
Datalog-based Reasoning with Heuristics over
Knowledge Graphs
Teodoro Baldazzi

1,*
, Davide Benedetto

1
, Matteo Brandetti

2
, Adriano Vlad

3,2
,

Luigi Bellomarini
4

and Emanuel Sallinger
2,3

1Università Roma Tre, Department of Computer Science and Engineering, Rome, Italy
2TU Wien, Faculty of Informatics, Vienna, Austria
3University of Oxford, Department of Computer Science, Oxford, UK
4Banca d’Italia, Italy

Abstract

Datalog+/- has recently emerged as a family of powerful languages for ontological reasoning on knowl-

edge graphs (KGs). Yet, performing reasoning tasks on real-world scenarios that feature large inputs and

recursions, e.g., answering Boolean Conjunctive Queries (BCQs), can be very onerous even for modern

Datalog-based systems. To tackle this problem, we introduce a novel reasoning technique that adopts

heuristic search strategies to guide the evaluation of Datalog+/- programs and optimize BCQ answering.

We apply our methodology to efficiently solve time- and space-demanding tasks on financial KGs.

Keywords
Datalog+/-, reasoning, knowledge graph, heuristic search

1. Introduction

Recent years have witnessed a rising interest, both in academia and industry, towards querying

and exploiting large amounts of data in the form of knowledge graphs (KGs). This led to the

development of intelligent systems that manage such data as the extensional component of

KGs and infer new intensional knowledge via ontological reasoning mechanisms. To achieve

this, modern applications require powerful logic languages for knowledge representation [1]

that provide full support for recursion, joins and existential quantification, essential features for

graph navigation and ontological reasoning, while sustaining tractability [2].

Datalog± Reasoning. Among them, Datalog
±

[3, 4, 5, 6] members (technically, fragments) have

recently emerged, extending Datalog [7, 8, 9, 10] with existential quantification and covering,

in some cases, the above requirements. Datalog
±

rules are function-free Horn clauses that may

include existentials, i.e., tuple-generating dependencies (TGDs). The semantics of a Datalog
±

program can be defined in an operational way via the chase [11]: given a database 𝐷 and a set

Datalog 2.0 2022: 4th International Workshop on the Resurgence of Datalog in Academia and Industry, September 05,
2022, Genova - Nervi, Italy
*
Corresponding author.

$ teodoro.baldazzi@uniroma3.it (T. Baldazzi); davide.benedetto@uniroma3.it (D. Benedetto);

matteo.brandetti@gmail.com (M. Brandetti); adriano.vlad@gmail.com (A. Vlad); luigi.bellomarini@bancaditalia.it

(L. Bellomarini); sallinger@dbai.tuwien.ac.at (E. Sallinger)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

114

mailto:teodoro.baldazzi@uniroma3.it
mailto:davide.benedetto@uniroma3.it
mailto:matteo.brandetti@gmail.com
mailto:adriano.vlad@gmail.com
mailto:luigi.bellomarini@bancaditalia.it
mailto:sallinger@dbai.tuwien.ac.at
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

Σ of rules in input, it adds new tuples to 𝐷 until Σ is satisfied, introducing freshly generated

symbols (technically, labelled nulls) that act as placeholders for existential quantification. The

navigational capabilities offered by Datalog, empowered by recursion in combination with

arbitrary joins, are vital for expressing complex reasoning tasks over KG.

Nonetheless, graph traversal remains a very time- and space-demanding task, especially in

the presence of large inputs, as it potentially involves a blowup of the generated facts [12]. In

this context, answering Boolean Conjunctive Queries (BCQs) – i.e., queries whose answer is

a Boolean value – is a particularly relevant case, as often only a subset of the generated

facts actually contributes to answering the query [13]. Indeed, standard BCQ evaluation

approaches (both materialization and streaming ones) are domain-unaware, that is, they do

not exploit external knowledge of the domain to guide chase and query answering. This

may cause a significantly superfluous computation in the number of generated facts, heavily

affecting reasoning performance. This limitation also characterizes state-of-the-art optimization

techniques such as semi-naive evaluation [14], which prevents the discovery of duplicated facts

by evaluating only the newly generated ones, and Magic Sets [15], a top-down strategy that,

starting from the query, builds derivation trees that search for matching facts in the database.

In this work, we investigate the generation of superfluous facts in recursive settings when

answering BCQs. We contribute a novel reasoning approach that tackles this problem and

provides an optimized way to evaluate Datalog
±

rules. Let us consider the following example.

Example 1. A traffic volume scenario on a geographic knowledge graph [16].

