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Abstract
Description logics with typicality have been considered under a “concept-wise” multi-preferential
semantics as the basis of a logical interpretation of MultiLayer Perceptrons (MLPs). In this paper we
exploit a Datalog-based approach to prove logical properties of a trained network by model checking,
starting from its input/output behavior, building a many-valued preferential model for the verification of
typicality properties. The model is also used for providing a probabilistic account of MLPs, exploiting
typicality concepts and Zadeh’s probability of fuzzy events. We report about some experiments to the
verification of properties of neural networks for the recognition of basic emotions. This work is a step
in the direction of verifying and interpreting knowledge learned by a neural network, to achieve a
trustworthy and explainable AI.

Keywords
Description Logic, Typicality, Neural Networks, Explainability

1. Introduction

Preferential approaches to common sense reasoning [1, 2, 3, 4, 5], have been extended to
description logics (DLs) to deal with inheritance with exceptions in ontologies, by allowing
for non-strict inclusions, called typicality or defeasible inclusions, with different preferential
semantics, e.g., [6, 7] and [8, 9], and closure constructions, e.g, [10, 11, 12, 9].

In recent work, a concept-wise multipreference semantics has been proposed [13] as a
semantics for ranked Description Logic (DL) knowledge bases (KBs), i.e. knowledge bases in
which defeasible or typicality inclusions of the form T(C) ⊑ D (meaning “the typical C’s
are D’s" or “normally C’s are D’s"), stemming from KLM conditionals [1, 3], are given a rank,
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representing their strength, where T is a typicality operator [6], that singles out the typical
instances of concept C .

The multi-preferential semantics has been extended [14] to weighted knowledge bases, in
which typicality inclusions have a real (positive or negative) weight, representing plausibility
or implausibility. The semantics has been exploited to provide a preferential interpretation
to Multilayer Perceptrons (MLPs, [15]), an approach previously considered [16, 17] for self-
organising maps (SOMs, [18]). In both cases, considering the domain of all input stimuli
presented to the network during training (or in the generalization phase), one can build a
semantic interpretation of the network as a multi-preferential interpretation, where preferences
are associated to concepts. This allows properties of a neural network to be verified by model
checking over a fuzzy preferential interpretation. A MLP can as well be regarded as a weighted
conditional knowledge base [14] (based on a fuzzy concept-wise preferential semantics) by
interpreting synaptic connections as conditional implications. Specifically, the notions of
coherent [14], faithful [19] and φ-coherent [20] models of a weightedALC knowledge base have
been considered for fuzzy ALC with typicality.

In previous work, proof methods for reasoning with weighted conditional KBs have been
studied, in the two-valued case [21] for EL⊥ KBs, and in the finitely many-valued case [22],
providing an approximation of fuzzy φ-coherent entailment for the boolean fragment. Finitely
many-valued DLs are well-studied in the literature [23, 24, 25, 26]. In particular, for the boolean
fragment LC of ALC (which does not contain roles, and then neither universal nor existential
restrictions), the finitely many-valued Gödel and Łukasiewicz description logics, GnLC and
ŁnLC, have been extended with a typicality operator, and a semantic closure construction, based
on φn-coherent interpretations, has been introduced to deal with weighted KBs. ASP and asprin
[27] have been exploited for deciding φn-coherent entailment, a many-valued approximation of
φ-coherence entailment, and the ASP encoding is used to prove that the problem is in Πp

2 [22].
In this paper, we investigate a Datalog-based approach to model checking for verifying the

logical properties of a neural network, by constructing a preferential interpretation of the
network starting from its input/output behavior over a set of input stimuli. We exploit the
activations of units for those stimuli, to define a many-valued interpretation of the concepts
associated with those units (namely, the units of interest for verification).

More specifically, we exploit Datalog with weakly stratified negation [28] in the construction
of the model of a neural network N over a given domain ∆ of input stimuli. This allows
the verification in polynomial time of typicality properties of the form T(C) ⊑ Dθα, for
θ ∈ {≥, ≤, >,<} and α ∈ [0, 1], as well as to evaluate the conditional probabilities P (D|C),
based on Zadeh’s probability of fuzzy events [29], also including occurrences of typicality
concepts T(C).

