
Empirical Properties of Term Orderings for
Superposition
Stephan Schulz1

1DHBW Stuttgart, Stuttgart, Germany

Abstract
Term orderings play a critical role in most modern automated theorem proving systems, in
particular for systems dealing with equality. In this paper we report on a set of experiments
with the superposition theorem prover E, comparing the performance of the system under
Knuth-Bendix Ordering and Lexicographic Path Ordering with a number of different precedence
and weight generation schemes. Results indicate that relative performance under a short time
limit seems to be a good predictor for longer run times and that KBO generally outperforms
LPO. Also, if other strategy elements (especially clause selection) are independent of the
ordering, performance of a given ordering instance with one strategy is a decent predictor of
performance with a different strategy.

1. Introduction

The root cause of difficulty in automated theorem proving is the size of the search space,
i.e. the space of possible derivations. Many improvements in calculi have introduced ways
to reduce the branching factor of this search space, by identifying strictly unnecessary
inferences. One of the more important techniques in the context, in particular for
equational reasoning, is the use of term orderings, to break the symmetry of equality,
and also to impose additional constraints on possible inferences. This was pioneered
by Knuth and Bendix in their paper on completion [1], which also introduced what we
today call the Knuth-Bendix-Ordering (KBO), still one of the most important orderings
for automated theorem proving. The completion approach was continued to a complete
theorem proving method for unit equality problems [2, 3], and finally lifted to full clause
logic with equality in the superposition calculus [4, 5], which still forms the basis of most
modern saturating calculi and most high-performance theorem provers. In these calculi,
term orderings are used in two principal ways: First, equalities can only be applied in (at
least potentially) decreasing order, and secondly, many inferences can be restricted to be
only applied on maximal literals.

When these theoretical results are translated to practical reasoning systems, there are
additional challenges. Orderings need to be efficiently implemented, and they need to be
instantiated for any given proof problem. Both the KBO and the LPO (Lexicographic
Path Ordering), the two most frequently used orderings, are actually ordering schemata.

PAAR’22: 8th Workshop on Practical Aspects of Automated Reasoning, August 11–12, 2022, Haifa, Israel
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

In the concrete case, both need a symbol precedence. The KBO additionally needs an
assignments of weights to function (and predicate) symbols.

While e.g. Otter [6] pioneered an automatic mode that would also set ordering param-
eters, other systems, such as DISCOUNT [7]) and early Waldmeister [8], left the task
to the user, who, at that time, was assumed to be familiar with the domain and have
the necessary expertise. However, the CADE ATP System Competition [9], starting with
CASC-13 in 1996 [10], established a paradigm where the provers were given only the logic
formula proper, and had to determine all search control parameters themselves. While
nearly all competitive ATP systems have implemented some method, to our knowledge
there has never been a systematic practical evaluation of different ways to solve the order
generation problem.

Over time, the theorem prover E[11, 12] has accumulated a number of different ways to
generate symbol precedence and weight generation schemes, based only on simple syntactic
features of the symbols and the proof problems. It also features an efficient implementation
of both KBO and LPO, based on Löchner’s excellent and possibly definitive work [13, 14].

In this paper, we want to address a number of questions regarding the performance of
these different schemes.

1. How do they compare for overall performance?
2. Does good performance of an ordering in one setting translate to different settings? In

particular, if we replace only the ordering, can (relative) performance be extrapolated
from one search strategy to another?

3. Similarly, can (relative) performance be extrapolated from shorter to longer run
times?

Most of our experiments were done only on unit-equational examples, where the influence
of the term ordering is more important. However, we have also ran one experiment on all
usable TPTP [15] first-order problems. That allows us to address one additional question:

4. How does the relative performance on UEQ compare to that on the larger FOF/TFF
set?

Finally, most theorem provers we are aware of implement rewriting with unorientable
unit equations in a way that is strictly weaker than supported by theory. In E, we
have introduced rewriting with strong instances, a technique that often allows for more
simplification than these conventional implementations. We also analyse the data with
respect to this new technique.

We start the paper with a short definition of the most important terms and concepts,
including the idea of rewriting with strong instances. In the next section, we discuss the
experimental setting, including the different ordering generation schemes and applications
to simplification. In the experimental section, we discuss the primary results. Finally, we
mention some related and future work, and conclude.

