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Abstract
We present our submission for the LivingNER: Named entity recognition, normalization classification
of species, pathogens and food shared task [1] under the team name IGES. Our submission includes

predictions for subtasks 1 and 2, LivingNER-Species NER and LivingNER-Species Norm, respectively. We

employ a clinically fine-tuned multi-lingual XLM-RoBERTa encoder for both subtasks. We additionally

use a Conditional Random Field classifier for Named Entity Recognition, and perform Named Entity

Normalization with the Facebook AI Similarity Search (FAISS) library. A key feature of our system is the

use of a multilingual encoder which allows zero-shot, cross-lingual medical entity linking. Our system

achieves an F1 score of 88.7 for subtask 1, 6.3 points above the mean across all other team submissions,

and 87.4 for subtask 2, 4.7 points above the mean.
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1. Introduction

Semantic indexing broadly involves linking texts to an external ontology, with the goal of later

retrieval based on concepts a text has been linked to via semantic search. This first step can be

realized via a variety of approaches, from treating the task as a multi-label classification problem

which assigns labels to the entirety of a document, to first extracting specific information

from the text which is used to link to the ontology. An example of the latter method is

through a pipeline of Named Entity Recognition (NER) followed by Named Entity Normalization

(NEN)/Named Entity Linking (NEL). NER aims to isolate subspans in a larger text which represent

an entity of interest, often proper names and locations. NEN involves linking those recognized

and extracted entities to an ontology or knowledge graph. Major challenges associated with

NEN include ambiguity in the extracted entity (e.g. ‘President Bush’ can refer to two distinct

people), monolingual ontologies (which make it difficult to link texts of other languages to

the ontology), large ontologies (which require efficient algorithms to search the ontology in

reasonable time), and growing ontologies (which regularly contain new concepts).
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2. Related Work

Biomedical semantic indexing (BSI) involves linking texts to an external biomedical taxonomy

or ontology, such as Medical Subject Headings (MeSH) (https://www.ncbi.nlm.nih.gov/mesh/)

for clinical publications, International Statistical Classification of Diseases and Related Health

Problems 10th Revision (ICD-10) (https://icd.who.int/en) for diagnostic and billing purposes,

or the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/

taxonomy) taxonomy for classifying organisms.

One of the early semantic indexing competitions dealing specifically with biomedical data

was the bioasq challenge in 2013. Composed of several subtasks, task 1a, “Large-scale online

biomedical semantic indexing,” involved indexing PubMed abstracts with MeSH codes, as part

of larger biomedical question answering (QA) system [2]. The provided data were annotated

at the document level, meaning the MeSH codes correspond to the entire abstract. Similarly,

the CLEF eHealth 2019 shared task provided non-technical summaries of animal experiments,

annotated at the document level with ICD-10 codes, for BSI [3]. As natural language processing

(NLP) has migrated from rule-based and classical machine learning algorithms to more powerful

deep learning algorithms, interpreting the decisions made by the models has become more

challenging. As such, an emerging field in NLP is known as explainable AI, where emphasis is

placed on finding evidence to support the decisions made by such models. Starting in 2020, more

BSI challenges began providing annotations at the entity-level, thereby encouraging participants

to adopt a pipeline of named entity recognition (NER) followed by named entity normalization

(NEN)/named entity linking (NEL) [4, 5]. This additionally allows for more transparency in the

models, as specific spans of text (entities) versus an entire document are linked to an ontology.

BioSyn [6] performs NEN with the synonym marginalization technique, which trains an

encoder to produce similar representations for a given medical entity and its corresponding

synonyms (e.g. the representation for ‘ibuprofen’ is similar to that for ‘Advil’). BERN2 [7]

performs NER using a transformer-based [8] biomedical language model from [9], and NEN

by 1) encoding the medical entities with BioSyn and 2) retrieving the most similar candidates

with Facebook AI Similarity Search [10]. Similar to BioSyn, [11] performed self-alignment

pretraining on a transformer-based language model to encourage projecting all UMLs synonyms

for a given medical concept into same area of a shared vector space, such that ‘Cerebrovascular

accident’ and ‘stroke’ would have similar embeddings.

