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Abstract
This paper is presented as part of the LivingNER-Species NER track (Species mention entity recognition).
The goal of the task is to identify the character offsets of all species mentions (human or non-human)
in a collection of plain text clinical case reports. In this paper, we explore the idea of incorporating
contrastive pre-training followed by fine-tuning for this task. Contrastive pre-training is performed
such that it increases the divergence between non-related entities and decrease the divergence between
related entities. The model first trains the sentence in the text, and calculate the similarity between token
categories based on their Gaussian-distributed embeddings in the sentences. Further, this contrastively
pre-trained BERT model is combined with the classification head to perform the named entity recognition
task. We demonstrate that fine-tuning a model pre-trained using the contrastive loss performs better
than directly fine-tuning on the clean, annotated data. The models have been evaluated on the IberLEF
2022 challenge using the official release of the LivingNER corpus [1]. Experimental results shows that
our model outperforms baseline methods on the task.
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1. Introduction

Information extraction involves extracting structured data from unstructured text. This is
applied in many fields like recommender systems, retrieval systems, sentiment analysis and
biomedical information extraction. Named Entity Recognition (NER) is the most important
component of the information extraction system. NER aims to identify named entities from
unstructured texts belonging to different label categories. With the advent of large pre-trained
models like BERT [2], RoBERTa [3], BART [4], Xlnet [5], representations learned by such models
achieve strong performance across many tasks in NLP. The architectures of these models are
mostly based on Transformers [6] which uses a self-attention mechanism to capture long-range
dependencies between tokens. Lately most NER systems make use of a fine-tuning approach
on these transformer-based pre-trained models yielding state of the art results on many NER
bench-marking tasks [2].

Many recent works make use of training in two phases: pre-training and further fine-tuning.
Pre-training is a process in which a model is first trained on an auxiliary task before performing
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a final fine-tuning phase on target task. The motivation behind pre-training is that learning
an auxiliary task first will help capture relevant information and the representations learned
during the pre-training phase can be reused in the supervised fine-tuning of the downstream
task by adapting the architecture and parameters to the downstream task.

Recent work [7] [8] [9] [10] showed that downstream performance can be improved by
further adapting a general pre-trained model by continued pre-training on more relevant set of
downstream tasks. The representations learned in the task adaptive pre-training (TAPT) [8]
involves pre-training using an unsupervised objective on not just the similar domain but the
actual end-task and dataset itself. It has shown to improve the performance of the model for
the target task and is less computationally demanding.

Recently, supervised contrastive learning has become popular. Contrastive learning is a
representation learning method, which has been widely used for visual [11] and text represen-
tations [12]. It builds positive pairs between samples with the same class label and puts their
representations together. The main idea is to learn a representation by contrasting positive and
negative sample pairs. Specifically, it puts positive pairs together and pushes negative pairs
away.

This paper reports on a submission to the LivingNER shared task. For the Living NER shared
task, we incorporate the idea of task adaptive pre-training together with supervised contrastive
pre-training loss. For the NER task, label information is used to contrastively learn to push
apart different token categories and pull together similar token categories. In comparison
to conventional contrastive learning that optimizes the similarity objective between point
embedding representations [13] [14], we optimize the distributional divergence of Gaussian
embeddings similar to [15]. While point embedding representation only optimize for the
sample distances, Gaussian embeddings also include additional constraint of preserving the
class distribution through its variance estimates and at the same time improve generalization
[16][17][15]. We demonstrate the effectiveness of contrastive learning in discriminating between
different token categories through our experiments on the LivingNER NER dataset.

Given the importance of mixing data augmentations [18] during contrastive pre-training we
utilize the multilingual datasets provided as part of the shared task to obtain sufficient different
views of the data. Since incorporating text augmentations that alter the meaning (semantics) of a
sentence can adversely affect the performance of the model, we restrict ourselves to translations
provided as part of the shared task challenge.

• We explore a supervised contrastive pre-training approach for NER which uses Gaussian
embeddings to optimize the distributional divergence. We demonstrate the effectiveness
of contrastive learning in contrasting between different token categories.

• We demonstrate that representations learned from multilingual data augmentations
generated from translations improve the contrastive clustering and learning.

• The model is evaluated on the living NER shared task validation set and test set for NER
sub_task. Our contrastively pre-trained model performs better than the baseline BERT
model.



2. Method

Our model uses contrastive learning based supervised pre-training to maximize distributional
divergence between representations of different tokens. This method improves the model’s
ability to categorize and differentiate between different token categories. Furthermore, modeling
Gaussian embedding instead of conventional point representation effectively lets the model
learn the generalized entity class distribution. This contrastively pre-trained model is further
fine-tuned for the named entity recognition task by adding a classification head. Finally, it
lets us fine-tune our model even with a small number of samples without over-fitting which is
imperative for domain adaptation.

2.1. Model architecture

A BERT [2] based pre-trained language model encoder is used to generate contextualized
representation of sentence tokens. Given a sequence of 𝑛 tokens 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛], the
encoder layer 𝑓𝜃 maps it into a sequence of hidden vectors. The final hidden layer representations
of BERT encoder are used as the intermediate representations ℎ = {ℎ0, ℎ1, ..., ℎ𝑛}.