(SP)
C ∨ s' t D ∨ u 6'v
(C ∨D ∨ u[p← t] 6'v)σ

if

• u|p is not a Variable, σ = mgu(u|p, s)
• sσ 6< tσ, uσ 6< vσ

• (s' t)σ is strictly maximal in (C ∨ s' t)σ
• (u 6'v)σ is maximal in (D ∨ u 6'v)σ

(RP)
s' t u'v ∨ C

s' t u[p← tσ]'v ∨ C
if

• u|p = sσ, sσ > tσ

• u'v is not maximal or u 6> v or u|p 6= u

Note that the double line in (RP) denotes a simplification rule, i.e. a rule in which the
premises are replaced by the results.

Figure 1: Core inferences of the superposition calculus

2. Preliminaries

We assume the standard first-order notions of a signature, consisting of function symbols
with associated arities, and variable symbols. Terms are either variables, or are constructed
from a function symbol with the proper number of arguments. Constants are a special
case of function symbols with arity zero (and hence a constant is a term). Terms without
variables are called ground terms. Equations are unordered pairs of terms, literals are
either equations or negated equations, and clauses are multi-sets of literals1 interpreted
(and written) as disjunctions. Substitutions replace variables by terms and can be applied
to variables, terms, literals and clauses. We use s, t, u, v to denote terms, C,D to denote
(partial) clauses, and σ for substitutions. We use t|p to denote the subterm of t at position
p and t[p← s] for term t with the subterm at position p replaced by s.

Saturating theorem provers try to show that a set of clauses is unsatisfiable by the
process of saturation, i.e. by using inference rules to derive new clauses from existing
clauses with the aim of eventually producing the empty clause. The proof search is usually
organised by some variant of the given-clause-algorithm. This algorithm maintains the
proof state in the form of two separate sets of clauses. The set P of processed clauses
is initially empty. The set U of unprocessed clauses initially contains all clauses of the
proof problem. The algorithm repeatedly selects a given clause g from U and performs all
inferences in which g is one premise and all other premises are from P . The given clause
is then moved into P , the resulting new clauses into U . The algorithm terminates if the
empty clause is derived (representing a proof that the original clause set is unsatisfiable),
or if the set U runs empty (in which case the proof search fails). In addition to this basic
operations, a significant proportion of time is spent on simplification, removing redundant
clauses and replacing clauses with, in a certain sense, smaller and simpler clauses. The
selection of the given clause has to be fair (i.e. no clause can be delayed infinitely long),
and is also one of the most important heuristic choice points for the proof search.

The most important inference in modern calculi is superposition, a restricted version
of paramodulation. A paramodulation inference has two premises: the main premise, an

1Non-equational literals can be encoded as equations with a reserved constant > with a separate Boolean
sort.

instance of which forms the core of the newly inferred clause, and a side premise, which
contains at least one positive equational literal and is used as a (lazy) conditional rewrite
rule to modify the instance of the main premise. To perform an inference, one side of
a positive literal of the side premise is overlapped into a subterm of the main premise,
followed by instantiation and replacement of the overlapped term by the instance of the
other side of the inference literal in the side premise. The instances of other literals
of the side premise are inherited by the newly generated child clause. Paramodulation
inferences can be restricted in certain ways. In particular, we can use a simplification
ordering on terms, lift it to literals, and restrict inferences to maximal literals. In this
case, we call such an inference a superposition inference. Fig 1 shows the inference rule
(SP) for superpositions into a positive literal. Term orderings also allow us to use strictly
decreasing instances of positive unit clauses for simplification (i.e. destructive rewriting,
in which a parent clause is replaced by the result). Rule RP in figure 1 describes rewriting
of a positive literals. Both rules have very similar counterparts for overlapping into or
rewriting negative literals. See e.g. [4] for details and [11] for a more practice-oriented
exposition.

As described above, the two most frequently used classes of orderings are the KBO [1]
and the LPO [16] (but see [14, 13] for excellent modern treatments).

The KBO requires a weight assignment to function symbols, and a precedence on these
symbols. It compares terms first by weight (i.e. numerical comparison of the summed
weight of all symbols in the term), breaking ties by top symbol (using the precedence), and
further breaking ties by lexicographic comparison of subterms. It additionally requires
each variable to occur in the smaller term no more often than in the larger term.

