a) shows overlapped and enlarged waveforms around peak (A) corresponding to “0
and “1”. Figure 7 (b) shows the gradient of the range corresponding to (a).

According to the gradient in Fig. 7 (b), the DNN is expected to focus on the shift in the
execution timing of instruction “in” caused by the appearance of “adiw.” The sign of the gradient
at peak point (A) is + for the exponent bit of “0” and — for “1” That is, the DNN focused on the

Bt
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Figure 6: Power consumption waveform and the result of Gradient visualization.

Table 2
Comparison of instructions between normal and dummy multiply operation

| “0” operation (dummy multiply) | “1” operation (multiply) | peak of VT |

subi subi
sbci sbci
movw movw
adiw
call call
push x18 push x18
in x2 in x2 (A)
sbiw shiw
out x2 out x2
movw x3 movw x3

amount of power consumption on the 37-th sample point and inferred “0” when it was lower
and “1” when it was higher.

Peak (B) was examined with the same process as that used for peak (A) mentioned above,
and it was found that the same leakage as peak (A) occurred. The position of the peak was at
the timing of the instruction “in” The instruction “adiw” the peak (A) caused a delay of the
following instruction. As a result, the normal and dummy operations were distinguished by the
difference in the peak position for the “in” command.

The reason for the appearance of "adiw” is to specify the pointer to the dummy register
that stores the calculation. Correct and dummy results are stored in different registers. The
instruction "adiw” specifies the pointer to the register that the dummy result is stored.
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Table 3
AVR Instruction Set

| Instruction | Description | Cycles |
movw Copy Register Word 1
subi Subtract Immediate 1
sbci Subtract Immediate with Carry SBI 1
call Long Call to a Subroutine 3
push Push Register on Stack 1
in Load an I/O Location to Register 1
out Store Register to /O Location 1
sbiw Subtract Immediate from Word 2
adiw Add Immediate to Word 2
nop No Operation 1
adiw inin
0.04 ; ol
—— "0"operation | ‘ ——: "0"operation(x 107%) \
#9231 —: "1"operation : 1 o o5l —: "1"operation(x 107%)
l g
g‘ 0.02 1 : :o
© | o %
%) i g -0.5
= 0.00 : 5
o 1 he
> | l =
~0.01 A i 5 ikl
1 ©
X o
~0.02 " ; = y —15 - y . . .
0 10 20 30 37 a0 50 0 10 20 30 37 a0 50
Sample points Sample points
(a) Waveform of “0” or “1” operation (b) Gradient when waveform is input to DNN

Figure 7: (a) Overlapped waveforms around peak (A) corresponding to “0” and “1 (b) Gradient of
range corresponding to (a).

5. Conclusion

In this paper, we reported about DL-SCA against RSA. We performed DL-SCA against software-
implemented RSA with the square-and-multiply-always algorithm running on a CW308T-
XMEGA. In this algorithm, a dummy multiply operation is performed on the operation when
the processing bit of the secret key is “0. Thus, it is difficult to distinguish between operations
when the exponent bit is “0” and when it is “1”

Our experimental results showed that a DNN can identify a secret key accurately by learning
the power consumption waveforms corresponding to the operation of exponent bits “0” and
“1” We discussed how the DNN classifies these waveforms by using gradient visualization.
We found that the execution timing of the instruction “in” was shifted by the instruction
“adiw;” which is only present for the dummy multiply operation. This result indicates that the
DNN extracted small differences in the assembly instructions between the normal and dummy
multiply operations from the power consumption waveforms.

In future work, we will implement the square-and-multiply-always algorithm so that the
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number of instructions is identical between the normal and dummy multiply operations and
evaluate whether the DNN can classify them. In this paper, we report DL-SCA against RSA
using the left to right binary method. There are RSA implementations using the right to left
binary method. We will evaluate DL-SCA against RSA using the right to left binary method.
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