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Abstract
This paper describes the participation of the Vicomtech NLP team in the DA-VINCIS shared task. This
shared task is focused on mentions of violent events in Spanish tweets, and proposes two subtasks: first,
detecting whether a violent incident is mentioned in a tweet; and, second, determining which type of
violent event is being mentioned. We participated in this shared task with multiple systems built on
Transformer-based models, which we fine-tuned on different versions of the provided data. Among
others, we explored the impact of automatic data augmentation and relabelling. Further, we tested
masking keywords during training as a means to avoid the models from overfitting these recurrent
expressions. Our systems ranked in 2nd place in both tasks, with F1-scores of 77.32 and 52.86 respectively.
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1. Introduction

Twitter is an established research platform that has been widely exploited by the Natural
Language Processing (NLP) community to research, for instance, into hate speech and fake
news detection [1]. The goal of the DA-VINCIS challenge [2] is to encourage research on a
novel topic—the detection of mentions of violent events in Spanish-language tweets.

The organisers proposed two subtasks: first, detecting whether a violent incident is mentioned
or not in a tweet; and second, determining which type of violent event is being mentioned (if
any). From a technical perspective, both subtasks are text classification problems, where each
tweet must be automatically associated to one or more labels. These working notes describe
the participation of Vicomtech’s NLP team in the challenge. They are organised as follows:
Section 2 provides an overview of the related work; Section 3 presents the data of the task and
the techniques we tried to maximise its exploitation; Section 4 describes our systems; Section 5
reports and analyses our results; finally, Section 6 provides concluding remarks.

Detailed information about the shared task (e.g., about related work, the evaluation framework
or the results of other participants) can be found in the organisers’ overview article [2].
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2. Related work

DA-VINCIS is one more of the many shared tasks organised within the Iberian Languages
Evaluation Forum (IberLEF) that proposes the problem of classifying tweets in the Spanish
language. Some of the closest related shared tasks, which could be gathered under the umbrella
theme of “harmful content”, include AMI [3], EXIST [4], MeOffendEs [5] and, above all, the MEX-
A3T series [6, 7, 8]. These shared tasks have covered topics such as misogyny, aggressiveness
and offensive language detection and classification throughout the last few years.
Statistical machine learning has been successfully applied for years to resolve problems of

document classification. With the surge of interest in deep learning, these techniques were
gradually replaced by the use of continuous word embeddings [9, 10, 11] and Convolutional
Neural Networks (CNN) [12]. More recently, NLP has entered a new era, brought about by the
convergence of powerful techniques such as word embedding contextualisation [13, 14], the
Transformer architecture [15], and the improvement of the pre-train/fine-tune paradigm [16].

The most popular of these models are BERT [16] and RoBERTa [17]. Much of the success of
this type of models lies on their capability to transfer the knowledge captured during pre-training
to a new language, domain or task. Nevertheless, it has been repeatedly shown that better
results are obtained when the models are pre-trained on the target language and domain [18, 19,
among others]. For this reason, the last years have witnessed an explosion of publications of
domain- and/or language-specific pre-trained models [20].

Social networks like Twitter are considered application domains worthy of special treatment,
because the language employed by users in these platforms differs vastly from that of the
commonly used sources to train generic models (e.g., Wikipedia or Common Crawl). Among the
many BERT-like models learned from Twitter content, we must mention the pioneers BERTweet
[21] and Twitter-roBERTa-base [22]. As is the default in NLP, both are English-specific. To the
best of our knowledge, there exists no similar model for Spanish.
Fortunately, the Spanish language boasts currently a handful of competitive pre-trained

models learned from a variety of monolingual content sources: BETO [23], SpanBERTa [24],
BERTIN [25], MarIA [26], and RigoBERTa [27]. BETO is a BERT-based model, while BERTIN,
SpanBERTa andMARIA are RoBERTa-like models. RigoBERTa follows themore recent DeBERTa
[28] architecture. Finally, we must also mention the multilingual models Multilingual BERT
[29] and IXAmBERT [30], whose pre-training included data in Spanish. Although multilingual
models are generally less competitive than the monolingual ones, they offer the advantage of
being better suited for cross-lingual learning.

3. Data

The dataset provided by the organisers consists of a set of 3,362 tweets for training, and 50
tweets as trial data. Table 1 (columns labelled as Off) shows the distribution of these examples
over the task’s categories. Subtask 1 is concerned with the categories Non-violent (N) versus
Violent (V), while Subtask 2 provides one or more specific labels—Accident (A), Homicide (H),
Theft (T) and/or Kidnap (K)—to Violent (V) tweets. That is, Subtask 1 is a binary classification
problem, while Subtask 2 is a multi-label problem of 5 categories.