3. Data

3.1. LivingNER Dataset

The LivingNER dataset consists of 2000 Spanish-language clinical case reports from 20 medical

disciplines. The texts are annotated for the tasks of NER, Normalization and Clinical IMPACT

and is split into a training set (1000 texts), a validation set (500 texts), and a test set (500 texts).

Here, we further describe the annotated datasets for the first two tasks in which we participated.

The following statistics do not include the test set, since the labels have not been publicly

released at the time of writing.

On average, each text has a length of 33 sentences or 3603 characters. The corpus contains

https://www.ncbi.nlm.nih.gov/mesh/
https://icd.who.int/en
https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ncbi.nlm.nih.gov/taxonomy


23203 total annotations (15.5 per text on average), out of which 55.6% have the NER-label

"SPECIES", while the remaining are labeled as ‘HUMAN’. For the normalization task, the

annotations have been manually mapped to codes from the NCBI Taxonomy. All spans labeled

as ‘HUMAN’ are labeled with the code ‘9606’ (homo sapiens). The entities labeled as ‘SPECIES’

are linked to 1041 unique codes. This includes two special types of codes:

• Complex codes: If several NCBI taxonomy codes were required to map a single annotated

mention, the codes are concatenated with a vertical bar. For instance, microorganism is

mapped to ‘2|2759|10239’.

• More general codes: If the NCBI taxonomy concept was more general than the annotated

mention, the modifier ‘H’ is added to the NCBI taxonomy code. For instance, baciloscopia
is mapped to ‘2|H’.

The complex codes make up 6.6% and the more general codes 8.7% of unique ‘SPECIES’ codes

in the dataset. In total, they account for 7.7% (complex codes) and 6.6% (more general) of all

‘SPECIES’ annotations. The validation set includes 115 (27.7%) unseen codes, which do not

appear in the training data. However, these unseen codes are generally infrequent and, thus,

only make for 6.3% of all ‘SPECIES’ codes in the validation data. Overall, the dataset contains

3792 unique labeled text spans and, on average, each code is linked to 3.6 unique spans. However,

more than half of the codes have only one unique text span assigned. On the other side of the

spectrum, the code ‘9606’ is linked to 608 different spans, while the code ‘2|H’ has the most

unique spans for a ‘SPECIES’ label with 128. Each code appears 12.4 times on average in the

dataset. However, 36.3% of the codes only occur a single time. Figure 3.1 shows the distribution

of the most common codes in the corpus and Table 1 displays additional information about the

10 most frequent codes. It is important to note that the complex and more general codes are very

top-heavy. The two most common more general codes (‘2|H’ and ‘2759|H’) account for almost

60% of all annotations of that type, while the most common complex code (‘2|2759|10239’) makes

up >40% of the complex annotations. For further information about the LivingNER corpus, refer

to the overview paper for the LivingNER shared task [1].

3.2. NCBI Taxonomy

The NCBI Taxonomy Database is a classification and nomenclature for all of the organisms in

the public sequence databases curated by the National Center for Biotechnology Information

[12]. It currently contains information for about 10% of the described species of life on the

planet.

3.3. UMLS

The Unified Medical Language System (UMLS) (https://www.nlm.nih.gov/research/umls/index.

html) is a compendium which provides mappings between various biomedical ontologies across

a variety of languages [13]. The Metathesaurus in particular is where the mappings between

ontologies such as MeSH and ICD-10 can be found. Additionally, it offers textual descriptions

of preferred terms for a given concept and their synonyms in a plethora of languages, including

English, German, Spanish, French, etc.

https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html


Figure 1: Frequency of the most common codes in the LivingNER corpus. Only the 30 most frequent
codes are displayed.