The intermediate representations are further passed through a linear projection layer to
create the embedding representations. Here instead of using point embedding representations
for calculating the contrastive loss, we use Gaussian embedding representations as in [8]. The
token embedding representations are assumed to follow Gaussian distributions. Two linear
projection layers are used to model the mean (𝑓𝜇) and covariance (𝑓Σ) parameters of the
Gaussian distribution.

𝜇𝑖 = 𝑓𝜇(ℎ𝑖),Σ𝑖 = 𝐸𝐿𝑈(𝑓Σ(ℎ𝑖)) + (1 + 𝑒) (1)

𝜇𝑖 and Σ𝑖 represent the mean and covariance of the Gaussian embeddings respectively. 𝑓𝜇
and 𝑓Σ are implemented as ReLU followed by single layer MLP. ELU refers to exponential linear
unit and 𝑒 ≈ 𝑒−14 which is added for numerical stability.

2.2. Supervised Contrastive pre-training

To perform contrastive pre-training on the dataset we make use of the contrastive loss. The KL
divergence between all valid token pairs are taken to calculate the contrastive loss. Valid token
pairs include all tokens in the sentence which are not special tokens or padding tokens.

Two tokens 𝑥𝑎 and 𝑥𝑏 are positive samples if they have same labels 𝑦𝑎 = 𝑦𝑏. 𝒩 (𝜇𝑎,Σ𝑎)
represents the Gaussian embeddings of token 𝑥𝑎 and 𝒩 (𝜇𝑏,Σ𝑏) represents the Gaussian
embeddings of token 𝑥𝑏. Given Gaussian embeddings 𝒩 (𝜇𝑎,Σ𝑎) and 𝒩 (𝜇𝑏,Σ𝑏), the KL
divergence is calculated as below:



𝐷KL [𝒩𝑏||𝒩𝑎] = 𝐷KL [𝒩 (𝜇𝑏,Σ𝑏) ||𝒩 (𝜇𝑎,Σ𝑎)]
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where 𝑇𝑟 refers to the trace operator. Due to KL-divergence not being symmetric, both
directions of the KL-divergence are calculated and their average is used as the contrastive loss.

𝑑(𝑎, 𝑏) =
1

2
(𝐷KL [𝒩𝑏‖𝒩𝑎] +𝐷KL [𝒩𝑎‖𝒩𝑏]) (3)

At each training step, during contrastive pre-training, a batch of sequences 𝑋𝑠𝑢𝑏 are randomly
sampled without replacement from the training set 𝑋 . For each token (𝑥𝑎, 𝑦𝑎) ∈ 𝑋𝑠𝑢𝑏 , we
obtain its Gaussian Embedding𝒩 (𝜇𝑖, Σ𝑖) by passing the corresponding token sequence through
the model [15]. The in-batch positive samples 𝑋𝑎 for sample 𝑎 are selected and subsequently
calculate the contrastive loss of 𝑋𝑎 with respect to that of all other valid tokens in the batch.

𝑋𝑎 = (𝑥𝑏, 𝑦𝑏) ∈ 𝑋𝑠𝑢𝑏 | 𝑦𝑎 = 𝑦𝑏, 𝑎 ̸= 𝑏 (4)

We can then calculate the distributional divergence of all the token pairs in the batch.

ℓ(𝑎) = − log

∑︀
(𝑥𝑏,𝑦𝑏)∈𝑋𝑎

exp(−𝑑(𝑎, 𝑏))/ |𝑋𝑎|∑︀
(𝑥𝑏,𝑦𝑏)∈𝑋,𝑎 ̸=𝑏 exp(−𝑑(𝑎, 𝑏))

(5)

For all token pairs 𝑖 ∈ (𝑥𝑖, 𝑦𝑖) ∈ 𝑋𝑠𝑢𝑏 calculate the 𝑙(𝑖).
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1
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Further reduce ℒ𝑐𝑜𝑛𝑡𝑟 by updating 𝑓𝜇, 𝑓Σ and encoder representations through back-
propagation.

2.3. Fine-tuning and inference

After performing task specific contrastive pre-training, the next step is to fine-tune the model
on data specifically for NER task. In [13] they find that the representations before the projection
layers are more informative than the representations obtained from the Gaussian embedding
projection heads. Hence the output representation from the encoder part of the contrastively
pre-trained model is extracted.

𝑜 = 𝑓𝜃(𝑥𝑖) (7)

Then, a multi-layer perceptron (MLP) classifier followed by the softmax function is added to
obtain the label probability distribution of 𝑥𝑖:

𝑝(𝑥𝑖, 𝜃) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊.𝑜𝑖 + 𝑏) (8)



where 𝑊 and 𝑏 are the weight and bias terms. The model is then trained in a supervised
manner by minimizing the Cross entropy loss of predicted probability and the ground truth
label.

3. Experimental Setup

3.1. Implementation details

We implemented the models based on HuggingFace’s Transformer [19] with PyTorch [20] in
one single NVIDIA Titan RTX GPU. We used pretrained models XLM-R and Spanish BERT
model as the base encoder models from Huggingface library [19].