Table 1
Training and trial data quantification by category. Off: official data split; Res: our split; Res+: our
split, augmented; Sil: our split, automatically relabelled; Sil+: our split, automatically relabelled and
augmented.

Train Trial

Off Res Sil Res+ Sil+ Off Res Sil

Non-violent (N) 1,798 1,551 1,501 1,551 1,501 27 172 169
Violent (V), of which 1,564 1,345 1,395 2,230 2,258 23 147 150
Accident (A) 1,125 950 1,011 982 1,039 12 105 114
Homicide (H) 260 231 224 703 680 5 23 20
Theft (T) 179 158 153 475 461 5 22 17
Kidnap (K) 45 43 40 192 187 2 3 3

Total 3,362 2,896 2,896 3,781 3,759 50 319 319

As can be seen, the dataset presents a sharp imbalance. Moreover, the categories Homicide,
Theft, and Kidnap are hardly represented in the trial dataset. This, paired with the facts that

a) the official metrics of the shared task are macro-averaged, whereby mistakes involving
the minority categories are more severely penalised, and

b) during initial experiments, we spotted a number of inconsistencies in the gold labels,
motivated us to try a series of techniques in automatic data cleaning and augmentation, among
others, which we describe in the forthcoming sections.

3.1. Data pre-processing

That the pre-processing of tweets can have a considerable impact on system performance
is a proven fact (see [31] and the related work therein). In this work, we applied basic pre-
processing techniques aimed at reducing noise: removal of emojis, URLs, and hashtags. The
result is illustrated in the following example:

Before: #InformacionVial (14/09) #ACTUALIZACIÓN #Carabobo Troncal 5. Au-
topista del Sur. El accidente se trató de una Encava que venía sentido #Valencia
#Tocuyito y por desperfecto mecánico en un neumático, saltó la isla quedando en
sentido contrario de... https://t.co/rjIL5EF2sZ https://t.co/g4emPTDjbY

After: (14/09) Troncal 5. Autopista del Sur. El accidente se trató de una Encava que venía
sentido y por desperfecto mecánico en un neumático, saltó la isla quedando en sen-
tido contrario de...

Of note, preliminary experiments with a number of more sophisticated data pre-preprocessing
combinations did not yield improved results. Among others, we tested replacing emojis with
descriptive words (e.g., “bus” instead of “ ”) and segmenting mid-sentence hashtags based on
casing (e.g., “Informacion Vial” instead of “#InformacionVial”). We expected the latter to be
particularly beneficial because important content words are sometimes presented as hashtags.
However, results on the trial data did not confirm our hypothesis.



3.2. Data resampling

After pre-processing the examples, we dropped 197 duplicate tweets (5.77% of the entire dataset).
Then, in light of the small number of examples given as trial data, we computed new train and
trial splits from the whole randomised, normalised dataset, keeping 90% for training and 10% for
evaluation purposes. These new splits (see Table 1, columns Res) were used as starting point of
all our subsequent experiments, including those reported in these working notes. All references
to train and/or trial data should be hereafter interpreted in this manner too.

3.3. Data relabelling

Error analyses of preliminary experiments revealed a number of inconsistencies in the gold
annotations of the train and trial data. Naturally, a small error rate is to be expected in any
manually annotated corpus. Nevertheless, we considered it worthwhile to attempt to handle
the noisy instances, as they also affected the least represented categories.

Our approach consisted simply in relabelling the train and trial data per the votes of 5 systems
learned from the noisy training data. Specifically, we established that a given gold label in the
training data should be corrected if at least 4 of the 5 systems agreed to do so. In the case of
the trial data, we required that all the systems agreed, due to the sensitivity of this data split.
Table 7 in Appendix A contains a few examples of these corrections. We henceforth refer to the
version of the dataset resulting from this step as the “silver” dataset.

The new distribution of instances over categories can be consulted in Table 1 (columns
Sil). Table 8 in Appendix A shows the number of automatic corrections by source (gold) and
destination (silver) category. In total, 138 (4.77%) and 31 (9.72%) instances of the train and trial
data were relabelled, respectively. The success rate of these corrections is analysed in Section
5.3 Error analysis.
The 5 systems employed in this procedure will be duly introduced throughout Section 4

System description, as they are themselves part of our official submissions.