The LPO requires only a precedence on function symbols, and essentially compares
terms lexicographically, recursively ensuring that no larger subterms are hidden deep in
the term structure of the potentially smaller term.

3. Term Orderings in Practice

As stated above, both LPO and KBO need to be instantiated with parameters - a symbol
precedence in the case of LPO, both a symbol precedence and a weight assignment for
KBO. In E, we have implemented 13 different mature precedence generation schemes,
and 26 different mature weight assignment schemes. All are based on simple features
of the signature (primarily arity) and the number of occurrences in the original input
specification (frequency). E always generates the symbol precedence first, and the weight
assignment scheme has the symbol precedence available as an extra input parameter.

Since any precedence can be combined with any weight assignment, this represents 13
different LPO instances, and 13 times 26, or 338 different KBO instances.

3.1. Term Ordering Generation Schemes

The complete list of precedence generation schemes used in the experiments is as follows:
unary_first, unary_freq, arity, invarity, const_max, const_min, freq, invfreq,
invconjfreq, invfreqconjmax, invfreqconjmin, invfreqconstmin, invfreqhack.

We will discuss some selected schemes in some detail - see [17] for more detailed notes.
While naming is not perfectly consistent, there are some general rules. Any scheme starting
with inv will just order symbols in the opposite (or inverse) way of the corresponding
non-inv scheme.

As a simple and long-lived example, the arity function just orders symbols by ar-
ity, making symbols with a bigger arity greater. Since all our schemes generate total
precedences, ties are broken by the order of appearance in the signature table (which
corresponds to the order in which symbols occur in the input). The unary_first scheme
is a variant that will make unary function symbols maximal. This allows the prover to
generate the ordering originally suggested in [1] for the completion of the group axioms. It
also turns out to perform very well for UEQ problems in general. Another useful scheme,
in particular for general problems, is invfreq. This makes rare symbols bigger then more
frequent symbols.

The 26 different weight assignment schemes are: firstmaximal0, arity, aritymax0,
modarity, modaritymax0, aritysquared, aritysquaredmax0, invarity, invaritymax0,
invaritysquared, invaritysquaredmax0, precedence, invprecedence, precrank5,
precrank10, precrank20, freqcount, invfreqcount, freqrank, invfreqrank, invconj-
freqrank, freqranksquare, invfreqranksquare, invmodfreqrank, invmodfreqrank-
max0, constant.

An interesting case is firstmaximal0, which complements unary_first to generate
the original KBO for group completion. It assigns a weight of 1 to all symbols, except
to the first (non-constant) maximal symbol in the signature, which is assigned weight
0. A more complex example is invfreqconjmin. In this scheme, symbols are ordered by
inverse frequency, but symbols that occur in the problem’s conjecture (if any) are smaller
than symbols that occur only in axioms. Weights are then assigned sequentially, starting
with 1 for the most frequent conjecture symbol. The precedence scheme assigns weights
according to the (total) precedence, with symbols that are larger in the precedence also
getting higher weights.

KBO also has the constraint that constants must have at least the weight of variables.
In our experiments, we always assigned a fixed weight of 1 to both constants and variables.

3.2. Rewriting with strong instances

One of the major advantages of superposition-based calculi is that they allow for strong
redundancy elimination. One of the most important simplification techniques in practice
is unconditional rewriting. It allows the use of a positive unit-equational clause (i.e. a
single equation) to potentially replace a term in another clause by a smaller term. For
this, two conditions have to be met2: On the one hand, one side of the equation (called
the left-hand side or lhs) must match the subterm to be rewritten. And on the other
hand, the instance used for rewriting must be decreasing, i.e. the instantiated other side
(rhs) of the equation has to be strictly smaller than the replaced term.

2Rewriting is also restricted for a small set of term positions by the calculus, but that is not our concern
here.