We conclude the paper by reporting about some experiments to the verification of properties
of neural networks for the recognition of basic emotions using the Facial Action Coding System
(FACS) [30].
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2. A fuzzy and a finitely many-valued description logic

Fuzzy description logics have been widely studied in the literature for representing vagueness
in DLs [31, 32, 33], based on the idea that concepts and roles can be interpreted as fuzzy sets
and fuzzy relations. In fuzzy logic, formulas have a truth degree from a truth space S , usually
[0, 1], as in Mathematical Fuzzy Logic [34] or {0, 1

n , . . . ,
n−1
n , nn}, for an integer n ≥ 1. The

finitely many-valued case is also well studied for DLs [23, 24, 25, 26]; in the following, we will
also consider a finitely many-valued extension of the boolean fragment of ALC with typicality.

Let LC be the fragment of ALC with no roles, NC be a set of concept names and NI a set of
individual names. The set of LC concepts can be defined inductively as follows: (i) A ∈ NC , ⊤
and ⊥ are concepts; (ii) if C and D are concepts, then C ⊓D, C ⊔D, ¬C are concepts.

A fuzzy interpretation for LC is a pair I = ⟨∆, ·I⟩ where ∆ is a non-empty domain and
·I is fuzzy interpretation function that assigns to each concept name A ∈ NC a function
AI : ∆→ [0, 1], and to each individual name a ∈ NI an element aI ∈ ∆. A domain element
x ∈ ∆ belongs to the extension of A to some degree in [0, 1], i.e., AI is a fuzzy set.

The interpretation function ·I is extended to complex concepts as follows:

⊤I(x) = 1 ⊥I(x) = 0 (¬C)I(x) = ⊖CI(x)

(C ⊓D)I(x) = CI(x)⊗DI(x)

(C ⊔D)I(x) = CI(x)⊕DI(x)

where x ∈ ∆ and ⊗, ⊕, ▷ and ⊖ are arbitrary but fixed t-norm, s-norm, implication function,
and negation function, chosen among the combination functions of various fuzzy logics (we
refer to [32] for details). In particular, in Gödel logic a⊗ b = min{a, b}, a⊕ b = max{a, b},
a ▷ b = 1 if a ≤ b and b otherwise; ⊖a = 1 if a = 0 and 0 otherwise. In Łukasiewicz logic,
a⊗ b = max{a+ b−1, 0}, a⊕ b = min{a+ b, 1}, a▷ b = min{1−a+ b, 1} and⊖a = 1−a.

The interpretation function ·I is also extended to non-fuzzy axioms (i.e., to strict inclusions
and assertions of an LC knowledge base) as follows:

(C ⊑ D)I = infx∈∆C
I(x)▷DI(x)

(C(a))I = CI(aI)

A fuzzy LC knowledge base K is a pair (T ,A) where T is a fuzzy TBox and A a fuzzy ABox.
A fuzzy TBox is a set of fuzzy concept inclusions of the form C ⊑ D θ α, where C ⊑ D is
an LC concept inclusion axiom, θ ∈ {≥,≤, >,<} and α ∈ [0, 1]. A fuzzy ABox A is a set of
fuzzy assertions of the form C(a) θα where C is an LC concept, a ∈ NI , θ ∈ {≥, ≤, >,<}
and α ∈ [0, 1]. Following Bobillo and Straccia [35], we assume that fuzzy interpretations are
witnessed, i.e., the sup and inf are attained at some point of the involved domain.

Definition 1 (Satisfiability and entailment). A fuzzy interpretation I satisfies a fuzzy LC
axiom E (denoted I |= E), as follows:
- I satisfies a fuzzy LC inclusion axiom C ⊑ D θ α if (C ⊑ D)Iθ α;
- I satisfies a fuzzy LC assertion C(a)θα if CI(aI)θ α,
for θ ∈ {≥,≤, >,<}.
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Given a fuzzy KB K = (T ,A), a fuzzy interpretation I satisfies T (resp. A) if I satisfies all fuzzy
inclusions in T (resp. all fuzzy assertions in A). A fuzzy interpretation I is a model of K if I
satisfies T and A. A fuzzy axiom E is entailed by a fuzzy knowledge base K , written K |= E, if
for all models I =⟨∆, ·I⟩ of K , I satisfies E.