4. Methods

4.1. SAP-BERT

The Self-Alignment Pretraining for Biomedical Entity Representations (SAP-BERT) [11] authors

released various models which produce similar medical entity vector representations for syn-

onyms of a given medical concept. They initialized an encoder with the pretrained weights

from either PubMed BERT [14] or the multilingual XLM-RoBERTa [15], and performed self-

alignment pretraining on all synonyms extracted from UMLS, which contains textual synonyms

in a variety of languages. As such, the vectorized representations for ‘Hiperglucemia’ (English:

Hyperglycemia) and ’high blood sugar’ would be close together in a shared vector space despite

having different surface compositions and being from different languages.

4.2. Named Entity Recognition

Named Entity Recognition is often treated as a sequence-labeling task, where each token in an

input text is labeled as either ‘B’ for ‘beginning of entity’, ‘I’ for ’inside entity’, or ‘O’ for ‘outside

of entity’. In standard NER, these named entities are often proper nouns such as celebrities,

cities, or organizations. In the biomedical domain, the task is often referred to as Medical Entity

Recognition (MEL) and is commonly restricted to concepts inside an external ontology, such as



Table 1
The ten most common ‘SPECIES’ codes in the LivingNER corpus. The column ‘Text span’ shows the
span from the corpus which was most often linked to that code. ‘English term’ shows the preferred
term for the NCBI code.

Code Occurences Text span English term

12721 653 VIH human immunodeficiency virus
2 521 bacteriemia bacteria
10239 481 viral viruses
2|2759|10239 370 microorganismos bacteria|eukaryota|viruses
10407 365 VHB hepatitis b virus
4751 352 hongos fungi
2|H 334 baciloscopia bacteria (more general)
10358 323 CMV cytomegalovirus
160 306 sífilis treponema pallidum
2759|H 258 parásitos eukaryota (more general)

diseases, drugs, or treatments. A deep learning-based technique involves creating vectorized

representations of each input token, and training a single linear classifier to output the probabil-

ities that each token is ‘B’, ‘I’, or ‘O’. These output probabilities can be thought of as ‘emission’

probabilities, as they are the probability that a given token emits a given label. Transition

probabilities, on the other hand, indicate the probability that a given label follows another label.

For example, the probability of the ‘I’ label following the ‘O’ label is zero, as the ‘I’ label can

only follow the ‘B’ and ‘I’ labels. As such, a common challenge with using a non-contextualized

linear classifier alone is the output sequence of labels often contains illegal orderings and can

require complex post-processing to resolve, even when a contextualized transformer encoder

is used to produce the vectorized token representations. [16] found that combining a BERT

[17] encoder with a bidirectional long short term memory (LSTM) classifier and a conditional

random field (CRF) yielded substantial performance increases for Chinese MER. Therefore,

we employ a MER system which utilizes a SapBERT-UMLS-2020AB-all-lang-from-XLMR
(https://huggingface.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR) encoder

with a PyTorch-compatible CRF classifier (https://github.com/kmkurn/pytorch-crf). No layers

are frozen during fine-tuning of the encoder/training of the classifier and input documents are

split into sentences at both training and inference time for the model inputs.

4.3. Facebook AI Similarity Search

Facebook AI Research provides an open-source library(https://github.com/facebookresearch/

faiss) for performing similarity search of dense vectors with GPUs at the billion-scale. The

algorithm creates an index, which can contain up to billions of dense vectors, and will retrieve

the indices of the top k most similar vectors to a given query vector, using either cosine similarity

or L2 (Euclidean) distance, in as little as a few milliseconds.

https://huggingface.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
https://github.com/kmkurn/pytorch-crf
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss


4.4. Normalization

To perform Medical Entity Normalization (MEN), we first encode all textual

terms and their synonyms in the taxonomy of interest using an off-the-shelf

SapBERT-UMLS-2020AB-all-lang-from-XLMR-large (https://huggingface.co/

cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR-large) encoder. For an en-

tity of 𝑛 length, the output is 𝑛 + 2 contextualized vector representations, as the entity is

padded with the <s> and </s> vectors. The former represents the entire input sequence. For

each medical term/synonym, its <s> vector is added to a numpy array which is then turned

into a searchable index using FAISS.