Road(p1, p2, tv), p1 = A→ Route(p1, p2, tv) (1)

Route(p1, p2, tv1), Road(p2, p3, tv2), p1 ̸= p3 → Route(p1, p3, tv1 + tv2) (2)

Route(p1, p2, tv), ttv = 𝑚𝑠𝑢𝑚(tv), ttv ≥ thold→ HighTraffic(p1, p2) (3)

A road from city A to a city 𝑝2 identifies a route featuring a traffic volume 𝑡𝑣 (rule 1). If there is a
route from 𝑝1 to 𝑝2 and a road from 𝑝2 to another city 𝑝3, then there is a route from 𝑝1 to 𝑝3. The
resulting traffic volume is the sum of the one from 𝑝1 to 𝑝2 and from 𝑝2 to 𝑝3 (rule 2). The overall
set of itineraries from 𝑝1 to 𝑝2 is highly trafficated (HighTraffic) if the total traffic volume of all
possible routes from 𝑝1 to 𝑝2 is greater than or equal to a threshold thold (rule 3).

18

6

5

 4

3

 3

 1 2

 3

3

6

HighTraffic
A

D
E

F G

I

L

H

B

C 3

7

HighTraffic

Figure 1: KG Example 1

The msum operator represents a monotonic aggregation [12] that

sums all the traffic volumes of the routes from 𝑝1 to 𝑝2. Note that

distinct routes may have one or more roads in common. Consider,

as ontological reasoning task, the BCQ 𝑄 = HighTraffic(A,B) ∧
HighTraffic(A, L) to check whether the set of routes from A to B
and the one from A to L are highly trafficated, i.e., their traffic

volume is greater than or equal to thold = 18. The graph in Figure 1,

represents the roads (black edges, labelled with their daily average

traffic volume in the order of thousands) that connect pairs of cities

(nodes). Consider an input database 𝐷 containing an extensional

fact of the form Road(x,y,tv) for each road in the graph. It can be

observed that the answer to𝑄 is indeed positive. However, there are

115



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

multiple ways to activate the above rules on𝐷 to achieve such answer, causing the generation of

a distinct number of facts and, consequently, an impact on the performance of the computation.

For instance, by activating rule 2 from Route(A,E,3) and Road(E,G,1), we generate Route(A,G,4).

Similarly, Route(A,F,8) derives from Route(A,D,6) and Road(D,F,2). Then, by triggering again

rule 2 on such newly generated facts, we create Route(A,I,7) from Road(G,I,3), Route(A,H,8)

from Road(G,H,4), and Route(A,H,11) from Road(F,H,3). Finally, the aggregated traffic volume of

Route(A,L,15) and Route(A,L,18) exceeds 18, thus HighTraffic(A,L) is produced via rule 3. Indeed,

such approach generates both facts that are not used to answer 𝑄 (e.g. Route(A,I,7), and facts

that provide an unnecessary contribution to pass the threshold (e.g. Route(A,L,15)).

Informed Search and Reasoning. With this work, we propose a novel reasoning methodology

to efficiently solve BCQ answering tasks in the presence of large inputs and recursive Datalog
±

settings, limiting the generation of superfluous facts in the chase. To achieve this, we consider

the task as an informed search problem and we optimize the reasoning process by injecting

into the program specific heuristics that prioritize the selection of facts for rule evaluation.

We focus on Warded Datalog
±

[17], a powerful Datalog
±

fragment. It encompasses both a

high expressive power, capturing all SPARQL queries under OWL 2 QL entailment regime

and set semantics, as well as a very good trade-off with data complexity, featuring PTIME for

the reasoning [2]. Moreover, thanks to its syntactic properties, the Warded fragment ensures

the termination of the chase procedure [18]. With reference to Example 1, we prioritize the

rule activation for roads with the highest traffic volume and whose destination node features

the highest number of roads leading into it. Indeed, by applying our methodology with such

heuristic, we activate rule 1 from Road(A,C,6), since it features 2 roads leading into C and a

traffic volume of 6. Similarly, we then trigger rule 2 on Route(A,C,6) and Road(C,H,5), generating

Route(A,H,11). Finally, Route(A,L,18) is created by prioritizing Road(H,L,7): since its traffic

volume is equal to thold, HighTraffic(A,L) is produced via rule 3.

More in detail, our contributions can be summarized as follows.

• We present heuristic-based reasoning, a novel approach to optimize the evaluation of

BCQ answering tasks. We formalize ontological reasoning to answer BCQs as a search

problem and we exploit informed search techniques to evaluate Warded Datalog
±

TGDs in

an efficient fashion, guiding rule activation according to fitting heuristics.