In the finitely many-valued case, we assume the truth space to be Cn = {0, 1
n , . . . ,

n−1
n , nn}, for

an integer n ≥ 1. A finitely many-valued interpretation for LC is a pair I = ⟨∆, ·I⟩ where: ∆ is
a non-empty domain and ·I is an interpretation function that assigns to each a ∈ NI a value
aI ∈ ∆, and to each A ∈ NC a function AI : ∆→ Cn. In particular, in [22] we have considered
two finitely many-valued cases based onALC, the finitely many-valued Łukasiewicz description
logic ŁnALC and the finitely many-valued Gödel description logic GnALC, extended with
a standard involutive negation ⊖a = 1 − a. Such logics are defined along the lines of the
finitely many-valued Łukasiewicz description logic SROIQ [24], the fuzzy extension of the
descrption logic SROIQ that joins Gödel and Zadeh fuzzy logics (called GZ SROIQ) [25],
and the logic ALC∗(S) [23]. In the following we will focus on the LC fragment GnLC of
GnALC. For GnLC the interpretation function ·I is extended to complex concepts and fuzzy
axioms as above, and we assume the interpretation of negated concepts exploits involutive
negation, i.e., (¬C)I(x) = ⊖CI(x) = 1− CI(x). The notions of knowledge base, satisfiability
and entailment are defined as above.

3. Fuzzy LC with typicality and φ-coherent models

Let us consider now fuzzyLC with typicalityLCFT, following the approach forALC in [14, 19],
as well as the finite many-valued case. The idea is similar to the extension ofALC with typicality
in the two-valued case [6], but the degree of membership of domain individuals in a concept C
is used to identify the typical elements of C . The extension allows for the definition of typicality
concepts of the form T(C), corresponding to the set of most typical C-elements.

Note that, in a fuzzy interpretation I = ⟨∆, ·I⟩, the degree of membership CI(x) of x in a
concept C induces a preference relation <C on ∆:

x <C y iff CI(x) > CI(y)

For a witnessed fuzzy LC interpretation I , each preference relation <C has the properties
of preference relations in KLM-style ranked interpretations [3], that is, <C is a modular and
well-founded strict partial order. Similarly for a finitely many-valued LC interpretation I . Each
relation <C has the properties of a preference relation in KLM rational interpretations, also
called ranked interpretations. It captures the relative typicality of domain elements wrt concept
C and may then be used to identify the typical C-elements. Let CI

>0 = {x ∈ ∆ | CI(x) > 0}.
One can provide a (crisp) interpretation of typicality concepts T(C) in an interpretation I as
follows:

(T(C))I(x) =

{︃
1 if x ∈ min<C (C

I
>0)

0 otherwise
(1)

where min<(S) = {u : u ∈ S and ∄z ∈ S s.t. z < u}. When (T(C))I(x) = 1, x is said to be
a typical C-element in I . Let us denote with LCFT the extension of fuzzy LC with typicality,
and with GnLCT the extension of GnLC with typicality.
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Definition 2 ( LCFT interpretation). A LCFT interpretation I = ⟨∆, ·I⟩ is a fuzzy LC in-
terpretation, extended by interpreting typicality concepts as in (1).

In a similar way, we can define a GnLCT interpretation: a many-valued interpretation I =
⟨∆, ·I⟩ implicitly defines a multi-preferential interpretation, where any concept C is associated
to a preference relation <C . The notions of model of an LCFT (resp., a GnLCT) KB, and of
LCFT (resp., GnLCT) entailment are defined similarly as for fuzzy LC knowledge bases (see
Section 2).

In [14, 19] a notion of weightedALCFT knowledge base has been considered (and similarly for
the boolean fragment and the many-valued case [22]), as a tuple ⟨T , TC1 , . . . , TCk

,A⟩, where T
is a set of inclusion axioms,A is a set of assertions and TCi = {(dih, wi

h)} is a set of all weighted
typicality inclusions dih = T(Ci) ⊑ Di,h for Ci, indexed by h, where each inclusion dih has
weight wi

h, a real number, and Ci and Di,h are LC concepts.
Some different fuzzy semantics (a coherent [14], a faithful [19] and a φ-coherent semantics

[20]) have been considered for weighted knowledge bases, and have been exploited to provide
a semantic characterization of multilayer perceptrons as weighted knowledge bases. Based
on a notion of φ-coherent entailment and its approximation to the finitely many-valued case,
an ASP based approach has been proposed for the verification of typicality properties of a
weighted conditional knowledge bases [22] in the logics GnLCT and ŁnLCT. More precisely,
an algorithm for deciding entailment of typicality inclusions T(C) ⊑ D θ α from a weighted
knowledge base in GnLCT (or in ŁnLCT) has been developed by exploiting an ASP encoding
and the asprin framework for answer set preferences [27].