After extracting a given medical entity via the method described in 4.2, we first re-encode it

alone (without its original context) with the same encoder used to create the FAISS index. Then,

we retrieve the index of the most similar vector in the FAISS index using Euclidean distance. We

define a hyperparameter threshold 𝑡, such that if the top match’s distance 𝑑 ≤ 𝑡 , the extracted

entity is linked to the taxonomy code with which that synonym is associated. If 𝑑 > 𝑡, we

employ our ngram_search_loop. The ngram_search_loop iteratively breaks a sequence

of whitespace tokens into smaller ngrams in order to link sub-spans within an extracted medical

entity to the ontology. The intuition is is the NER step could have extracted either multiple

neighboring but distinct medical entities, or neighboring words surrounding a single medical

entity, as a single entity which fails to meet the threshold criteria.

4.4.1. ngram_search_loop

The ngram_search_loop generates all 𝑛 − 𝑖grams for the original medical entity, where 𝑖
starts at 1 and increases until 𝑖 == 𝑛. For example, the medical entity ‘type 2 diabetes’ consists

of a single trigram. The ngram_search_loop first generates all 𝑛 − 1grams (in this case,

bigrams) which are ‘type 2’ and ‘2 diabetes’. These are both re-encoded and linking using FAISS

is again attempted. The loop continues to generate 𝑛− 𝑖grams, skipping ngrams which contain

already linked tokens, until all tokens have been linked to the ontology or 𝑖 == 𝑛.

5. Experiments

5.1. Named Entity Recognition

We used the example script run_ner.py from the HuggingFace library (https://github.com/

huggingface/transformers/blob/main/examples/pytorch/token-classification/run_ner.py). We

additionally modified the RobertaForTokenClassification class such that the emis-

sions probabilities for the CRF are estimated with a Linear layer from PyTorch with

CrossEntropyLoss, the value of which we denote 𝐿𝑜𝑠𝑠ce. These emission probabilities

are then passed to a CRF token classifier which returns a negative log likelihood (NLL) loss,

𝐿𝑜𝑠𝑠nll. The 𝐿𝑜𝑠𝑠nll is scaled by a 𝜆 parameter which we set to 0.1, and the final loss is

calculated by summing the losses,

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠ce + 𝜆𝐿𝑜𝑠𝑠nll (1)

We trained the model for 1 epoch on the training data, default parameters otherwise.

https://huggingface.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR-large
https://huggingface.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR-large
https://github.com/huggingface/transformers/blob/main/examples/pytorch/token-classification/run_ner.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/token-classification/run_ner.py


5.2. Normalization

The text spans and corresponding labels from the NER layer are used as input to the nor-

malization layer. Spans labeled as ‘HUMAN’ are normalized to the NCBI code ‘9606’ (homo
sapiens). This represents 43.5% of spans in the training set. The text spans labeled ‘SPECIES’ are

re-encoded with SAPBert-XLMR to obtain an embedding without context. For each embedding,

the closest synonym is returned from the FAISS index. If the Euclidean distance 𝑑 is less than

or equal to our constant threshold 𝑡 = 40, the code corresponding to the matched synonym is

assigned to the text span.

We experimented with three FAISS indexes containing codes and synonyms from different

sources:

1. Labeled Spans Index (LSI): This index contains only the codes occuring in the training

data. The synonyms for each code are the text spans labeled with that code in the training

set. To avoid assigning the same synonym to multiple codes, each synonym was only

assigned to the code it was most frequently labeled with.

