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Abstract
This paper summarizes the CLaC submission for the LivingNER competition which concerns recognition
and normalization of named entities in Spanish clinical reports. We integrate diverse external knowledge
sources such as BETO (Spanish BERT), UMLS, and POS information using the mi-RIM (Multi-Input
Recurrent Independent Modules) architecture. At LivingNER 2022, we obtain a micro-F1 of 93.2 (signifi-
cantly outperforming the competition mean at 82.3) for Subtask 1 (Named Entity Recognition) and for
Subtask 2 (normalization) we obtain a micro-F1 of 91.9 for the normalization task.
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1. Introduction

Curated health information plays an important role in the prevention and prediction of diseases,
improvement of therapies, identification of drug side effects, and consequently, reduction of
healthcare costs. The information, however, is buried in a huge amount of raw textual data,
and efficient and automatic systems are needed to facilitate access to targeted information for
medical practitioners.

Clinical reports, for instance, contain crucial information such as personal history, family
background, or living environment, which are all important for medical practitioners to make
decisions for treatment of patients with similar conditions. This information need motivated the
LivingNER challenge [1], which comprises a corpus of 1000 Spanish clinical reports. Subtask 1
is a Named Entity Recognition (NER) task which asks to recognize and classify living things into
the two categories human and spiecies. Subtask 2 requires normalizing each entity detected in
Subtask 1 to the corresponding NCBI tax code.

Example 1 shows a clinical report from the LivingNER data, where entities that the goldstan-
dard annotates as human are underlined, and those annotated as species are doubly underlined.

(1) ANTECEDENTES FAMILIARES Padre ingresado desde hace 15 días por sospecha
de tuberculosis pulmonar (clínica respiratoria de tos y febrícula de 6 meses de
evolución). Afectación en radiografía de tórax y TAC pulmonar y Mantoux
positivo. Ha iniciado tratamiento antituberculoso desde hace 10 días. Mantoux
a contactos familiares pendientes de leer. Resto sin interés.
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Clinical reports include specialized terms, which makes the NER task challenging for models
pre-trained on general language, particularly if the terms are not sufficiently foreshadowed
in the training data. To counteract this issue, ontological resources such as UMLS [2] can
be leveraged to improve the coverage of a NER system. UMLS includes several vocabularies,
including Spanish lexica.

Example 2 shows a data sample with three separate entities of interest. Example 3, however,
includes a case of overlapping annotations. This occurs mostly for species. Such overlapping
entities are often listed mentions of different variants of the same virus/bacterium.

(2) Serología en LCR a Mycoplasma pneumoniae, Virus de Epstein-Barr,
Citomagalovirus, . . .

(3) Como hallazgo casual se observa una seroconversión del
virus de la hepatitis A y E, sin repercusión clínica . . .

We address the LivingNER task using the mi-RIM (multi-input Recurrent Independent Mech-
anisms) architecture [3]. mi-RIM comprises a set of interacting recurrent modules that are
independent in their dynamics. We use different knowledge sources as inputs for different mod-
ules. Moreover, we define two objectives for recognizing overlapping and non-overlapping spans.
The official results show that the mi-RIM system performs well on the test set, significantly
outperforming the competition mean.

2. System

2.1. Pre-processing

We pre-process the data using a GATE pipeline [4]. For tokenization, sentence splitting, and
POS tagging we use the Spanish resources in the CoreNLP toolkit (Spanish version).

For our model to predict spans correctly, we need to split hyphenated terms like anti-VHC into
the tokens [anti, -, VHC]. This is required because a term like anti-VHC contains the SPECIES
entity VHC and the prefix anti- should not be annotated. If the token anti-VHC is not split, our
model will incorrectly learn to annotate the whole term anti-VHC as SPECIES. Figure 1 shows
an example of how the CoreNLP tokenizer fails to split hyphenated terms. Hence, we use a
simple script to split all hyphenated terms produced by the CoreNLP tokenizer.

CoreNLP tokens: [. . . , anti-VHC, - , anti-HBc , + , anti-HBs , +, HBsAg , -, . . . ]
Split at hyphens: [. . . , anti , - , VHC, - , anti, -, HBc , + , anti , - , HBs , +, HBsAg , - ,. . . ]

Figure 1: Post-processing after CoreNLP tokenizer



2.2. Knowledge sources

Our system incorporates four extant knowledge sources: BETO as a pre-trained language model,
POS, UMLS for authoritative domain terminology, and an ad hoc gazetteer to denote group
terms that denotes groups of humans.