3.4. Data augmentation

Our last effort in relation to the task’s corpus was to address the major imbalance between
categories by augmenting the training data of the underrepresented ones. Among the multiple
techniques that we tested in preliminary experiments (e.g., back-translation [32]), the most
significant improvement was achieved by translating the tweets to languages other than Spanish
and feeding them to a multilingual model (to be described in Section 4).
We used the pre-trained OPUS-MT models [33], available through HuggingFace’s Python

library Transformers [34], to obtain different representations of the same tweet by translating
them automatically from Spanish to English and German. Here is a real example:

Spanish: A través de un comunicado, el Eln confirmó el secuestro de dos militares en Arauca.

English: Through a statement, Eln confirmed the kidnapping of two soldiers in Arauca.

German: Durch eine Erklärung bestätigte der Eln die Entführung zweier Militärs in Arauca.



The process was applied to the minority categories Homicide, Theft, and Kidnap. In order
to promote generation diversity, we computed 5 translations per target language and tweet,
of which we chose randomly 1 translation per target language in the case of Homicide and
Theft tweets, and up to 2 translations per target language in the case of Kidnap tweets. That
is, we tripled the Homicide and Theft categories, and almost quintupled the Kidnap category.
The result is shown in Table 1, columns Res+ and Sil+ (notice that we augmented both the
original noisy dataset and our silver dataset). We also tweaked certain hyperparameters of the
generation function, which can be consulted in Appendix B, Table 9a.

4. System description

Since Subtask 1 is contained within Subtask 2—Subtask 1 could be described as a simplification
of Subtask 2, with attention only to the category Non-violent (N) versus the rest—, all our
systems aim at resolving Subtask 2. Their output is then post-processed to obtain the expected
output for Subtask 1. From this perspective, we developed two main types of systems:

• 1-step system (Figure 1a): this system consists of one multi-label text classification
model that makes predictions for the five categories of Subtask 2 (namely, Non-violent
[N], Accident [A], Theft [T], Kidnap [K], and Homicide [H]) in one pass.

• 2-step system (Figure 1b): this system requires up to two passes per input to produce
an output. The first step consists of a binary classifier that decides whether a violent
incident is mentioned in a tweet or not. That is, it filters all Non-violent tweets. In the
second step, a multi-label classification model assigns the finer-grained labels Accident,
Theft, Kidnap, and/or Homicide to Violent tweets.

The classifiers that conform the systems are all Transformer neural networks [15]. We have
developed multiple variants, which differ in aspects such as the base pre-trained language model
or the data from which the classifiers were learned, among others. In addition, we have built
a number of ensembles from the system variants, in order to assess whether the knowledge
acquired by the different models complements each other.

In what follows, we present the core architecture of the classifiers (Section 4.1), and explain
how the outputs of the different system types are handled (Section 4.2). Finally, we report the
implementation details and training setup of the submitted system variants (Section 4.3).

4.1. Architecture

The three classification models introduced above follow the same Transformer-based standard
architecture for text classification: a BERT encoder, whose output for the special token at the
start of each sequence (e.g., BERT’s [CLS] or RoBERTa’s <s>) is pooled and fed to a dropout
layer, followed by a dense linear layer that produces the logits for the target categories. The
binary classifier is fine-tuned with the cross-entropy loss, while the multi-label classifiers use
the binary cross-entropy with logits loss (BCEWithLogitsLoss).
In inference, the binary model predicts the most likely category from the logits (Figure 2b).

In the case of the multi-label classifiers (Figures 2a and 2c), the sigmoid function is applied to
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Figure 2: Diagram of the classifier models’ output layers. All the trained models consist of a Transformer
encoder followed by a binary or multi-label sequence classification head. 1-step systems (Figure 1a)
consist of one multi-label model of the 5 categories of Subtask 2 (2a), while 2-step systems (Figure 1b)
combine a binary model (2b) and a multi-label model of the 4 Violent subcategories (2c).

the logits, after which the categories whose probabilities exceed a given threshold, empirically
set to 0.5, are taken as positive labels.
In all cases, the input tweets to be passed through the encoder are appropriately tokenised

with the corresponding pre-trained tokeniser, wrapped between the special tokens that signal
the start and end of the sequence, and padded to a maximum length of 256 tokens.