Most provers combine the matching and the instantiation operation. Thus, if an lhs
matches a candidate term, the corresponding substitution is applied to both sides of the
equation, and then the ordering condition is checked. This is often sufficient, however, the
test will automatically fail if the rhs contains a variable not occurring in the lhs, because
such a free variable is always incomparable with any term in which it does not occur. To
be able to still use these equations, we have introduced the concept of a strong instance of
an equation. In a strong instance, we dynamically instantiate all variables of the equation
before performing the ordering test. Variables in the lhs of an equation are automatically
bound by the match against the term to be rewritten. Additionally, we substitute any
remaining unbound rhs variables with the smallest constant (of the proper sort). As an
example, consider the equation R = f(x, a)'g(x, y) (where f is greater than g) applied
to the term t = f(a, a) and let ⊥ be the smallest constant in the signature. The lhs
f(x, a) matches t with σ = {x 7→ a}. But σ(R) = f(a, a)'g(a, y) is unorientable. If we
extend σ to also replace the unbound variable y by ⊥, we do get f(a, a)'g(a,⊥), which
is orientable, and hence can be used to reduce the term. This is sound, because variables
are universally quantified, i.e. the equality holds for all instances. We have implemented
this simple concept in E, and it has shown a significant and consistent improvement in
performance.

4. Experimental results

4.1. Experimental settings

We have employed four different search strategies. All normal search parameters were
fixed to (usually) known good values. The only difference between the four strategies was
in the clause selection heuristic. We broadly describe the 4 strategies below, see [18] for a
detailed exposition on clause selection in E.

SC: This is a pure symbol-counting strategy. All function, predicate, and variable symbol
occurrences are counted with a weight of one, and the lightest clauses are processed
first. The exact command line options for search control options are available in
the online supporting material (see below).

20:1: This selection strategy interleaves selecting the lightest and the oldest clause, with
a ratio of 20 to 1.

EVO: This clause selection strategy has been honed through various optimizations [19, 20].
It interleaves a number of goal-directed and conventional selection queues, and is
one of the best heuristics on TPTP we have found so far.

UEQ: This is similar to EVO in structure and intent, but optimised only towards
unit-equational problems.

We ran tests on all suitable problems from TPTP 7.5.0. Most experiments were run on
unit-equational problems. This set contained 1497 different problems. Some tests used
all suitable first-order problems from TPTP (i.e. all CNF and FOF problems). This set

was more than 10 times larger, containing 17283 problems. Run time per problem was
limited to 5 seconds of CPU time.

Tests were run on a machine with four Intel Xeon Gold 6130 CPUs, running a total of
64 physical cores at a nominal frequency of 2.10GHz and with 512GB of RAM. RAM size
was sufficient to guarantee no contention or swapping between parallel processes.

We have run 351 different ordering schemes with 4 different search strategies and two
different rewrite settings, i.e. 2808 different strategies, on 1497 UEQ problems, for a total
of 4 203 576 individual UEQ test runs. We have run the same 351 strategies, with only
the 20:1 clause selection strategy and conventional rewriting, on all 17283 problems for
6 066 333 individual test runs for the general case. Thus, the total corpus has data on a
bit over 10 million test runs.

A version of the prover suitable for reproducing the actual dataset runs, as well as
the summarized results of the test runs, is available as an online supplement at http:
//eprover.eu/E-eu/Term_Orderings.html. The protocols included there also specify the
exact command line options and contain the lists of problems used. TPTP 7.5.0, the
source of the test problems, can be downloaded from http://www.tptp.org. The latest
official release of E (and future updates) can be found at https://www.eprover.org.

4.2. Performance on unit-equational problems

We will first discuss the performance of the different orderings with conventional rewriting
on the 1497 UEQ problems. Table 1 gives a general overview of the data. Each row
corresponds to a search strategy (differentiated by clause selection strategy and use of
rewriting with strong instances). For each row, we show the number of problems solved
by the best, worst, and median term ordering variant, and by the union of all variants,
separately for LPO, KBO, and both.

We can see that the difference between the best and the worst ordering is roughly
110-120 successes, and about comparable to the difference between the weakest and
strongest search strategy, which is roughly 130-145. We can also already see that for UEQ
problems, the best LPO strategy is systematically worse than the worst KBO strategy.
However, for each search strategy the union of both LPO and KBO strategies solves more
problems than either alone.