BETO To embed tokens we use the Spanish version of BERT (Pre-training of Deep Bidirectional
Transformers), called BETO [5], accessed through HuggingFace.

UMLS All terms matched by Spanish entries of UMLS (Unified Medical Language System) [2]
are embedded using the adversarially trained graph embeddings provided by [6]. If a
term like Hepatitis A has more than one match like Hepatitis and Hepatitis A, we choose
the longer match for its embedding. Note that we do not fine-tune the embeddings during
the training process.

POS tags POS (Part-of-Speech) information are widely used for NER tasks with proven benefit
[7]. Following [8], we pre-train a set of embeddings for POS tags using CBoW (Continuous
Bag-of-Words) model [9]. We pre-train the embeddings (𝑑𝑃𝑂𝑆 = 20, window=5), using
the Gensim package [10].

Group Gaz mentions of class human include group terms, such as nurses. We compile an
ad-hoc gazetteer from UMLS including all terms with a UMLS semantic type Group.

2.3. Subtask 1 (NER)

We use the mi-RIM architecture for integration of knowledge sources [3]. The mi-RIM archi-
tecture comprises 𝑀 recurrent modules 𝑓1, 𝑓2, . . . , 𝑓𝑀 that have independent dynamics (no
parameter sharing) but they interact via an attention bottleneck. To encourage developing
expertise, a limit 𝑘 can be set that restricts the number of active modules at any time point to 𝑘
modules. Note that modules may have different inputs. This allows different knowledge sources
to be used as the input to different modules.

Because there are a number of annotations for species, where the annotated strings overlap
(see Example 3: virus de la hepatitis A and virus de la hepatitis A y E), we cast the NER task as
two sequence labeling problems. The first task focuses on predicting extended spans, whereas
the second task deals with prediction of short spans. We use 6 recurrent modules: 𝑓1 and 𝑓2
for BETO, 𝑓3 and 𝑓4 for UMLS, 𝑓5 for POS, and 𝑓6 for Group Gaz. Among these modules, the
hidden states of 𝑓1 and 𝑓3 are used for predicting extended spans, and the hidden states of
𝑓2 and 𝑓4 are used for predicting the short spans. Note that since the modules interact with
each other, 𝑓1–𝑓4 are aware of 𝑓5 and 𝑓6 which are responsible for accommodation of POS and
Group Gaz. We jointly train on the two tasks.

2.4. Subtask 2 (Normalization)

Subtask 2 requires normalizing the entities detected in Subtask 1 to the corresponding NCBI tax
codes. We use a simple matching approach.



For all entities identified as human we assign 9606 as default NCBI code which corresponds
to Homo sapiens. To normalize species mentions, however, we compile three gazetteer lists
𝐺Train, 𝐺UMLS, and 𝐺NCBI. 𝐺Train is populated solely from the training data, which includes
training entities matched with their NCBI code. 𝐺UMLS contains all Spanish UMLS concepts
for which a NCBI code is reported. Finally, 𝐺NCBI includes all terms from the NCBI taxonomy.
Note that almost all terms in 𝐺NCBI are in English, and the gazetteer is intended to capture any
possible mentions in English, specifically acronyms. We use these gazetteer lists as follows:

Exact: We match against the three gazetteer lists while ignoring case. First, an entity is matched
against 𝐺Train. When the gazetteer list returns no hit, we match the entity against 𝐺UMLS

and 𝐺NCBI. If an entity is not matched with any of the three gazetteers, we report the
default string “OTHER_CODE”.

Levenshtein: The entities that did not match against any gazetteer in the Exact approach
above are again matched against 𝐺Train by finding the gazetteer entry with the least
normalized Levenshtein distance. Normalized Levenshtein distance is a number between
0 and 100. A substitution cost of 2 is used for the calculation. If the normalized distance
between two strings is below 15, we report the corresponding NCBI code. Otherwise, we
report the default code “OTHER_CODE”. The cutoff value was empirically determined on
the validation set.