In this paper, we consider a single interpretation which can be built over the domain of input
stimuli, by exploiting the activity of units, for the different inputs. We will see that such a model
can be constructed using Datalog with negation and that the Datalog program can be used for
proving properties of the network by model checking.

4. A fuzzy preferential model of a network N
The idea from [14] is that a fuzzy multi-preferential interpretation can be associated to a network
N , based on the activity of the network over a set of input stimuli ∆. Fuzzy and typicality
properties of the network can then be verified by model checking over such an interpretation,
and used for post-hoc explanation.

Here, we consider a trained feedforward network N , and associate a concept name Ci ∈ NC

to the units of interest i inN for property verification. They may include input, output or hidden
units. We construct a multi-preference interpretation over a (finite) domain ∆ of input stimuli.
For instance, the input vectors considered for training and/or generalization, or a subset of it.
We assume the activation of units to be in the interval [0, 1].

Assume ∆ is a finite set. Following [14], we associate to N and ∆ a fuzzy multi-preferential
interpretation as follows.

Definition 3. The fuzzy multi-preferential interpretation of a network N over the domain ∆,
is the LCFT interpretation I∆N = ⟨∆, ·I⟩ where the interpretation function ·I satisfies condition

58



Francesco Bartoli et al. CEUR Workshop Proceedings 54–67

CI
k(x) = yk(x), for all concept names Ck ∈ NC and x ∈ ∆, where yk(x) is the output signal of

unit k, for input vector x.

As we have seen above, the LCFT interpretation I∆N is a multi-preferential interpretation, as
the fuzzy interpretation of concepts induces a preference relation associated to each concept,
i.e., to each unit. It has been proven that this interpretation is actually a model of the network
[14], when the network is regarded as a weighted knowledge base, and under some conditions
on the activation functions of units. It allows the set of typical instances of a concept Ck to be
identified in the obvious way, by selecting the input stimuli x ∈ ∆ with the highest activity
values yk(x), for unit k. For instance, according to the semantics of typicality concepts, the
verification of an inclusion T(Ch) ⊑ D ≥ α over model I∆N would require to identify typical
Ch-elements and to check whether their membership degree in concept D is greater or equal
than α, according to the choice of the t-norm, s-norm, and negation functions.

In the next section we propose a Datalog-based approach to construct the many-valued
approximation I∆N ,n of model I∆N , and to verify concept inclusions, and typicality inclusions,
over such a model.

5. Model checking of a neural network in Datalog

We construct a many-valued interpretation I∆N ,n of a networkN over a domain ∆, by restricting
to the truth space Cn, and approximating values v ∈ [0, 1] to the nearest value in Cn as follows:

[v]n =

⎧⎨⎩
0 if v ≤ 1

2n
i
n if 2i−1

2n < v ≤ 2i+1
2n , for 0 < i < n

1 if 2n−1
2n < v

(2)

In the following, we will focus on the verification of properties of the network N in the
logic GnLCT, then building a GnLCT interpretation I∆N ,n. The same approach can be used
for verifying properties of the network in ŁnLCT, with minor differences in Datalog encoding.
First let us define the interpretation I∆N ,n.

Definition 4. The many-valued interpretation I∆N ,n = ⟨∆, ·I⟩ of a networkN over the domain
∆, is a GnLCT interpretation such that function ·I satisfies, for all concept names Ck ∈ NC and
domain elements x ∈ ∆, the condition CI

k(x) = [yk(x)]
n, where yk(x) is the output signal of unit

k, for input vector x.