• We discuss real-world KG applications of our methodology to solve two computationally

hard scenarios in the financial domain, namely Close Link and Company Control, by employing

empirically-defined heuristics [19, 20].

• We provide an experimental evaluation of heuristic-based reasoning in recursive settings.

Specifically, we compare our ad-hoc implementation, based on Best-First and A*
search

algorithms, with state-of-the-art BCQ answering techniques for Close Link and Company

Control. We show that our approach exhibits superior performance in BCQ evaluation.

Overview. The remainder of this paper is organized as follows. In Section 2 we provide the

preliminary notions. In Section 3 we present our novel heuristic-based reasoning methodology.

Section 4 is dedicated to the experimental evaluation. In Section 5 we discuss the related work

and we draw our conclusions in Section 6.

116



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

2. Preliminaries

To guide our discussion, let us first present some preliminary notions.

Relational Foundations. Let C, N, and V be disjoint countably infinite sets of constants,
(labelled) nulls and variables, respectively. A (relational) schema S is a finite set of relation

symbols (or predicates) with associated arity. A term is either a constant or a variable. An atom
over S is an expression of the form 𝑅(𝑣), where 𝑅 ∈ S is of arity 𝑛 > 0 and 𝑣 is an 𝑛-tuple of

terms. A database (instance) over S associates to each symbol in S a relation of the respective

arity over the domain of constants and nulls. The members of the relations are called tuples or

facts. Given two conjunctions of atoms ς1 and ς2, we define a homomorphism from ς1 to ς2 as a

mapping ℎ : C ∪N ∪V→ C ∪N ∪V s.t. ℎ(𝑡) = 𝑡 if 𝑡 ∈ C, ℎ(𝑡) ∈ C ∪N if 𝑡 ∈ N and for

each atom 𝑎(𝑡1, . . . , 𝑡𝑛) ∈ ς1, then ℎ(𝑎(𝑡1, . . . , 𝑡𝑛)) = 𝑎(ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) ∈ ς2. Two facts are

isomorphic if they refer to the same predicate, feature the same constants in the same positions,

and there is a bijection between labelled nulls.

Rules and Existentials. Warded Datalog
±

extends Datalog by introducing existential quan-

tifiers and other features to make it suitable for ontological reasoning, while employing

specific syntactic restrictions for tractability [18]. A Warded Datalog
±

program consists

of a set of facts and existential rules, or tuple-generating dependencies (TGDs), of the form

∀�̄�∀𝑦(𝜙(�̄�, 𝑦)→∃𝑧 𝜓(�̄�, 𝑧)), where 𝜙 (the body) and 𝜓 (the head) are conjunctions of atoms

over the respective predicates and the arguments are vectors of variables and constants: for

brevity, quantifiers can be omitted. A fact is intensional if it belongs to a predicate that occurs

in at least one head, otherwise it is extensional (or ground).

Ontological Reasoning and Query Answering. Intuitively speaking, an ontological rea-

soning task consists in answering a conjunctive query (CQ) 𝑄 over a database 𝐷, augmented

with a set of logical rules Σ. More formally, given a database 𝐷 over S and a set of TGDs Σ,

we name the models of 𝐷 and Σ as the set B of all databases (and we write B |= 𝐷 ∪ Σ) such

that B ⊇ 𝐷, and B |= Σ. The answer to a Boolean CQ (BCQ) 𝑄← 𝜓(�̄�, 𝑧) over 𝐷 under Σ is

positive iff there exists a homomorphism h: 𝐶 ∪ 𝑉 → 𝐶 ∪𝑁 s.t. h(𝜓(�̄�, 𝑧)) ⊆ 𝐷.

Chase Procedure. The semantics of a Datalog
±

program can be operationally defined via

chase-based procedures [11]. They enforce the satisfaction of a set of dependencies Σ over

a database 𝐷, incrementally expanding 𝐷 with facts derived from the application of rules

∈ Σ over 𝐷 into a new database chase(𝐷,Σ). Such facts possibly contain labelled nulls that

act as placeholders for the existentially quantified variables. We say that chase(𝐷,Σ) is the

universal model for 𝐷 and Σ, i.e., for every database in B that is a model for 𝐷 and Σ, there is a

homomorphism mapping chase(𝐷,Σ) to B. In the oblivious [3] version of the chase, given a

