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Abstract  
In the transition and post-quantum periods, the problem of cybersecurity is significantly 

aggravated. The potential compromise of the best symmetric (AES-256) and asymmetric (RSA-

240) cryptosystems when an attacker uses quantum computers puts forward a number of 

security requirements for such systems. Today, a number of approaches are used to solve the 

problem of increasing cryptographic strength. Classic, which boils down to solving the problem 

of distributing encryption keys and new, the essence of which is to create promising 

cryptosystems based on new mathematical principles. The latter approach is based on cognitive 

cryptography, dynamic chaos theory, constructive, quantum and post-quantum cryptography, 

DNA algorithms, proxy models of cryptosystems, attribute-based cryptosystems, batch and 

non-commutative cryptography. The greatest interest from the point of view of security today 

is integrated cryptography. Thus, in previous works on this topic, it was proposed to create a 

symmetric cryptosystem based on differential transformations. The principle of functioning of 

this cryptosystem does not differ from the principles of functioning of classical symmetric 

cryptosystems. The only difference is that a symmetric cryptosystem based on differential 

transformations is based on the Fredholm integral equation of the first kind, the encryption key 

for which is its core. Special requirements for choosing an encryption key for a symmetric 

cryptosystem based on differential transformations are the requirements regarding its 

continuity, innate and symmetric. Following these requirements, the article offers a spectral 

model of the encryption key for the corresponding cryptosystem, which is built on the basis of 

differential transformations of Academician of the National Academy of Sciences of Ukraine 

G. E. Pukhov. It is shown that the spectral model of the encryption key for a symmetric 

cryptosystem on differential transformations is the sum of discret differential spectra for 

different values of the integer argument. Representation of the encryption key in the form of a 

spectral model makes it possible to implement encryption and decryption procedures by a 

symmetric cryptosystem using differential transformations in real time in the future. 
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1. Introduction 

Cybersecurity has now become a cornerstone 

on the agenda for many countries around the 

world. The computerization of all spheres of state 

and civil society activities, as well as the mass 

access of citizens to information technologies, 
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threatens their use for illegal and terrorist 

purposes. It is possible that the fact of carrying out 

a cyberattack by one state against another can be 

regarded as the beginning of aggression from 

cyberspace. That is why in the world and Ukraine, 

scientist’s eyes are increasingly focused on 

cybersecurity issues. 



Based on the assessment of the current state of 

Science and technology, it becomes obvious that 

in the next 10 years there will be a breakthrough 

in the use of quantum computers for solving 

cybersecurity problems [1]. The most pessimistic 

predictions show that quantum cryptanalysis 

based on Grover's algorithm will halve the 

stability of all symmetric cryptographic 

mechanisms [2–4]. Plans to create a 100-qubit 

quantum computer by 2024 significantly 

exacerbate this problem [5, 6]. 

2. The Latest Studies and Printed 
Works Analysis 

Analysis of recent studies and publications 

[1, 8–11] and others has shown that a number of 

new approaches to ensuring the cryptographic 

stability of symmetric cryptosystems are currently 

known. In the transition and post-quantum period, 

the approaches described in [1, 8–13] will also be 

relevant. 

At the same time, there are other alternatives 

to the established classical approaches. In 

particular, general approaches to creating a new 

class of cryptosystems are described in [14, 15], 

but specific cryptographic mechanisms for their 

implementation are not given. 

In [16], the idea of creating symmetric 

cryptosystems based on the Fredholm integral 

equation of the first kind was developed, and in 

[17] the requirements for choosing an encryption 

key were formalized. However, the key 

generation mechanism and its spectral model are 

not given. 

3. Purpose 

The purpose of this article is to develop a 

mechanism for generating an encryption key for a 

symmetric cryptosystem based on differential 

transformations and obtain its spectral model.  

4. Concept presentation 

Based on [18], the encryption key ( ),K x s  is 

the core of the Fredholm integral equation of the 

first kind [16, 17] 
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where ( )z s  – plaintext; 

( )u x  – cipher. 