2.5. Implementation details

The mi-RIM model is implemented using the PyTorch library [11]. We train the model using the
Adam optimizer [12] with a learning rate of 𝑙𝑟 = 5× 10−6. We use early stopping and observe
that the best model is usually obtained by the 7th epoch. 𝑘 is empirically set to 4. 𝑘 = 4 may be
optimal because it encourages competition between the six modules while allowing all four
knowledge sources to participate, if appropriate.

3. Results

3.1. Development phase

Table 1 reports performance on the development set provided by the organizers. We use
the official evaluation script to measure the performances. The baseline shows a rather high
performance for Subtask 1, suggesting that the development set is well foreshadowed by the
training data. Nevertheless, leveraging UMLS provides a significant boost to the baseline
performance. Interestingly, UMLS improves both precision and recall, suggesting that the
modules are interoperating well and do not confound each other.

Integration of POS information also improves the performances, albeit marginally. Note that
POS seems to improve precision more than recall. This has been also observed in studies such
as [8]. Adding the Group Gaz also improves the performance marginally.

The performances on Subatsk 2 are necessarily bounded by the performances on Subtask 1
(see also Table 1). Interestingly, the simple Exact matching approach provides a high perfor-
mance, suggesting homogeneity between the training and the development sets. As intended,



Subtask 1 Subtask 2
Knowledge Sources P R F1 P R F1

BETO (baseline) 90.8 87.7 89.2
Exact 93.21 82.66 87.62
Levenshtein 92.50 84.69 88.42

BETO, UMLS 92.0 91.5 91.7
Exact 94.4 85.65 89.81
Levenshtein 93.68 87.81 90.65

BETO, UMLS, POS 92.8 91.8 92.3
Exact 95.27 86.43 90.64
Levenshtein 94.54 88.62 91.48

BETO, UMLS, POS, Group Gaz 92.9 92.9 92.9 Exact 95.38 87.39 91.21
Levenshtein 94.62 89.60 92.04

Table 1
Development results

approximate string matching based on the Levenshtein distance improves recall att he cost of a
small drop in precision; the overall F1 score, however, improves.

Error cases Using UMLS and BETO improves both precision and recall. Table 2 shows some
error cases. Terms such as piojos (lice), colonia (a bird), pulgas (flee) are omissions (false negatives,
FN) for BETO because these terms never occur in the training data. However, when adding a
UMLS module to the system, they are correctly annotated (true positives, TP).

A special issue are disease mentions like hepatitis. While hepatitis A is a virus and should
be annotated, hepatitis itself is a disease mention and does not refer to a living thing. The
distinction is too subtle for the current system and a solution would involve more in depth
language processing.

Entity BETO BETO, UMLS BET, UMLS, POS
piojos FN TP TP
pulgas FN TP TP
colonia FN TP TP
equipo de la UCI FP FP TP
coronavirus 2019 FP FP FP
hepatitis FP FP FP
enfermedades venéreas FP FP FP
aeroalérgenos FP FP TN
Transexual masculino FN FN TP

Table 2
Comparison of error cases on development data

3.2. Competition phase

Table 3 shows the official competition results for our two submissions. The results show that
our mi-RIM system performs well to the test dataset, suggesting robustness of the system and
its integration of extant knowledge sources. Note that the success in Subtask 2 is dependent on



correct entity annotations in Subtask 1 and in fact the mean for both tasks is very close, as is
the performance of our system, suggesting that Subtask 2 is generally well executed.

Subtask 1 Subtask 2
Knowledge Sources 𝜇P 𝜇R 𝜇F1 𝜇P 𝜇R 𝜇F1

BETO, UMLS, POS 93.79 92.51 93.15
Exact 96.40 86.92 91.42
Levenshtein 94.90 89.06 91.89

BETO, UMLS, POS, Group Gaz 93.85 92.56 93.20 Exact 96.41 86.96 91.44
Levenshtein 94.95 89.10 91.93

Competition mean 87.63 80.77 82.38 84.87 80.67 82.67
Competition STD 15.41 24.65 23.71 15.77 14.76 15.08

Table 3
Official competition results

4. Conclusion

This paper summarized the CLaC submission for the LivingNER challenge. We used the mi-RIM
architecture to integrate heterogeneous knowledge sources such as BETO, UMLS, POS tags,
and an ad-hoc gazetteer compiled on training data. mi-RIM accommodates external knowledge
sources using independent but interacting modules. The results on both development and
challenge data sets show that the modules interoperate well and performance is highest when
all modules are used.
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