TGD 𝜙(�̄�, 𝑦)→∃𝑧 𝜓(�̄�, 𝑧), a chase step can be performed over 𝐷 if there exists an applicable
homomorphism h that maps the atoms of 𝜙(�̄�, 𝑦) to facts in𝐷 (i.e., h(𝜙(�̄�, 𝑦))⊆ D). Specifically,

Warded Datalog
±

adopts an isomorphic chase variant that ensures termination by employing an

isomorphism check over the results of the chase steps. Such variant is BCQ-equivalent to the

oblivious one [18, 21]. When the homomorphism ℎ is applicable, the fact ℎ
′
(𝜓(�̄�, 𝑧))) is created,

where ℎ
′

is obtained by extending ℎ so that ℎ
′
(𝑧) ∈ 𝑁 is a fresh labelled null, for each 𝑧𝑖 ∈ 𝑧.

Such fact is added to 𝐷 if there is no isomorphism with a fact ∈ 𝐷. It is worth mentioning that

the result of the isomorphic chase for 𝐷 and Σ, where Σ is a set of warded TGDs, is unique.

117



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

Monotonic Aggregations. Real-world applications, such as the one discussed in Example 1,

may require support for aggregate functions, which can be achieved by means of monotonic
aggregations [12] in the Datalog

±
context. Formally, a rule with an aggregation is a first-order

sentence of the form ∀�̄�(𝜙(�̄�), 𝑧 = maggr(𝑥, ⟨�̄�⟩)→𝜓(𝑔, 𝑧)), where maggr is the name of an

aggregation function, 𝑥 ∈ �̄�, and 𝑔 ⊆ �̄� is a 𝑛-uple of group-by arguments, �̄� ⊆ �̄� (with

�̄� ∩ 𝑔 = ∅) is a 𝑚-uple of variables contributing to the aggregation and 𝑧 a monotonic aggregate,

that is, an existentially quantified variable whose value is computed by the aggregation. Let us

consider tuples ⟨𝑔, �̄�, 𝑥𝑖⟩ of 𝜙(�̄�) and let 𝑋𝑔 be each of the multi-sets of tuples of 𝜙(�̄�) selected

by a specific 𝑛-uple of 𝑔. A rule with an aggregation maps each multi-set 𝑋𝑔 into an output set

𝑍𝑔 of tuples ⟨𝑔, 𝑧𝑖⟩ of 𝜓(𝑔, 𝑧) computed as follows. For a monotonically decreasing (increasing)

aggregation function, for each ⟨𝑔, �̄�, 𝑥𝑖⟩ ∈ 𝑋𝑔 we have a corresponding tuple ⟨𝑔, 𝑧𝑖⟩ ∈ 𝑍𝑔 ,

where the value for 𝑧𝑖 is computed as 𝑧𝑖 = maggr(�̄�, 𝑥𝑖). This function memorizes the most

recently computed aggregate and returns an updated value at each invocation such that, for

each value of �̄�, the minimum (maximum) value of 𝑥𝑖 is considered in the current aggregate [18].

Heuristic Search. Heuristic Search mechanisms allow an agent to find solutions to a problem

via an heuristic. In general, a search problem can be defined as a combination of the following

components: (i) an initial state 𝑠0 from which the agent begins the search; (ii) a set of possible

actions that the agent may perform in a certain state 𝑠𝑖; (iii) a transition model, describing the

state

⟨︀
𝑠𝑖,𝑎

⟩︀
that results from performing an action 𝑎 at a given state 𝑠𝑖; together, such elements

represent the state space of the problem, that is, the set of all the reachable states from an initial

one and via sequences of actions, modeled as a directed acyclic graph in which nodes are states

and edges are actions; (iv) a goal test, which determines whether a state is a goal state; and (v) a

path cost function, which assigns a numeric cost to each path. An optimal solution to the problem

is a sequence of actions, leading from the initial state to the goal state, that features the lowest

cost among all the solutions. Regarding informed search algorithms, given a current node 𝑛, the

next node to be considered is selected according to an evaluation function 𝑓(𝑛), whose output

is an estimation of the lowest path cost to reach a goal state. They employ a heuristic function ℎ
that encapsulates additional knowledge about the state space to support the search of optimal

solutions by identifying promising paths to visit: intuitively, ℎ(𝑛) corresponds to the estimated

cost of the most promising path from 𝑛 to a goal state, according to a certain heuristic. The

exploited heuristics are admissible to the search problem, that is, the estimated cost to reach the

goal state is not higher than the lowest possible cost from the current node in the path [22].