4.2. Output handling

The output of the systems had to be post-processed in order to submit the predictions as expected
to the challenge. The post-processing consists of 2 phases, as illustrated in Figure 1:



Table 2
Prediction post-processing rules for Subtask 2

Prediction Well-formed Rule Example Systems to which the rule applies

N Yes n/a N → N 1-step and 2-step (binary model)
A, T, K, and/or H Yes n/a T, H → T, H 1-step and 2-step (multi-label model)
N + A, T, K, and/or H No Discard N N, A → A 1-step
∅ No Add N ∅ → N 1-step and 2-step (multi-label model)

First, we obtain well-formed predictions for Subtask 2. We define a well-formed prediction as
that which consists of a) the label Non-violent (N)—and only that label—, or b) any combination
of the other 4 categories for violent incidents. With this definition in mind, four possible
scenarios arise, which we summarise in Table 2. As can be seen, the post-processing consists in
fixing ill-formed outputs by adding or removing the label N as necessary.
Second, we compute the final predictions for Subtask 1 from the post-processed results for

Subtask 2. We simply return the label Non-violent if that was the result for Subtask 2, and
Violent otherwise.

4.3. Implementation details and training setup

Our participation in the shared task includes a series of variants of the above explained systems.
In addition to the type of system itself—1-step or 2-step—, the variables that we considered in
our final submissions (to be listed below) were the following four:

Hyperparameters In general, we used the default hyperparameters of the Transformers
library, as given by the TrainingArguments class [35]. We did experiment with a few commonly
tweaked hyperparameters, such as the batch size and the learning rate. Our final submissions
include 2-step system variants trained with 2 different sets of hyperparameters, and a 1-step
system trained with a third set of hyperparameters. These combinations can be consulted in
Appendix B, Table 9b.

Keyword masking In order to prevent models from learning to represent each label by its
keywords, we experimented with masking them randomly during training with a controlled
masking probability rate. The masking consisted in replacing each token of a keyword with
the mask token of the pre-trained tokeniser being used (e.g., BERT’s [MASK]). Consider the
following example, where the keywords “asesinato” and “presunto” have been masked:

Original: Autoridades reportaron el asesinato de un presunto miembro de la [...]

Tokenised: Autoridad ##es reportar ##on el asesinato de un presun ##to miembro de la [...]

Masked: Autoridad ##es reportar ##on el [MASK] de un [MASK] [MASK] miembro de la [...]

The keywords were estimated using the Term Frequency–Inverse Document Frequency (TF-
IDF) weights of the words in the normalised training dataset, after removing stopwords and
converting the text to lowercase. Thus, we calculated the TF-IDF value of each word per violent



Table 3
Relation of systems and their training details: training and trial data, base pre-trained model, key mask
(KM) rate, and hyperparameters (HP).

Type Binary model Multi-label model

Data Base KM HP Data Base KM HP

R1 1-step - - - - Res BETO - 9bA
R2 2-step Res BETO - 9bB Res BETO 0.60 9bB
R3 2-step Res BETO - 9bC Res BETO - 9bC
R4 2-step Res MarIA - 9bB Res MarIA - 9bB
R5 2-step Res+ mBERT - 9bB Res+ mBERT - 9bB

S1 1-step - - - - Sil BETO - 9bA
S2 2-step Sil BETO - 9bB Sil BETO 0.60 9bB
S3 2-step Sil BETO - 9bC Sil BETO - 9bC
S4 2-step Sil MarIA - 9bB Sil MarIA - 9bB
S5 2-step Sil+ mBERT - 9bB Sil+ mBERT - 9bB

event category against the rest of the data. Then, we selected the words whose TF-IDF value
exceeded a given threshold (empirically set to 0.10) in any of the categories, obtaining a total
of 25 keywords. Experiments with a range of masking probability rates pointed to 0.60 as the
most beneficial rate.

Base pre-trained model The pre-trained language models employed in our experiments
were the monolingual Spanish models BETO𝐵𝑎𝑠𝑒 Cased [23] and MarIA RoBERTa𝐵𝑎𝑠𝑒 [26]. We
also used Multilingual BERT𝐵𝑎𝑠𝑒 Cased (mBERT) [29], which we introduced in our experiments
to better leverage the augmented multilingual datasets.

Dataset As explained in Section 3, we prepared four versions of the training dataset, all of
which were used to create system variants: we trained monolingual classifiers with the given
Spanish tweets, and multilingual classifiers with the augmented datasets; furthermore, we
trained an analogous variant with the silver data for each of the system variants trained on the
original noisy data.

The final trained systems are summarised in Table 3. We developed a total of 10 systems that
differ among each other in one or more of the above introduced variables. The systems R1-5
were the ones used to produce the silver dataset, as explained in Section 3.3.