2. Spanish NCBI Index (SNI): This index is based on the file that was provided for the

LivingNER shared task, which contains Spanish translations for the NCBI taxonomy [12].

3. Spanish UMLS Index (SUI): The third index is based on the Unified Medical Language

System (UMLS) [13]. It contains the preferred term (English) for all NCBI concepts and

the Spanish synonyms from all vocabularies in UMLS.

Only codes from the valid code list provided for the LivingNER shared task [1] were included

in the indexes. Statistics about the indexes can be found in Table 2.

Table 2
FAISS Index Information

Index # Codes # Synonyms

LSI 887 3006
SNI 1.76M 2.07M
SUI 1.47M 1.99M
SNI+SUI 1.76M 2.46M

6. Results

6.1. Named Entity Recognition

Our SAPBert+CRF model results on the NER subtask are illustrated in Table 3. Our model

achieves 6.3 F1 point higher than the mean submission across all participant submitted models.

6.2. Normalization

SNI, SUI, as well as a combination of both indexes, showed very similar performances (Table 4).

This could be caused by the relatively high overlap of terms between the two indexes. They



Table 3
Our SAPBert+CRF model performance on the official development and test splits of the LivingNER-
Species NER substask 1.

Model F1 P R

SAPBert+CRF on Development Set 92.8 94.3 91.4
SAPBert+CRF on Test Set 88.7 91.1 86.4
Average Submission on Test Set 82.4 87.6 80.8

share around 1.6M terms, while 800,000 are unique to one of the indexes. This is not surprising,

given that the majority of codes have no synonyms in addition to their preferred term (77% for

SNI, 70% for SUI), which is usually an English or a Latin name.

Despite its much smaller size, LSI shows a significantly higher performance than the larger

indexes. This is likely due to two reasons. Firstly, LSI contains synonyms for complex codes

(e.g. ‘2|H’ or ‘10407|11103’), while the other indexes can only predict simple codes. These

complex codes make up 12.8% of the ‘SPECIES’ codes in the validation data. Secondly, there is

a high overlap between the codes in the training and validation set. In fact, only 6.3% of the

annotations are linked to codes which do not occur in the training set. Thus, LSI can identify

most text spans, even though it only contains 3006 synonyms. The massive vocabulary of the

larger indexes is mostly filled with codes that are irrelevant to the task, which can sometimes

act as noise and ‘get in the way’ of correct codes, by having a similar or even identical synonym.

In other words, LSI has a level of task-specific knowledge, i.e. it contains annotations specific to

the subject of the corpus and the preferences of the annotators for potentially ambiguous text

spans. Often, the predictions of the large indexes are close to the annotated labels but slightly

more specific or generic. For example, the span ‘enterovirus’ is linked to the code ‘12059’ by

the large indexes, which is the NCBI code for enterovirus. However, the annotated code for

the text span is ‘1193974’ (human enterovirus). Since the corpus consists of clinical reports

about humans, it is often implicit that the human variant of a virus is described and, thus, not

explicitly mentioned by the authors. This knowledge is transferred to LSI which contains the

corpus-specific synonyms and is therefore able to predict the correct code.

Even the combination of LSI, SNI, and SUI still shows a lower performance than LSI alone

(Table 4). The benefits of having a larger vocabulary and containing synonyms for concepts

outside of the training set is outweighed by the issue of incorrect synonyms acting as noise.

To solve this problem, and combine the strength of task-specific knowledge and an extensive

vocabulary, we introduce the approach of index-switching. For this method the smaller index

with the most relevant codes (LSI) is searched first. If the closest synonym is below a predefined

switch threshold, the corresponding code is predicted as the label. Otherwise, the larger index is

searched and the synonym with the lower distance of the two indexes is chosen as the prediction.