To get a better understanding of the distribution of results, we have plotted the data
in Fig. 2. In this figure, each individual measurement is a lightly coloured dot. The
corresponding thin line is a gliding average. For each search strategy, the individual
orderings are sorted in ascending order by number of successes. This results in a very
distinct hockey stick graph, with an strongly ascending “blade”, followed by a more slowly
rising “handle”. The blade consists of the results for the 13 different LPO instances,
the handle of the 13 · 26 = 338 KBO instances. While this graph suggests very similar
distribution of performance for each search strategies, it does not tell us if we see the
same orderings in the same order, or if the different ordering variants appear in different
order for the different search strategies.

To remedy this, we have replotted the same data in Fig. 3. In this figure, we use the
SC strategy as the reference that determines the order of ordering variants for all 4 search

http://eprover.eu/E-eu/Term_Orderings.html
http://eprover.eu/E-eu/Term_Orderings.html
http://www.tptp.org
https://www.eprover.org

Strategy All orderings KBO only LPO only
Min Median Max Total Min Median Max Total Min Median Max Total

SC 610 707 719 782 691 708 719 740 610 655 668 733
20:1 680 783 798 857 762 784 798 824 680 720 740 820
EVO 773 872 883 920 848 872 883 897 773 802 820 877
UEQ 742 852 865 923 834 852 865 896 742 774 809 890
SC-SI 577 729 718 796 700 729 718 747 577 651 627 747
20:1-SI 679 803 789 867 771 803 790 833 679 729 709 826
EVO-SI 752 877 865 929 850 877 865 910 752 809 771 881
UEQ-SI 769 887 873 929 849 887 873 902 769 820 804 892
20:1-All 6523 7427 7298 8527 6792 7427 7306 8244 6523 7262 6998 8199

Remark: Strategies marked with SI uses rewriting with strong instances. The last line contains data
for the full problem set, not just UEQ problems.

Table 1
Performance summary (number of successes) on UEQ and all problems

LPO KBO

Figure 2: Performance spectrum on UEQ problems. The vertical black line corresponds to the
transition from the 13 LPO ordering variants (on the left) to the KBO variants (on the right)

strategies. In other words, the ordering variants are represented by a fixed order on the
X-axis for all different search strategies. We can see that the basic hockey stick shape
remains, however, there is significant local variation, and the increase in the “handle” part
of the graph is much less pronounced.

To quantify how far the order of strategies has changed between the different strategies,
we compute Kendall’s Tau value [21]. This metric is based on the number of bubble-sort
style swaps needed to bring two rankings in agreement, and measures correspondence
between them (in this case, the two rankings of orderings induced by the performance data
with different strategies). The result lies in [1,−1], with 1 indicating perfect agreement
and -1 completely opposite rankings. The algorithm also provides a p-value for the

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

600

650

700

750

800

850

Su
cc

es
se

s

Performance on UEQ problems (by base performance)

Base (SC)
20:1
EVO
UEQ

Rankings Kendall’s Tau p-Value
SC vs 20:1 0.084 1.84e-02
SC vs EVO) 0.321 2.67e-19
SC vs UEQ) 0.358 1.41e-23

Figure 3: Relative Performance on UEQ problems

null-hypothesis that the two rankings have been produced by uncorrelated processes.
All rankings are related to the SC base case. The correlation is quite weak for 20:1, but

much stronger for the other strategies. The null-hypothesis can be comfortably rejected
for all three pairings.

We can identify a number of consistently badly performing orderings. For all 4 search
strategies, LPO with precedence generation schemata invarity and const_max are always
among the worst 5 orderings. It’s less easy to pick out the winners, because the curves are
fairly flat at the top. However, all strong orderings are KBO instances, and precedence
schemata unary_first, const_min and invfreqconstmin appear frequently among the
top strategies. For weight generation, invaritymax0 and invaritysquaredmax0 appear
most frequently. The absolute best single combination is unary_first combined with
firstmaximal0, however, there are 5 strategies with essentially the same performance.

4.3. Different CPU limits

Figure 4 shows the relative performance of the orderings for a CPU limit of 1 second,
compared to a CPU limit of 5 seconds. For all 4 base strategies, there is good similarity
between the curves, and for all but 20:1 there is a strong correlation. In all cases, the
null-hypothesis is strongly rejected. Thus, it seems possible to extrapolate ordering
performance from shorter to longer run times in most cases.