The verification that the network satisfies an inclusion of the form C ⊑ D ≥ α, where C and
D are concepts built from the concept names Ci ∈ NC , possibly containing typicality concepts,
can be done by checking whether the inclusion C ⊑ D ≥ α is satisfied in the model I∆N ,n.
As a special case, one can verify inclusions of the form T(C) ⊑ D ≥ α. Such formulae are
interesting, e.g., in case C is associated to an output unit and D is a boolean combination of
input units, to check whether inputs that are classified as Cs with highest degree, satisfy D
with at least degree α.
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In the following we describe a Datalog encoding of the model checking problem. The encoding
contains a component Π(N ,∆, n) which describes the interpretation I∆N ,n, and a component
associated to the formula or the formulae to be checked.

The program is defined in such a way that its unique stable model, corresponding to the
well-founded model of the program, also corresponds to model I∆N ,n. The main features of the
program Π(N ,∆, n) are the following.

The activation of the relevant units in N for each input stimulus x ∈ ∆ is represented
as follows. Each activation yi(x) is approximated to the nearest value [yi(x)]

n in Cn and
transformed to an integer vi = [yi(x)]

n × n. Each input stimulus x ∈ ∆ is associated a number
h, and a corresponding constant h in the program. A preprocessing phase will introduce in the
program Π(N ,∆, n) an atom individual(h, v1 , . . . , vm) for each input stimulus x in ∆ with
number h, providing the tuple with all the (approximated) activation values for x of the units of
interest (where vi = [yi(x)]

n × n).
The valuation is encoded by a set of atoms of the form inst(x ,A, v), meaning that v

n ∈ Cn

is the degree of membership of x in A; val(0 ..n) asserts that 0 ..n are the possible values,
representing Cn. For each concept name Ai associated to a unit of interest, the rule:

inst(X ,A′
i ,Vi) ← val(Vi), individual(X ,V1 , . . . ,Vm).

where A′
i is the constant representing Ai, associates to each input stimulus x a membership

degree Vi
n ∈ Cn in concept Ai. A rule

ind(X )← individual(X ,V1 , . . . ,Vm)

identifies individuals.
Formulae (concepts and concept inclusions) are represented using, for boolean concepts,

terms such as and(C ′, D′) for C ⊓D, where C ′ and D′ represent C and D, and t(C ′) for T(C).
Function symbols are used as syntactic sugar, as the grounding of rules is finite.

The valuation is extended to boolean concepts C, and, similarly, to concept inclusions, defining
a predicate eval(C ′,X ,V ). As in [22] the definition of the eval predicate depends on the choice
of the combination functions. For example, the rule:

eval(and(A,B), I ,V )← ind(I ), conc(and(A,B)),

eval(A, I ,V1 ), eval(B , I ,V2 ), val(V1 ),

val(V2 ),min(V1 ,V2 ,V ).

evaluates conjunctions, using a suitably defined min as combination function; conc is used to
make the instantiation of such rules finite, defining formulas of interest, that are the formulas
to be verified and their subformulae.

Typical C-elements and the extension of eval to typicality concepts can be defined using
weakly stratified negation:

typical(X ,C )← conc(t(C )),

eval(C ,X ,N ),N ! = 0 ,

hasmaxval(C ,N ).
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hasmaxval(C ,n)← conc(t(C )), someval(C ,n).

hasmaxval(C ,M )← val(M ),M < n,

conc(t(C )), someval(C ,M ),

not hasval_geq(C ,M + 1 ).

someval(C ,M )← ind(Y ), conc(t(C )),

eval(C ,Y ,M ).

hasval_geq(C ,M )← val(M ), conc(t(C )),

someval(C ,M ).

hasval_geq(C ,M )← val(M ), conc(t(C )),

M ! = 0,M < n,

hasval_geq(C ,M + 1 ).

eval(t(A), I ,n)←ind(I ), conc(t(A)),

typical(I ,A).

eval(t(A), I , 0 )←ind(I ), conc(t(A)),

not typical(I ,A).

One or more formulae can be verified using, e.g., the following rules, relying on assertions
formula(Name, impl(C ′,D ′),Val), to verify C ⊑ D ≥ Val , where impl(C ′,D ′) represents
C ⊑ D, and the inclusion is given a (unique) Name ; then either ok(Name) or notok(Name)
will be derived, and, in the latter case, notok/2 points out the counterexamples:

conc(C )← formula(Name,C ,Val).

notok(X ,Fname)← formula(Fname,F ,Val),

ind(X ), eval(F ,X ,V ),V < Val .

notok(Fname)← notok(X ,Fname).

ok(Fname)← fname(Fname),

not notok(Fname).

fname(Name)← formula(Name,F ,Val).