Among the types of informed search algorithms, in this work we are interested in:

• Best-First, which selects at each step the node that appears to be the most promising one

according to the heuristic, that is, the one closest to the goal. Therefore, given a current

node 𝑛, the evaluation function is 𝑓(𝑛) = ℎ(𝑛);
• A*

, which combines the heuristic estimation of the path cost from the current node 𝑛 to a

goal state (ℎ(𝑛)) with the cost required to reach 𝑛 itself from the initial state (𝑔(𝑛)). Thus,

the evaluation function is 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), which corresponds to the estimated cost

of the most promising solution crossing 𝑛. For A
*

to be optimal in case of graph search,

the employed heuristic must be consistent, i.e., for each node 𝑛 and each successor 𝑛′ of 𝑛
derived from an action 𝑎, the estimated cost to reach the goal state from 𝑛 is never higher

than the cost to reach 𝑛′ plus the estimated cost from 𝑛′ to the goal state.

118



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

3. Reasoning with Heuristics

In this section, we first introduce a novel formalization of BCQ answering as an informed search

problem, then we delve into how informed search methodologies can be effectively adopted to

optimize BCQ evaluation over Warded Datalog
±

.

BCQ Answering as Search Problem. Consider an instance of the BCQ answering problem

𝒫 , i.e., answering a BCQ 𝑄 over a database 𝐷 under a set of warded TGDs Σ. We formalize it

as an informed search problem as follows. A chase state of 𝒫 , denoted as 𝑠𝑘=chase𝑘(𝐷,Σ), is a

set of facts comprising the extensional ones in the initial database 𝐷 and the intensional ones

generated after the application of a sequence of 𝑘 > 0 chase steps. Observe that chase𝑘(𝐷,Σ)

is not a unique set, as it depends on the order of applicable homomorphisms triggered in the

chase procedure. The chase state space for 𝒫 is the power set 𝑃 (chase(𝐷,Σ)), i.e., all the sets

of facts generated after the application of all the possible sequences of chase steps. Consider

a state 𝑠𝑘=chase𝑘(𝐷,Σ). The set of applicable homomorphisms 𝐻 from Σ to chase𝑘(𝐷,Σ) is

the set of actions that can be performed at 𝑠𝑘. The application of a homomorphism ℎ ∈ 𝐻
over 𝑠𝑘=chase𝑘(𝐷,Σ) to generate 𝑠𝑘+1=chase𝑘+1

(𝐷,Σ) represents a transition from 𝑠𝑘 to 𝑠𝑘+1.

The initial chase state 𝑠0 is the state where no chase step has been applied yet, i.e., the input

database 𝐷=chase0(𝐷,Σ). If the BCQ 𝑄 has a positive answer, then the goal states 𝐺 of 𝒫 are

the set of states where 𝑄 has a positive answer, i.e., chase𝑘(𝐷,Σ) |= 𝑄. If 𝑄 has a negative

answer instead, then the goal state 𝑠𝑔 of 𝒫 is the state where no further homomorphism is

applicable, i.e., chase(𝐷,Σ). A solution 𝑆 = 𝑠0, . . . , 𝑠𝑔 for 𝒫 represents a sequence of chase step

applications from the initial database 𝐷 to 𝑠𝑔=chase𝑘(𝐷,Σ) such that chase𝑘(𝐷,Σ)) |= 𝑄. The

evaluation function 𝑓 : 𝑃 (chase(𝐷,Σ))→ R≥0 assigns to each state 𝑠 a weight according to a

given heuristic. The highest weight represents an estimation of the lowest cost path from 𝑠 to a

goal state 𝑠𝑔 . In the presence of an ideal 𝑓 , the optimal solution for 𝒫 (i.e., the sequence of chase

step applications with the lowest cost path) guarantees that no superfluous facts are generated in

the chase procedure when answering𝑄. Intuitively, given a state 𝑠=chase𝑘(𝐷,Σ), the evaluation

function 𝑓 represents the strategy to select the most suitable applicable homomorphism in 𝐻 .

Heuristic-based Reasoning. The most effective approach to define the evaluation function

𝑓 is to enrich the program with external knowledge of the reasoning setting, provided by a

domain expert. We represent such external knowledge as a semantic constraint on𝐷, expressed

via a heuristic function defined as follows.

Definition 1 (Ground Heuristic Function). Consider a database 𝐷 over a relational schema 𝑆.
A Ground Heuristic Function (GHF) 𝛿 : 𝐷 → R≥0 is a user-defined function that maps each tuple
of 𝐷 to a weight 𝑤 ∈ R≥0.

We exploit such a priori knowledge of the ground facts in the chase procedure to produce a

more general heuristic function that also considers the inferred facts and how they are derived.