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

550

575

600

625

650

675

700

725
Su

cc
es

se
s

Performance for different CPU limits (SC)

Base (SC (1s))
SC

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

640

660

680

700

720

740

760

780

800

Su
cc

es
se

s

Performance for different CPU limits (20:1)

Base (20:1 (1s))
20:1

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

700

725

750

775

800

825

850

Su
cc

es
se

s

Performance for different CPU limits (Evo)

Base (EVO (1s))
EVO

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

720

740

760

780

800

820

840

860

880

Su
cc

es
se

s

Performance for different CPU limits (UEQ)

Base (UEQ (1s))
UEQ

Rankings Kendall’s Tau p-Value
SC 1s vs 5s 0.554 3.30e-54
20:1 1s vs 5s 0.259 4.23e-13
EVO 1s vs 5s 0.502 8.98e-45
UEQ 1s vs 5s 0.627 6.99e-69

Figure 4: Comparison of performance for 1s and 5s CPU limits

4.4. Rewriting with strong instances

We have plotted the relative performance of the different orderings and strategies in
Figure 5. As already visible from the summary data in Table 1, rewriting with strong
instances performs consistently better than conventional rewriting. The difference is
significant for all base strategies but UEQ, where it is minuscule. In all 4 cases we
have an excellent agreement between relative performance of normal and strong instance
variants, indicating that strong instance can probably be added to any prover and yield
an improvement without disrupting existing strategies.

4.5. Performance on full first-order problems

Finally, we can compare the performance of all orderings on the full set of first-order
problems, not just unit-equational problems. Since the number of problems is over 10
times larger now, we had to restrict the experiment to only one clause selection strategy.

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

580

600

620

640

660

680

700

720
Su

cc
es

se
s

Normal rewriting vs. strong instances (SC)

Base (SC)
SC_SI

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

680

700

720

740

760

780

800

Su
cc

es
se

s

Normal rewriting vs. strong instances (20:1)

Base (20:1)
20:1_RG

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

740

760

780

800

820

840

860

880

Su
cc

es
se

s

Normal rewriting vs. strong instances (Evo)

Base (EVO)
EVO_RG

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

780

800

820

840

860

880

Su
cc

es
se

s

Normal rewriting vs. strong instances (UEQ)

Base (UEQ)
UEQ_RG

Rankings Kendall’s Tau p-Value
SC vs. SC-SI 0.685 7.12e-82
20:1 vs 20:1-SI 0.813 1.51e-114
EVO vs EVO-SI 0.808 4.58e-113
UEQ vs UEQ-SI 0.790 3.32e-108

Figure 5: Performance with conventional and strong-instance rewriting

We picked 20:1, because it has decent performance and is easy to transfer to most other
provers. The result is plotted in Figure 6. While the overall number of solutions for each
ordering variant is several times higher for the full set (since the number of problems is
higher), we can see that again performance on all problems correlates to performance on
unit-equational problems, if not quite as pronounced as for some of the other comparisons.

5. Related and Future Work

The long term aim of this line of research is to automatically find good term orderings
for any given problem. Our current approach is driven by the very successful standard
saturation approach based on the given-clause loop. For the unit-equational case, there
has been a lot of impressive work done for the Waldmeister prover, some of which is
described in [22], but significant parts of which are only available as folklore. In particular,
Waldmeister recognised domains by matching axioms on higher-order patterns, and

0 50 100 150 200 250 300 350
Ordering strategies (by base strat successes)

1000

2000

3000

4000

5000

6000

7000

Su
cc

es
se

s

Relative performance on UEQ and all problems

Base (20:1)
20-1 Full

Rankings Kendall’s Tau p-Value
UEQ vs All 0.345 4.72e-22

Figure 6: Relative performance on UEQ an all problems

instantiated ordering schemes based on the domain. Generalising this approach to full
clausal logic, and also automatising the knowledge acquisition, would be a major step
into the future.

One step in this direction is the work by Bartek and Suda [23], which describes an
attempt to learn good precedences for KBO from features of the proof problem using a
neural network architecture.

There has been some work about orienting a static system of equations with a KBO,
e.g. [24]. However, this was a theoretical result with no experiments about the practical
effects of computing such a static ordering before starting the proof search. Based on a
similar premise is MædMax [25], a completion-based system for unit-equality. It is not
built on the given-clause loop, but rather on a kind of level-saturation. At each iteration
of its main loop, the system tries to find an ordering to orient as many equations as
possible before the next round, before computing and normalising all critical pairs of the
resulting system.