Finally, we also computed ensemble results from various combinations of the 10 systems.
The ensembles consist simply in the majority vote per each category of Subtask 2 (the output
post-processing rules explained in Section 4.2 apply here as well). They are as follows:

• E1: an ensemble of R1-5 (the systems trained on the original noisy data)
• E2: an ensemble of S1-5 (the systems trained on the silver data)
• E3: an ensemble of R1, R2, R3, S4, and S5 (the best system, when compared pairwise on
the trial results, of the analogous R and S variants)



This makes a total of 13 systems. As the organisers allowed for 5 runs per task, we submitted
the predictions of the 3 ensembles to both tasks, and chose the best two standalone systems in
the trial data (one original and one silver) to complete the submissions: R3 and S5 for Subtask 1,
and R2 and S2 for Subtask 2.

All the systemswere implemented in Python 3.9 withHuggingFace’s Transformers library [34]
version 4.18.0. The models were trained during a maximum of 50 epochs, with one checkpoint
saved per epoch. The criterion to choose the best checkpoint was the macro F1-score. Each
model took ∼30-60 minutes to train, depending on the batch size, in one NVIDIA GeForce RTX
2080 GPU with 11GB of memory.

5. Results

The results of the 13 systems developed for the shared task are shown in Table 4. As is standard
in classification tasks, the results are measured in terms of precision (P), recall (R) and F1-score
(F1). Following the official shared task definition, Subtask 1 is concerned with the metrics for
the category Violent, while Subtask 2 shows the macro-average of all the categories.

We report results on the trial and test datasets. Since the gold labels of the test dataset have
not been released at the time of writing these working notes, the test results only include the
5 officially submitted systems per task. In addition, we provide the results of the organiser’s
baseline [2] and of the best participant as reference.

5.1. Subtask 1: Violent event identification

In the binary subtask we ranked in second position with an F1-score of 77.32, close to the
winner, with a 2-step system of BETO models fine-tuned on the original noisy data and the
hyperparameter set that included a bigger batch size and a lower learning rate (see column C in
Table 9b). This system was also the best among the standalone systems in the trial evaluation,
although it was surpassed by some of the ensemble results.
In general, we observe a clear disadvantage of the 1-step systems with respect to the 2-step

systems in the trial data. This is to be expected, because the 1-step system was learnt directly
from the data for Subtask 2, which is more complex.
No such general remark can be made with respect to the impact of the silver dataset: some

systems worsen (namely, S1, S2, and R3), while others achieve slightly better results (S4 and S5)
when compared to their analogous variants R1-5. Interestingly, the system that most benefits
from the silver data is the one built on the augmented training data (S5), where the augmentation
was performed after correcting the labels; that is, where we augmented the least represented
categories based on the automatic labels. This system increases precision considerably while
maintaining the recall metrics. It also achieves the best precision of the shared task in the trial
data, but the lower recall renders it the worst system submitted to test. It is also noteworthy that
the ensembles built partly or totally on S1-5 (i.e., E2 and E3) manage to surpass the ensemble
E1, built on the votes of R1-5, on both the trial and test data.

Overall, we observe better recall than precision metrics in the trial data, and a reverse pattern
in the test data. Having no access to the labelled test dataset at the moment of writing these



Table 4
Official results, including the organiser’s baseline (Base) and the results of the best participant (Best).
The best results among our systems are highlighted in boldface.

Subtask 1 Subtask 2

Trial (Res) Test Trial (Res) Test

P R F1 P R F1 P R F1 P R F1

R1 79.14 74.83 76.92 - - - 68.81 58.94 62.95 - - -
R2 77.64 85.03 81.17 - - - 71.48 62.07 65.53 48.88 50.47 49.30
R3 77.78 85.71 81.55 81.28 73.73 77.32 62.65 64.08 62.92 - - -
R4 75.32 80.95 78.03 - - - 68.41 52.63 56.78 - - -
R5 71.35 86.39 78.15 - - - 56.64 57.69 55.31 - - -

S1 72.90 76.87 74.83 - - - 65.94 56.18 59.72 - - -
S2 79.73 80.27 80.00 - - - 72.32 59.97 64.63 48.33 51.82 48.79
S3 76.54 84.35 80.26 - - - 59.64 62.07 60.51 - - -
S4 85.71 73.47 79.12 - - - 74.54 51.89 58.05 - - -
S5 75.60 86.39 80.63 82.08 69.99 75.55 57.71 60.48 58.24 - - -

E1 78.12 85.03 81.43 81.12 73.05 76.88 74.23 63.00 67.39 50.68 55.58 52.21
E2 81.46 83.67 82.55 80.64 73.68 77.01 76.01 60.81 66.16 51.75 54.59 52.86
E3 81.05 84.35 82.67 80.32 74.26 77.17 74.38 61.38 66.33 50.35 52.86 51.31

Base - - - 74.00 82.00 78.17 - - - 57.00 46.00 49.81
Best - - - 80.32 75.04 77.59 - - - 55.00 56.42 55.43

working notes, we can only speculate that our systems have not been able to generalise well to
the new instances of tweets with mentions of violent incidences.
Finally, it must be noted that none of the participants managed to reach the baseline.