This approach leads to a slight performance improvement over LSI on the validation data. The

increase in recall suggests that the secondary index can add some correct predictions for codes

outside of LSI. There was no significant difference in terms of performance between SNI, SUI,

and SNI+SUI as a secondary index. Even though the increase in overall performance by adding

a second index is relatively low, the system receives a significant boost in its ability to predict a



Table 4
Results on the development set for the Normalization Task. Best Results for each Metric are Indicated
in Bold.

Index 1 Index 2 Thr Sw Thr Pre Rec F1

LSI - 100 - 92.5 86.4 89.3
SNI - 100 - 72.4 63.3 67.6
SUI - 100 - 73.8 62.8 67.9
SNI+SUI - 100 - 71.6 63.4 67.3
LSI+SNI+SUI - 100 - 85.7 81.6 83.6
LSI SNI 100 30 92.2 87.7 89.9
LSI SUI 100 30 92.3 87.7 89.9
LSI SNI+SUI 100 30 92.3 87.9 90.0

higher variety of codes. Out of the 559 unique codes in the validation data, LSI correctly predicts

351 codes (62.8%) at least once. LSI+SNI+SUI increases that number significantly to 420 (75.1%),

demonstrating its ability at zero-shot entity linking. For a dataset with higher variety, i.e. more

annotations with unseen concepts that are not present in the training data, the index-switching

approach should lead to an even higher performance gain.

Table 5 illustrates our NEN model’s performance on the test set with some of the index

configurations from Table 4. Our model achieved an F1 score of 87.4 for subtask 2, 4.7 points

above the average.

Table 5
Our NEN model performance on the official test split of the LivingNER-Species NEN substask 2.

Index 1 Index 2 F1 P R

LSI - 87.2 90.3 84.4
LSI SNI+SUI 87.4 89.8 85.1
Avg Submission - 82.7 84.9 80.7

7. Discussion and Conclusion

Several major challenges of Medical Entity Normalization are addressed by the algorithms we

describe in this paper. The utilization of FAISS to link vectorized representations of extracted

medical entities to vectorized representations of preferred terms/synonyms of medical entities

(of which there are more than there are codes in a given ontology) allows for rapid and efficient

linking to large ontologies.

Additionally, the approach can be employed in a zero-shot setting, in that the index can be

updated by encoding new, unseen entities without retraining of the system. A potential challenge

for this is that the approach relies on an encoder which has been fine-tuned to project synonyms

of a same concept near to each other in a shared vector space. For example, ‘Advil’ (a brand

name ibuprofen) can be linked to the concept ‘ibuprofen’ even if ‘Advil’ is not in the index

as a synonym because the encoder was trained to embed these similarly. As medical science



progresses, new drugs and diseases will be added to ontologies and thus retraining of that

encoder would likely be necessary eventually. However, the system would still be capable of

linking a novel, unseen drug mention extracted from a text to its synonym in an ontology so

long as that ontology contains that drug name, e.g. if ‘Advil’ were a new brand of the new drug

‘ibuprofen’ and both were encoded and in the searchable index, as RoBERTa models employ

subword tokenization to handle unseen words.

Lastly, our model is capable of cross-lingual entity linking, where the entities extracted from a

source text can be linked to synonyms in a target ontology of a different language, so long as

both of those languages were part of the SAP-BERT-XLMR pretraining and fine-tuning. We

would have liked to explore the LivingNER Multilingual datasets, which were machine translated

and the token-level annotations automatically transferred to these translated documents. The

resulting annotations, we found, were missing several codes present in the original Spanish

dataset.

One major challenge in NEN that our model does not address is that of ambiguity, such that we

remove the NER-extracted entities from their contexts before re-encoding them and performing

linking. Our system would therefore fail to disambiguate an entity such as ‘Paris’ and properly

link it to either Paris Hilton, or Paris, France, where context would likely be vital. Future work

could include performing further fine-tuning of the SAP-BERT-XLMR model to perform the

linking with contextualized medical entity vector representations.
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