Our work with strong instances is quite conservative, in that it does not modify the
clause set or inference rules, but only makes the implementation correspond more closely
to the theoretical case. Twee [26] has an interesting alternative approach. It splits such
unorientable equations into an orientable part, and a permutation equation. It would be
interesting to see a direct comparison of both techniques.

Finally, saturating theorem provers are moving into higher-order [27] . One significant
question is how many of these techniques can be lifted to this case, and how well they
will work there.

6. Conclusion

Term orderings are a critical component of the search strategies of modern theorem
provers. We have presented a first systematic overview of the performance of relatively
naive term ordering generation schemes. With respect to our research questions, we can
say the following:

1. KBO performs almost uniformly better than LPO. However, both KBO and LPO
instances are necessary to solve all solvable problems. Differences between different
LPO instances are much bigger than those between different KBO instances, but
the latter are still significant.

2. There is some correlation between the performance of different orderings under
different other settings. However, relative performance between similarly performing
strategies cannot be reliably predicted.

3. It is, on the other hand, quite possible to predict relative performance for longer
runtimes from shorter runtimes. That is particularly valuable for system tuning,
since tuning experiments can be done with relatively short run times.

4. Maybe surprisingly, there is a quite good correlation between performance of an
ordering in the UEQ domain and over all problems, despite the fact that orderings
play additional roles for reasoning with general clauses.

The raw data is available for further evaluation and experiments, and there is a clear
path to both generate more diverse and stronger orderings, and to couple ordering
generation to the presence of certain axioms and axiom structures.

Acknowledgments

The various anonymous reviewers of this paper have been extremely helpful, identifying,
in addition to several language issues and typos, a wrong number in Table 1 that slipped
in during editing.

References

[1] D. Knuth, P. Bendix, Simple Word Problems in Universal Algebras, in: J. Leech
(Ed.), Computational Algebra, Pergamon Press, 1970, pp. 263–297.

[2] J. Hsiang, M. Rusinowitch, On Word Problems in Equational Theories, in: Proc. of
the 14th ICALP, Karlsruhe, volume 267 of LNCS, Springer, 1987, pp. 54–71.

[3] L. Bachmair, N. Dershowitz, D. Plaisted, Completion Without Failure, in: H. Ait-
Kaci, M. Nivat (Eds.), Resolution of Equations in Algebraic Structures, volume 2,
Academic Press, 1989, pp. 1–30.

[4] L. Bachmair, H. Ganzinger, Rewrite-Based Equational Theorem Proving with
Selection and Simplification, Journal of Logic and Computation 3 (1994) 217–247.

[5] R. Nieuwenhuis, A. Rubio, Paramodulation-Based Theorem Proving, in: A. Robinson,
A. Voronkov (Eds.), Handbook of Automated Reasoning, volume I, Elsevier Science
and MIT Press, 2001, pp. 371–443.

[6] W. McCune, L. Wos, Otter: The CADE-13 Competition Incarnations, Journal
of Automated Reasoning 18 (1997) 211–220. Special Issue on the CADE 13 ATP
System Competition.

[7] J. Denzinger, M. Kronenburg, S. Schulz, DISCOUNT: A Distributed and Learning
Equational Prover, Journal of Automated Reasoning 18 (1997) 189–198. Special
Issue on the CADE 13 ATP System Competition.

[8] T. Hillenbrand, A. Buch, R. Vogt, B. Löchner, WALDMEISTER. High Performance
Equational Deduction, Journal of Automated Reasoning 18 (1997) 265–270. Special
Issue on the CADE 13 ATP System Competition.

[9] G. Sutcliffe, The CADE ATP System Competition – CASC, AI Magazine 37 (2016)
99–101. doi:10.1609/aimag.v37i2.2620.

[10] F. J. Pelletier, G. Sutcliffe, C. Suttner, Conclusions about the CADE-13 ATP system
competition, Journal of Automated Reasoning 18 (1997) 287–296.

[11] S. Schulz, E – A Brainiac Theorem Prover, Journal of AI Communications 15 (2002)
111–126.