Then, we explored further task adaptive pre-training of these 2 models on the translations
provided as part of the challenge and further fine-tune on the Spanish training set. For the task
of adaptive contrastive pre-training we trained the models for 20 epochs with learning rate of
5𝑒 − 5 and maximum sequence length of 128. We kept the Gaussian embedding dimension
fixed to 128. The training loss is the KL divergence loss.

For the fine-tuning step, we used the encoder output representations of the contrastively
pre-trained model. Epochs, batch size, maximum sequence length, learning rate, and optimizer
were set to 20, 32, 128, 5𝑒− 5, and AdamW [21] respectively. Each experiment was repeated 3
times and the average entity-level micro average Precision, Recall and F1-score are reported.
The target models are evaluated on the development set (25% of training set provided was
taken as development set) every 750 steps. The checkpoints are saved based on the F1 scores
obtained on the development set. The training loss for fine-tuning is the cross entropy loss.

3.2. Dataset

The LivingNER Gold Standard training set is composed of 1000 clinical case reports extracted
from miscellaneous 20 medical specialties including covid, oncology, infectious diseases, tropical
medicine, urology, pediatrics, and others. For LivingNER-Species NER sub-task, annotations
are provided in a tab-separated file (TSV) file. The clinical case reports are annotated manually
for species [SPECIES] and [HUMAN] entities.

The validation set is composed of 500 clinical cases from many different specialties: covid,
oncology, infectious diseases, tropical medicine, urology, allergology, etc. The test+background
set is a collection of 13467 clinical case reports. The goal of the LivingNER task is to develop
automatic systems for Spanish medical texts by making predictions for the test+background set.
Among the 13467 clinical case reports, 485 are used for evaluation (this is the test set). The rest
(background set) are added to prevent manual annotations and to create a silver standard.

Named entity recognition tagging methods mainly include IOB, BIO, BIOES etc. BIO requires
that all named entities start with a ’B’ tag, ’I’ refers to inside of the named entity, and ’O’ refers
to not a named entity. The labeling scheme used in this dataset is BIO tagging.



Table 1
Micro-average Precision (P),Recall (R) and F1 scores (F1) on the validation set of the Living NER shared
task.

Model Precision Recall F1

SPANISH-BERT 0.9654 0.9562 0.9608
Contr-SPANISH-BERT 0.9691 0.9596 0.9643

XLM-R 0.9730 0.9538 0.9633
Contr-XLM-R 0.9786 0.9688 0.9680

Table 2
Micro-average Precision (P), Recall (R) and F1 scores (F1) on the test set of the Living NER shared task.

Model LivingNER NER NER only SPECIES NER only HUMAN

P R F1 P R F1 P R F1

Contr-SPANISH-BERT 0.9448 0.9299 0.9373 0.9238 0.9038 0.9137 0.9740 0.9651 0.9695
Contr-XLM-R 0.9443 0.9307 0.9375 0.9232 0.9047 0.9139 0.9738 0.9657 0.9697

3.3. Evaluation metrics

The main evaluation metric for NER task is the F1 score. There are two types of F1 score, namely
macro-averaged F1 score, and micro-averaged F1 score. The macro-average F1 score calculates
the F1 score for each entity category separately, and then calculates the overall average. The
micro-average F1-score computes the F1-score for all the test instances and avarages this score.
For this task we evaluate the micro averaged F1 score, precision and recall scores for two named
entities HUMAN and SPECIES. The evaluations are performed using the official evaluation
script provided by the LivingNER shared task [22].

4. Results and Discussion

Table 1 compares the various methods investigated in this paper on the validation dataset of the
LivingNER shared sub_task. In general, the proposed contrastively pre-trained model performs
better than the baseline method. The results indicate the effectiveness of the explored method
in this paper.

It can be seen from the Table 1 that contrastively pre-trained xlm_roberta model achieves the
best performance on the validation set of LivingNER shared task. The next best performance is
obtained using the contrastively pre-trained Spanish BERT model.

Contrastively pre-training the model maximizes the distributional divergence of tokens during
pre-training and provides a good starting point for fine-tuning for a few epochs to achieve better
NER recognition compared to baseline methods. Moreover KL-divergence between Gaussian
embeddings have shown to be effective in explicitly considering the asymmetric distance which
better represents similarity between structurally similar words.

We submitted the best performing models to LivingNER task for evaluation on the
test+Background set. Table 2 shows the results of our task adaptive contrastively pre-trained



methods on the test set of the LivingNER shared sub_task. From the Table 2, we see that
contrastively pre-trained XLM-R performs slightly better than contrastively pre-trained Spanish
BERT model which can be accounted by the larger size of the XLM-R model.

5. Conclusion

In this paper, we described our submissions for the NER sub_task of the LivingNER competi-
tion. We explored contrastive learning based supervised task adaptive pre-training framework
that maximizes the inter token divergence by modelling Gaussian embeddings. By utilizing
supervised contrastive task adaptive pre-training, we were able to improve upon the already
high-performing transformer-based models. We achieved a overall F1-score of 0.9375 on the
LivingNER task.
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