5.2. Subtask 2: Violent event category recognition

In the case of multi-label subtask, the submission that achieved the highest F1-score (52.86) was
an ensemble of all our systems trained with the silver data (E2), obtaining again the second
place in the official shared task ranking. In this case, however, the advantage of the subtask’s
winner with respect to our best result is more substantial. Overall, similar, general observations
can be made as those of Subtask 1, but for three major differences:

First, that the 1-step systems (R1 and S1) are at least as competitive as the 2-step systems in
this subtask’s trial data. They do not yield the best results, but do not lag behind either.
Second, that the trial results show a clear positive impact of the random keyword masking.

This training strategy has resulted in a marked increase of precision metrics with respect to the
other standalone systems, making R2 and S2 our the top standalone performers by a margin of
2-4 F1-score points.
Finally, that all the ensembles managed to beat the standalone systems R2 and S2, and the

baseline too (whereas neither R2 nor S2 did). Further, the best ensemble predictions, E2, were
achieved with the votes of the systems trained on the silver data (S1-5).



a: Confusion matrix of R2 (best system) b: Confusion matrix of R5 (worst system)

Figure 3: Confusion matrices on the trial (Res) dataset of Subtask 2

5.3. Error analysis

In what follows, we analyse the errors of the best and worst standalone system in Subtask 2.
Since the gold labels of the test dataset have not been released at the time of writing these
working notes, we analysed the predictions on the trial dataset. Figures 3a and 3b, show,
respectively, the confusion matrices of the best (R2) and worst (R5) systems.

We observe in both cases that many of the errors involve the majority class Non-violent (N),
both as false positive and false negative predictions. (This is actually the case of all the tested
systems; see examples in Table 5.) The main difference between the two systems is that R2
commits less false positive errors in the Accident (A) category. Furthermore, R2 does not make
false positive predictions of the category Kidnap (K), while R5 makes 3 errors of this type. While
3 errors out of 319 predictions could be thought to be marginal, the fact that Subtask 2 was
measured in terms of macro-average metrics makes the evaluation extremely sensitive to even
the smallest number of errors, if said errors involve an underrepresented category. In the case
of R5, 3 false positive errors in the Kidnap category results in a precision of 40.00 points for
said category. In turn, the macro-averaging translates it into a penalisation of 12.00 points in
the total precision of the system, which explains virtually all the difference between R2 and R5.
We conclude the error analysis with a report on the silver dataset. We have examined

manually all the automatically corrected instances to quantify a) how many of the relabelled
instances were actually inconsistently labelled in the gold standard; and, b) how many of the
relabelled instances have been assigned a correct label. We acknowledge that this exercise was
carried out based solely on the definition of the task provided by the organisers, and that it
is possible that some of our judgements contravene the annotation policy that the organisers
employed to create the gold standard corpus.
The result of this analysis is shown in Table 6. The numbers are broken down by category

(that is, by the original category of the relabelled instances). In total, 138 (4.77%) and 31 (9.72%)
instances of the train and trial data were relabelled, respectively. The relabelled instances



Table 5
Trial examples where all the tested systems committed the same error

Tweet Gold Pred

1
(16:39) A partir de este momento las líneas 1 y 2 de buses normalizan

su servicio comercial entre Universidad de Medellín y Aranjuez, luego de operar
parcialmente por un accidente de tránsito.

A N

2
Acusan a mayor de la Policía por muerte de joven de 19 años en el paro. Audi-
encia preparatoria por homicidio de Santiago Murillo seguirá en noviembre. Le
contamos los detalles

H N

3
#Nayarit es el 4to estado con menor incidencia del delito de #Secuestro en lo
que va del sexenio, de 14 casos que se reportaron 10 se registraron en #Tepic.
@WallaceIsabel @AntonioEcheG @MeganoticiasTEP @NayaritFiscalia

K N

4

Tras denuncia recibida, en la @GNBMedianiaANZ fue detenido ciudadano por
robo con arma blanca #14Sep #GNB #FANB #CEOFANB #GNB2DOCMDT-
EDCR529 #AlertasContraElSabotaje #FANByPuebloVenceremos #GNBEsPueblo
@vladimirpadrino @libertad003 @GNB_Anzoategui

T N

Table 6
Analysis of silver annotations: number of relabelled or changed examples (C) and, of those, accurately
spotted gold errors (GE) and accurately made silver corrections (SC). Note that the percentage of C is
computed over the entire dataset, while the percentage of GE and SC is computed over C.