The soundness and completeness of the Datalog encoding of the model checking problem in
I∆N ,n, can be proven along the same lines of the one-to-one correspondence between GnLCT
models of a knowledge base and the answer sets of its ASP encoding [22] (Lemma 1 in the
supplementary material). While in [22] the answer sets of the program capture the models of
the conditional knowledge base associated to the network, here program Π(N ,∆, n) has a
unique weakly perfect model [28], corresponding to the interpretation I∆N ,n (as well as a unique
stable model).

The size of the Datalog program Π(N ,∆, n) is linear in |∆| × |NC | × n), where |∆| is the
size of the domain of input stimuli considered and |NC | is the number of concepts (units) which
are of interest for the verification. It is easy to prove that the verification of a typicality inclusion
T (C) ⊑ D ≥ α in GnLCT is O(|∆| × (|C|+ |D|)× n).
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6. Typicality concepts and the probability of fuzzy events

For the properties T(C) ⊑ D ≥ α, especially in case they do not hold for all stimuli, the
conditional probability of D given T(C), can be evaluated (and then compared with α) based
on Zadeh’s probability of fuzzy events. In particular, based on a recent characterization of
the continuous t-norms compatible with Zadeh’s probability of fuzzy events (PZ-compatible
t-norms) by Montes et al. [36], a probabilistic interpretation of SOMs has been provided [17],
starting from a fuzzy model of SOMs after training. The same approach has been considered as
well for MLPs [37]. In this section we consider as well typicality concepts, which do not require
a special treatment, except considering their semantics, as for all other concepts.

Assuming a discrete probability distribution p over the domain ∆ of a fuzzy interpretation
I = ⟨∆, ·I⟩, the probability of the fuzzy set CI , for each DL concept C , can be defined as:
P (CI) =

∑︁
d∈∆CI(d) p(d). Let us consider the specific interpretation I = I∆N built from the

trained network N over a set of input stimuli ∆. In the following we will simply write P (C),
rather than P (CI).

Following Smets [38], we let the conditional probability of a fuzzy event C given the fuzzy
event D be P (C | D) = P (D ⊓ C)/P (D) (provided P (D) > 0). As observed by Dubois
and Prade [39], this generalizes both conditional probability and the fuzzy inclusion index
advocated by Kosko [40]. Specifically, under the assumption that the probability distribution
p is uniform over the set ∆ of input stimuli, then P (D|C) = M((D ⊓ C)I)/M(CI), where
M(CI) =

∑︁
x∈∆CI(x) is the size of the fuzzy event CI in the interpretation I .

Note that, for a concept name Ck ∈ NC , associated to a unit k, and a domain element x ∈ ∆,
it holds that P (Ck|{x}) = Ck(x) [17, 37] (where {x} stands for the crisp concept containing
only x), which can be interpreted as a subjective probability that x is an instance of Ck [41],
i.e., the degree of belief that x is an instance of concept Ck.

Computing conditional probabilities requires computing the size of the involved fuzzy sets.
We have extended our rule based approach to compute conditional probabilities P (D|T(C))
over the many-valued approximation I∆N ,n of model I∆N , where D and C may be boolean
concepts. In this case, the size of (T(C))I coincides with the number of typical C elements, and
the size of (D⊓T(C))I can be computed as

∑︁
x∈(T(C))I D

I(x) . This allows for the verification
of conditional constraints of the form P (D|T(C))θα over the model I∆N ,n. The computation
can be performed using aggregates as follows:

numtyp(N ,C ) :– conc(t(C )),

N = #count{X : typical(X ,C )}.
fuzzysetcondprob(Name,P) :–

formula(Name, impl(t(C ),D),K ),

numtyp(N ,C ),

W = #sum{V ,X : val(V ), ind(X ),

typical(X ,C ), eval(D ,X ,V )},
P = (k ∗W )/N.

where k is, e.g., 1000, to get the decimal part of the result in 3 digits. This use of aggregates
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satisfies weak stratification restrictions [42] and the program has a unique stable model.
We report the results of an experimentation in the next section.