Intuitively, the priority assigned to ground facts can be combined and propagated to the facts

that directly descend from them.

Definition 2 (Chase Heuristic Function). Consider a database 𝐷 over a relational schema 𝑆, a
set Σ of warded TGDs and a GHF 𝛿. A Chase Heuristic Function (CHF) 𝛾 : chase(𝐷,Σ)→ R≥0 is
a function that maps each fact of chase(𝐷,Σ) to a weight 𝑤 ∈ R≥0 such that 𝛿 ⊆ 𝛾. An Extended

119



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

Chase Heuristic Function (ECHF) Γ : 𝑃 (chase(𝐷,Σ)) → R≥0 is a function that maps a set of
tuples 𝑇 ⊆ chase(𝐷,Σ) to a weight 𝑤′ such that 𝑤′ =

∑︀
∀𝑡∈𝑇 𝛾(𝑡), where 𝑤′ is the sum of the

weights assigned by 𝛾 to each 𝑡 ∈ 𝑇 .

Based on such definitions, we now introduce the heuristic chase step, which represents the

evaluation function of the BCQ answering problem. In fact, it allows us to select and apply, at

each step in the chase, the best applicable homomorphism according to the heuristic provided

by the domain expert.

Definition 3 (Heuristic Chase Step Application). Consider a set Σ of warded TGDs, an inter-
mediate instance chase𝑘(𝐷,Σ) and an ECHF Γ. Let 𝐻 be the set of applicable homomor-
phisms from Σ to chase𝑘(𝐷,Σ). A Heuristic chase step consists in the application of ℎ =
𝑚𝑎𝑥[Γ(ℎ𝑖(𝜎(�̄�, 𝑦)))]∀ℎ𝑖∈ 𝐻 over chase𝑘(𝐷,Σ), where 𝜎(�̄�, 𝑦) is a warded TGD ∈ Σ and ℎ is
the homomorphism ∈ 𝐻 whose images (i.e., tuples) maximise Γ.

Based on such a revised form of the chase step application, we devise a new reasoning method-

ology, which we name heuristic-based reasoning. In Section 4 we show how such methodology

effectively enables the generation of less unavailing facts in the chase when answering BCQs

and consequently optimizes the program evaluation. As stated by Definition 2, the heuristic

chase step requires a 𝛾 defined for the facts generated in the chase. The process for defining 𝛾
can be performed dynamically during the chase as follows: (1) initialize 𝛾 = 𝛿 by employing the

knowledge provided by the domain expert before starting the chase; (2) after applying a chase

step, update 𝛾 with a weight for the generated fact 𝑝. The strategies to define such a weight

depend on the informed search employed. Indeed, 𝛾(𝑝) has to properly consider the evaluation

components of the informed search method (e.g., the heuristic ℎ and the function 𝑔 for A
*
).

• Best-First: in this case, 𝛾(𝑝) is the sum of the priorities assigned to parents(𝑝) (i.e., the facts

where 𝑝 directly derived from), since best-first only considers the heuristic function ℎ to

select the next node 𝑛 (𝑓(𝑛) = ℎ(𝑛)). This way 𝛾(𝑝) inherits and combines the heuristic

estimation Γ(parents(𝑝)).

• A*
: in this case, 𝛾(𝑝) is the combination of the heuristic estimation ℎ from the current state

to a goal state and the cost 𝑔 required to reach the current state from the initial state, i.e.,

the ground facts where 𝑝 originally derived from. Essentially, such distance is incorporated

in the derivation level of 𝑝 (denoted as depth(𝑝)) which can be inductively defined as follows:

(i) a fact 𝑝 ∈ 𝐷 has depth(𝑝) = 0; (ii) a fact 𝑝 derived from a chase step application inherits

the maximum derivation level of parents(𝑝) + 1. Thus, A
*

considers 𝛾(𝑝) as the difference

between the heuristic estimation Γ(parents(𝑝)) of the last heuristic chase step application

(i.e., ℎ(𝑛)) and depth(𝑝) (i.e., 𝑔(𝑛)).
Note that, to practically ensure uniformity of the dimensions considered in the ECHF, the values

associated with 𝛾(𝑝) are always normalized between 0 and 1.

Heuristic Chase Procedure. Algorithm 1 provides the pseudocode of the chase procedure

that employs heuristics chase steps. A description of the algorithm follows.