[12] S. Schulz, S. Cruanes, P. Vukmirović, Faster, higher, stronger: E 2.3, in: P. Fontaine
(Ed.), Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI, Springer, 2019,
pp. 495–507.

[13] B. Löchner, Things to Know when Implementing KBO, Journal of Automated
Reasoning 36 (2006) 289–310.

[14] B. Löchner, Things to Know When Implementing LPO, International Journal on
Artificial Intelligence Tools 15 (2006) 53–80.

[15] G. Sutcliffe, The TPTP problem library and associated infrastructure - from CNF
to TH0, TPTP v6.4.0, Journal of Automated Reasoning 59 (2017) 483–502.

[16] S. Kamin, J.-J. Levy, Two generalizations of the recursive path ordering, Technical
Report, Departement of Computer Science, University of Illinois, Urbana, IL, 1980.

[17] S. Schulz, E 2.4 User Manual, EasyChair preprint no. 2272, 2019. URL: https:
//easychair.org/publications/preprint/RjDx.

[18] S. Schulz, M. Möhrmann, Performance of clause selection heuristics for saturation-
based theorem proving, in: N. Olivetti, A. Tiwari (Eds.), Proc. of the 8th IJCAR,
Coimbra, volume 9706 of LNAI, Springer, 2016, pp. 330–345.

[19] S. Schäfer, S. Schulz, Breeding theorem proving heuristics with genetic algorithms,
in: G. Gottlob, G. Sutcliffe, A. Voronkov (Eds.), Proc. of the Global Conference on
Artificial Intelligence, Tibilisi, Georgia, volume 36 of EPiC, EasyChair, 2015, pp.
263–274.

[20] J. Urban, Blistr: The blind strategymaker, in: G. Gottlob, G. Sutcliffe, A. Voronkov
(Eds.), Proc. of the Global Conference on Artificial Intelligence, Tibilisi, Georgia,
volume 36 of EPiC, EasyChair, 2015, pp. 312–319.

[21] M. G. Kendall, Rank Correlation Methods, 4th ed., Charles Griffin & Co., 1970.
[22] T. Hillenbrand, A. Jaeger, B. Löchner, System Abstract: Waldmeister – Improve-

ments in Performance and Ease of Use, in: H. Ganzinger (Ed.), Proc. of the 16th
CADE, Trento, volume 1632 of LNAI, Springer, 1999, pp. 232–236.

[23] F. Bártek, M. Suda, Neural Precedence Recommender, in: A. Platzer, G. Sutcliffe
(Eds.), Proc. of the 28th CADE, Pittsburgh, volume 12699 of LNAI, Springer, 2021,

http://dx.doi.org/10.1609/aimag.v37i2.2620
https://easychair.org/publications/preprint/RjDx
https://easychair.org/publications/preprint/RjDx

pp. 525–542.
[24] K. Korovin, A. Voronkov, Orienting rewrite rules with the Knuth–Bendix order,

Journal of Information and Computation 183 (2003) 165–186.
[25] S. Winkler, G. Moser, MædMax: A maximal ordered completion tool, in:

D. Galmiche, S. Schulz, R. Sebastiani (Eds.), Proc. of the 9th IJCAR, Oxford,
volume 10900 of LNAI, Springer, 2018, pp. 472–480.

[26] N. Smallbone, Twee: An Equational Theorem Prover, in: A. Platzer, G. Sutcliffe
(Eds.), Proc. of the 28th CADE, Pittsburgh, volume 12699 of LNAI, Springer, 2021,
pp. 602–613.

[27] P. Vukmirović, J. C. Blanchette, S. Cruanes, S. Schulz, Extending a Brainiac Prover
to Lambda-free Higher-Order Logic, International Journal on Software Tools for
Technology Transfer (2021). doi:10.1007/s10009-021-00639-7.

http://dx.doi.org/10.1007/s10009-021-00639-7

	1 Introduction
	2 Preliminaries
	3 Term Orderings in Practice
	3.1 Term Ordering Generation Schemes
	3.2 Rewriting with strong instances

	4 Experimental results
	4.1 Experimental settings
	4.2 Performance on unit-equational problems
	4.3 Different CPU limits
	4.4 Rewriting with strong instances
	4.5 Performance on full first-order problems

	5 Related and Future Work
	6 Conclusion