7. Recognizing basic emotions: an experimentation

In this section, we report about experiments on the verification of properties of neural networks
for the recognition of basic emotions using the Facial Action Coding System (FACS) [30].

The RAF-DB [43] data set contains almost 30000 images labeled with basic emotions or
combinations of two emotions. The data set was used as input to OpenFace 2.0 [44], which
detects a subset of the Action Units (AUs) in [30], i.e., facial muscle contractions. The relations
between such AUs and emotions, studied by psychologists [45], can be used as a reference for
formulae to be verified on neural networks trained to learn such relations.

From the original dataset, we selected the subset of the images that were labelled with only
one emotion in the set { suprise, fear, happiness, anger }. The dataset is highly unbalanced
and this can affect the training of the neural network model; then we preprocessed the data
by subsampling the larger classes and augmenting the minority ones using standard data-
augmentation techniques (e.g., rotations, flipping, etc.). The processed dataset contains 5 975
images (the number of images was 4 283 before augmentation). The images were input to
OpenFace 2.0; the output intensities were rescaled in order to make their distribution conformant
to the expected one in case AUs were recognized by humans [30]. The resulting AUs were used
as input to a neural network trained to classify its input as an instance of the four emotions.
The neural network model we used is a fully-connected feed-forward neural network with
three hidden layers having 1 800, 1 200, and 600 nodes. All hidden layers use RELU activation
functions, while the softmax function is used in the output layer. The network was trained using
the Adam [46] optimizer with an initial learning rate η set to 0.003, and parameters β1 = 0.895,
β2 = 0.99, and ϵ = 10−7. The network has been trained for 150 epochs with a batch size of 128
examples. All hyper-parameters have been tuned on a separated validation set.

The model checking approach in section 5 was applied, using the Clingo ASP solver as Datalog
engine, taking, as set ∆ of input stimuli, the test set used in the learning phase, containing 1194
images, and n = 5 (given that AU intensities, when assigned by humans, are on a scale of five
values). Formulae of the form T(E) ⊑ F ≥ k/5 were checked, where E is an emotion and F
is a combination of AUs, using table 1 in [45] as a reference. Table 1 reports the results, with
the number of typical individuals for the emotion, the number of counterexamples for different
values of k, and the value of P (F |T(E)).

For example, the formula T(happiness) ⊑ au1 ⊔ au6 ⊔ au12 ⊔ au14 ≥ 3/5 holds for
all individuals, as well as T(happiness) ⊑ au12 ≥ 2/5, while T(happiness) ⊑ au12 ≥ 3/5
(where au12 is the activation of the lip corner puller muscle, that is, smiling) has 1 counterex-
ample out of 255 instances of T(happiness). The value of P (au12/T(happiness)) is larger
than 4/5, even though there are 35 counterexamples for T(happiness) ⊑ au12 ≥ 4/5.
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Table 1
Results for checking formulae on the test set

8. Conclusions

In this paper we have described a Datalog approach to evaluate properties of trained MLPs by
model checking. The approach exploits a finitely many-valued approximation of a semantics
for fuzzy description logics with typicality.

As a proof of concept, the proposed approach has been experimented for checking properties
of a trained neural network for the recognition of basic emotions using the Facial Action Coding
System (FACS) [30].

This work is a step in the direction of verifying and interpreting knowledge learned by a
neural network, in order to achieve a trustworthy and explainable AI. In the case study, there
were expectations, to be verified, on the input-output relation (emotions and AUs); in other
cases, less knowledge could be available in advance, so that the results could turn out to be
more useful, even though more difficult to find.

Interpreting knowledge learned by a neural network in a logical form also opens the possibility
of combining empirical knowledge with elicited knowledge, e.g., in the form of strict inclusions
and definitions.

We refer to the surveys by Garcez et al. [47] and by Guidotti et al. [48] for an outline of current
directions on the explanation of neural models and on the combination of neural networks and
symbolic reasoning.

For future work, it would be interesting to investigate whether Fuzzy answer set programming
(FASP) via satisfiability modulo theories (SMT) [49], can be used for MLPs property verification.
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