There are many special features for choosing 

an encryption key for the Fredholm cryptosystem, 

which can be applied to the function of the initial 

wiggle [19] 
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To obtain an analytical spectral model of the 

encryption key (1), we will use differential 

transformations of Academician of the National 

Academy of Sciences of Ukraine G. E. Pukhov 

[20–23], the use of which for solving 

cybersecurity problems was first described in the 

monograph [24]. 

According to [20–23], differential 

transformations are transformations of the form 
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where ( )x t  – the original, which is a continuous, 

differentiable infinite number of times and 

bounded together with all its derivatives, function 

of a real argument t ; 

( )X k  and ( )x k  equivalent notation of the 

differential image of the original representing a 

discrete (lattice) function of an integer argument 

: 0,1, 2,...k = ; 

H  – a scale steel that has the dimension of an 

argument t  and is often chosen equal to the 

segment 0 t H   on which the function is 

considered ( )x t ; 

•  – a symbol of correspondence between the 

original ( )x t and its differential image 

( ) ( )X k x k= .  

To the left of the symbol •  is a direct 

transformation that allows you to find the image 

( )X k  behind the original ( )x t , and to the right 

is a reverse transformation that allows you to get 

the original behind the image in the form of a 



power series, which is nothing more than an 

otherwise written Taylor series centered at a point 

0t = . 

Differential images ( )X k  are called 

differential T-spectrum, and the values of the  

T-function ( )X k  for specific argument k  values 

are called samples. 

Using the direct transformation (2) and the 

general property of the product of functions in the 

image domain for differential transformations 

[20–23] for expression (1), we obtain  
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where ( )lg x  – constant;  

( )lQ k  – original image ( )lq s , 
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Let the function ( )lq s  belong to a class of 

power functions, i.e. ( ) n
l lq s s= .  

Then, according to [20–23], its image from the 

general form ( )
( )
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 will be 

reduced to an expression  
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Taking this into account, the right-hand side of 

expression (3) will have the form 
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where ( )ъ k n−  – displaced “teda”, 
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We find in general the differential spectra for 

model (4), substituting sequentially the values of 

the integer argument : 0,1, 2,3.k =  If, for example 

2n = , we have: 
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for 3k   
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Thus, the spectral model of the encryption key 

( ),K x k  for a symmetric cryptosystem on 

differential transformations in general form in the 

image domain under the accepted conditions is the 

sum of the discretits found (5)–(8), i.e. 
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We give examples of constructing a spectral 

model of the encryption key for a symmetric 

cryptosystem based on differential 

transformations based on the initial data given in 

[25]. So according to [25] the encryption key 

( ),K x s xs= . Then expression (4) is simplified 

and takes the form 

 

( ) ( ), 1K x k xHъ k= − . (10) 

 

Changing the value of the integer argument 

:0,1,2,...k =  by analogy with expressions (5)–

(8), we obtain the differential spectrum discretits 

for the desired spectral model. 

 

For : 0k =  

( ),0 0K x = ; (11) 

 

for :1k =  

( ),1K x xH= ; (12) 



 

for 2k   

( ), 2 0K x k  = . (13) 

So, for the example given in [25], taking into 

account the discrete found (11)–(13), the desired 

spectral model of the encryption key (4) is 

determined by the expression 

 

( ),K x k xH= , m l= . 

 

We present a graph of the functions of the 

encryption key (fig. 1 a) and its T-spectrum 

(fig. 1 b) for the found model (10). 
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Figure 1: Encryption key function-original (a) and 
its differential T-spectrum (b) – image 

5. Conclusions 

In this paper, a mathematical model of the 

encryption key for a symmetric cryptosystem 

based on differential transformations is proposed 

for the first time. The resulting spectral model in 

the image domain is the sum of discretits for 

specific argument k  values. The model meets the 

requirements put forward in [19], and its 

convergence with the results of known studies 

[25] confirms its adequacy. 

The direction of further research will be the 

formation of a set of possible keys for a symmetric 

cryptosystem based on differential 

transformations and obtaining their Spectral 

models. The main purpose of the resulting model 

is its use in a symmetric cryptosystem on 

differential transformations during encryption and 

decryption in voice message transmission systems 

(VoIP-traffic).  
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