Train Trial

C GE/C SC/C C GE/C SC/C

# % % % # % % %

Non-violent (N) 94 6.06 100.00 100.00 12 6.98 100.00 100.00
Violent (V), of which 44 3.27 90.91 47.73 19 12.93 84.21 52.63
Accident (A) 27 2.84 92.59 44.44 10 9.52 80.00 30.00
Homicide (H) 8 3.46 87.59 37.50 5 10.64 80.00 60.00
Theft (T) 9 5.70 100.00 66.67 6 27.27 100.00 100.00
Kidnap (K) 3 6.98 66.67 66.67 0 0.00 - -

Total 138 4.77 97.10 83.33 31 9.72 90.32 70.97

involved presumed gold errors respectively 97.10% and 90.32% of the time, and the assigned
label was correct in 83.33% and 70.97% of the relabelled instances.

Note that, since the corrections on the train data were carried out with models trained on the
train data itself, it is likely that the gold error rate is actually higher in that partition. With all,
our attempt at automatically detecting and correcting the noisy data did not have a remarkable
impact on the results, as explained in the previous section.

6. Conclusions and future work

In these working notes we have described the participation of the Vicomtech NLP team in the
DA-VINCIS shared task. The organisers proposed a binary classification subtask (Subtask 1)



and a multi-label classification subtask (Subtask 2).
We have developed systems to resolve the two subtaks using the Transformer-based models

BETO, MarIA, and Multilingual BERT. BETO [23] yielded a better performance overall.
The developed systems were of two types: one solves the tasks in a single inference step, while

the other approaches the tasks in a 2-step fashion (the first classifier determines whether a tweet
mentions a violent event; if so, the second classifier emits finer-grained violence categories). In
our experiments, the 2-step systems outperformed the former consistently.

In addition, we have computed ensemble predictions following the majority vote algorithm.
The ensembles outperformed the standalone systems in the trial evaluations of the two subtasks,
but only in Subtask 2 when evaluated with the test data.
Furthermore, we have explored several data curation techniques. First, we have resampled

the dataset in order to obtain a bigger trial split, so as to be able to choose the best checkpoints
more reliably. Then, we have generated three additional dataset versions: i) a silver dataset,
where some of the examples have been automatically relabelled, ii) a dataset automatically
augmented with machine-translated examples, and iii) a dataset that combined the previous two
techniques. The impact of these modifications to the training and trial data was not systematic.
Notably, the ensemble of the systems trained with the silver dataset was the one to obtain the
best scores in Subtask 2.
Finally, we have tested masking keywords during training as a means to avoid the models

from overfitting these recurrent expressions. This strategy has proven remarkably beneficial in
Subtask 2, were the systems trained thus surpassed all the others by a substantial margin.
Through all these experiments we have achieved the second place in both subtasks of the

competition. In Subtask 1, our best system was the 2-step system built on BETO models and
fine-tuned on gold labels. It has obtained an F1-score of 77.32 (0.27 points below the best
participant’s model, and 0.85 below the baseline model). In Subtask 2, our best system consisted
of an ensemble of 5 models fine-tuned with the silver data, which achieved a macro-average
F1-score of 52.86 points (2.57 below the winner and 3.05 above the baseline).

In conclusion, the shared task has proposed an interesting and relevant problem, with many
practical applications in real life. The main challenges we encountered had to do with the
competition’s data being unbalanced and noisy, a very typical scenario when implementing
real-world applications [36, 37]. The basic strategies that we implemented to address these
problems did not prove remarkably fruitful. Thus, we believe that future work should explore
more sophisticated methods for robust training, both through improved learning architectures
and/or better data curation techniques.
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Table 7
Examples of automatically relabelled (silver) tweets

Tweet Gold Silver

Los colombianos pueden tener la tranquilidad que sus @GaulaMilitares se encuen-
tran custodiando toda la geografía colombiana para prevenirlos de los delitos del
secuestro y la extorsión. Denuncia en la #Línea147 a cualquier hora. Siempre habrá
alguien que te ayudará.