The algorithm takes as input a database 𝐷, a set Σ of Warded TGDs and a BCQ 𝑄. Additionally,

it requires the GHF 𝛿 and the selected informed search strategy. The output of the algorithm

is the answer to 𝑄. First of all, the CHF 𝛾 is initialized to 𝛿 (line 2), since it only considers

extensional facts during the first chase step. Similarly, the chase instance 𝑐ℎ𝑎𝑠𝑒 that stores the

120



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

Algorithm 1 Heuristic Chase Algorithm.

1: function heuristic_chase(𝐷, Σ, 𝑄, 𝛿, search_strategy)

2: 𝛾 = 𝛿 ◁ CHF is initialized to GHF

3: chase = 𝐷 ◁ chase instance is initialized

4: 𝐻 = init_sorted_structure(𝐷,Σ, 𝛾) ◁ sorted homomorphisms with weights

5: while not 𝐻 .is_empty() do
6: ℎ = 𝐻.poll_first()
7: 𝑝 = apply(Σ, ℎ) ◁ apply current homomorphism and derive new fact

8: if check_isomorphism(𝑝,chase) then ◁ isomorphic facts check

9: chase = chase ∪ {𝑝}
10: if is_positive(𝑄, chase) then ◁ BCQ answer check

11: return true
12: weight = extract_weight(p, search_strategy) ◁ derive weight for new fact

13: 𝛾[𝑝] = weight ◁ CHF is updated with new weight

14: 𝐻 = update_sorted_structure(Σ, 𝑝, 𝛾)

15: return false

facts generated during the procedure is initialized to𝐷 and corresponds to the initial chase state

(line 3). A data structure 𝐻 is employed to store, at each step of the procedure, all the applicable

homomorphisms. Such homomorphisms are sorted according to a weight that is assigned via 𝛾,

representing their priority with respect to the heuristic and the search strategy (line 4). While

𝐻 is not empty, the applicable homomorphism ℎ with the highest weight is extracted (line 6).

The result of applying ℎ is a new fact 𝑝 that also contains chase metadata, such as about its

parents and its derivation level (line 7). If 𝑝 is not isomorphic with a fact already present in

𝑐ℎ𝑎𝑠𝑒, then it is added to the chase instance (lines 8-9). After such update, the algorithm checks

whether the query 𝑄 has a positive answer, in which case it terminates (lines 10-11). Otherwise,

it derives the weight for 𝑝 by employing its chase metadata, with respect to the search strategy,

and it updates 𝛾 accordingly (lines 12-13). Finally, the new applicable homomorphisms, derived

from 𝑝 and Σ, are weighted according to the new 𝛾 and are added to 𝐻 (line 14). If 𝐻 is empty,

that is, all the homomorphisms have been applied, then the answer to 𝑄 is negative (line 15).

4. Experimental Evaluation

In this section, we adopt and validate our novel methodology to efficiently solve real-world KG

tasks known to be computationally demanding even for state-of-art reasoning techniques.

Financial Use Cases. We work in the context of Central Bank of Italy’s company KG [19].

Essentially, it consists of 4.059M companies as nodes, linked by 3.960M ownership edges that are

labelled with the fraction of shares that a company owns of another company. Specifically, we

select two well-known scenarios in the financial domain that, due to the presence of recursion

and monotonic aggregations, are extremely time- and space-demanding to solve.

Close Link Problem. This scenario consists in determining whether there exists a (direct

or indirect) link between two companies, based on a high overlap of shares. Formally, two

121



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

companies 𝑐1 and 𝑐2 are close links if: (i) 𝑐1 (resp. 𝑐2) owns directly or indirectly, through one

or more other companies, 20% or more of the share of 𝑐2 (resp. 𝑐1); or (ii) a third-party owns

directly or indirectly, through one or more other companies, 20% or more of the share of 𝑐1 and

𝑐2. Determining whether two companies are closely-linked is extremely important for banking

supervision since a company cannot act as a guarantor for loans to another company if they

share such a relationship [20]. This problem can be modeled via the following set of recursive

Warded Datalog
±

TGDs.

Own(𝑐1, 𝑐2, s)→ MCl(𝑐1, 𝑐2, s) (1)

MCl(𝑐1, 𝑐2, 𝑠1),Own(𝑐2, 𝑐3, 𝑠2)→ MCl(𝑐1, 𝑐3, 𝑠1 · 𝑠2) (2)

MCl(𝑐1, 𝑐2, 𝑠), ts = msum(𝑠), ts ≥ 0.2→ 𝐶𝑙1(𝑐1, 𝑐2) (3)

𝐶𝑙1(𝑐1, 𝑐2), 𝐶𝑙1(𝑐1, 𝑐3),¬𝐶𝑙1(𝑐2, 𝑐3), 𝑐2 ̸= 𝑐3 → 𝐶𝑙2(𝑐2, 𝑐3) (4)