A N

Un chofer de una pipa por evadir una Vaca se impactó con dos vehículos provo-
cando la muerte de cuatro personas, la noche del miércoles El accidente ocurrió
en la carretera #Monterrey - #Reynosa kilómetro 145. #GANDIAGANOTICIAS #Re-
desSociales #LasNoticias #Tamaulipas

N A

#ELBRAVO #Noticias #Internacional Policía del Capitolio sancionará a 6 agentes por
su conducta tras asalto al Congreso de EU > https://t.co/HAavTY43QH

T N

Hoy comenzó mi vida de nuevo , porque por fin pude levantarme después de
mis cuatro operaciones en el Chicho Fábrega, son 4 meses de mi accidente en ese
tiempo conocí a mis verdaderos amigos, pero quiero agradecer al DR Alvino De León
por creer que podía levantarme.

H N

#Regiones | El exfutbolista Macnelly Torres fue víctima de un atraco en Medellín.
El robo ocurrió cuando se encontraba con unos amigos en su negocio en el barrio
Robledo. #InseguridadEs #LaFmTeCuida @lafm https://t.co/hABbiQ3E4m

N T

En el poblado de #SanLorenzoTlalmimilolpan, en #SanJuanTeotihuacan, #Esta-
doDeMexico, autoridades reportaron el asesinato a balazos de un presuntomiembro
de la @GN_MEXICO_

N H

No es meme. La cara de Bottas cuando le mostraron el accidente. Dijo:
"lamentable", y se sonrió.

K N

#Regiones| Un hecho de intolerancia sucedió en el barrio Las Palmas, en Neiva.
Allí se presentó el homicidio Edward Rodríguez, de 20 años, quien fue sorprendido
dentro de su casa, por el papá de una menor de edad, que al parecer era su novia.
@lafm #LaFmTeCuida #MiSeleccionHoy

A H

Sucesos | Empleado de la morgue robó prótesis mamarias del cadáver de una mujer
#elsiglocomve https://t.co/yobNuJetuQ

H,T T

main_classes/trainer#transformers.TrainingArguments, accessed: 2022-06-02.
[36] J. M. Johnson, T. M. Khoshgoftaar, Survey on deep learning with class imbalance, Journal

of Big Data 6 (2019) 1–54.
[37] H. Song, M. Kim, D. Park, Y. Shin, J.-G. Lee, Learning from noisy labels with deep neural

networks: A survey, IEEE Transactions on Neural Networks and Learning Systems (2022)
1–19.

A. Silver corrections

Table 7 contains examples of tweets that were automatically relabelled. See Section 3.3 for
a detailed explanation of this procedure. As can be seen from the examples, not all the rela-
belled tweets were wrong originally, nor was the automatically reassigned label always correct.

https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments


Table 8
Breakdown of silver instances by the original gold category

a: Train

Gold Silver #

Non-violent Accident 87
Accident Non-violent 25
Theft Non-violent 8
Homicide Non-violent 5
Non-violent Theft 5
Non-violent Homicide 2
Kidnap Non-violent 2
Accident, Homicide Non-violent 2
Homicide, Kidnap Non-violent 1
Homicide, Theft Non-violent 1

Total 139

b: Trial

Gold Silver #

Non-violent Accident 12
Accident Non-violent 8
Homicide Non-violent 1
Theft Accident 4
Accident Homicide 2
Homicide Accident 2
Homicide, Theft Theft 1
Homicide, Theft Accident 1

Total 31

Table 9
Hyperparameters for some of the automated process involved in different phases of the experimentation

a: Generation hyperparameters

Hyperparameter Value

Number of beams 6
Number of beam groups 3
Temperature 1.2
Repetition penalty 0.5
No repeat n-gram size 3
Diversity penalty 0.5
Top K 0

b: Classification model hyperparameters

Hyperparameter A B C

Batch size 32 8 16
Sequence length 256 256 256
FP16 true true true
Learning rate 3e-05 5e-05 2e-05
Warm-up ratio 0.1 0.1 0.1
Weight decay 0.1 0.0 0.0
Seed 42 42 42

Eventually, however, the obtained silver dataset contained presumably less errors than the gold
standard (see Section 5.3 Error analysis). Table 8 shows the breakdown of automatic corrections
by source (gold) and destination (silver) category.

B. Hyperparamters

Table 9 contains the most relevant hyperparameters that we used during our experiments.
Table 9a shows the hyperparameters for the generation of machine-translated examples (see
Section 3.4 Data augmentation). Table 9b shows the three hyperparemeter sets involved in the
training of the developed tweet classification systems (see Section 4.3 Implementation details
and training setup). Notice that we only report the hyperparameters whose values differ from
the default given by Huggingfaces’s Python library Transformer (version 4.18.0). The default
values can be consulted in their extensive documentation.
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