𝐶𝑙1(𝑐1, 𝑐2)→ Cl(𝑐1, 𝑐2) (5)

𝐶𝑙2(𝑐1, 𝑐2)→ Cl(𝑐1, 𝑐2) (6)

Two companies 𝑐1 and 𝑐2, connected by an ownership edge with a share 𝑠, are possible close links
(rule 1). If 𝑐1 and 𝑐2 are possible close links with a share 𝑠1 and there exists an ownership edge
from 𝑐2 to a company 𝑐3 with a share 𝑠2, then also 𝑐1 and 𝑐3 are possible close links with a total
share of 𝑠1 · 𝑠2 (rule 2). If the sum of all the partial shares 𝑠 of 𝑐2 owned (directly or indirectly) by
𝑐1 is greater than or equal to 0.2, then 𝑐1 and 𝑐2 are close links (rule 3). The third-party case is
modeled according to point (ii) of the definition (rule 4).
Consider, as ontological reasoning task, answering the BCQ 𝑄 = Cl(𝑥,𝑦) to check whether two

companies 𝑥 and 𝑦 are close links.

Company Control Problem. This scenario consists in determining who takes decisions in a

company network, that is, who controls the majority of votes for each company [23]. A company

𝑐1 controls a company 𝑐2, if: (i) 𝑐1 directly owns more than 50% of 𝑐2; or, (ii) 𝑐1 controls a set of

companies that jointly, and possibly together with 𝑐1 itself, own more than 50% of 𝑐2 [20]. This

problem can be modeled via the following set of recursive Warded Datalog
±

TGDs.

Own(𝑐1, 𝑐2, s), ts = msum(𝑠)→ MControl(𝑐1, 𝑐2, ts) (1)

Control(𝑐1, 𝑐2),Own(𝑐2, 𝑐3, s), 𝑐1 ̸= 𝑐3, ts = msum(𝑠)→ MControl(𝑐1, 𝑐3, ts) (2)

MControl(𝑐1, 𝑐2, ts), 𝑡𝑠 ≥ 0.5→ Control(𝑐1, 𝑐2) (3)

A company 𝑐1 might control a company 𝑐2 if 𝑐1 owns an amount of shares 𝑠 of 𝑐2 (rule 1). If 𝑐1
controls 𝑐2 and 𝑐2 owns an amount of shares 𝑠 of a company 𝑐3, then 𝑐1 might control 𝑐3 (rule 2). A
company 𝑐1 controls a company 𝑐2 if the amount of shares that 𝑐1 owns of 𝑐2, directly of indirectly
(i.e., through other controlled companies), is greater than or equal to 0.5 (rule 3).
Consider, as ontological reasoning task, answering the BCQ 𝑄 = Control(𝑥,𝑦) to check whether

a company 𝑥 controls a company 𝑦.

Heuristic-based Reasoning Implementation. We implemented an ad-hoc system that

performs our heuristic-based reasoning approach to solve the Close Link and the Company

Control problems. From empirical evidence, we observed that prioritizing the exploration of

nodes in the KG with a higher in-degree allows us to discover a greater number of ownership

122



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

paths and, consequently, possible close links and control relationships. Thus, we defined the

following 3 GHFs mapping the extensional facts: (i) 𝛿rand with random weights; (ii) 𝛿1 with

weights directly proportional to the in-degree of the target nodes; and (iii) 𝛿2 with weights

that consider both the in-degree and the share of the ownership. Based on such heuristics, the

system implements: (i) a standard streaming approach (Std), which applies rules according to a

round-robin strategy and does not employ a priority for the applicable homomorphisms; and

(ii) a heuristic-based approach, which applies the heuristic chase step guided by Best-First or

A
*

with the above GHFs as input (BF-𝛿1, BF-𝛿rand, A
*
-𝛿1, A

*
-𝛿2, respectively). The system has

as input the set of TGDs for the scenario, the company KG, the BCQ, the GHF and the informed

search method to employ, and it provides as output whether pairs of companies are close links

or are involved in a control relationship. Moreover, it adopts a streaming architecture with a

pull-based pipeline of the facts for rule activation, according to the priority of the corresponding

applicable homomorphisms. Such priority is based on a queue, ordered by the ECHF that

employs the selected heuristic: each time a new fact is generated, the queue is updated with the

resulting set of applicable homomorphisms.

Experiments and Results. We run the experiments on a cloud instance of our system in an

AWS EC2 Ubuntu machine with 64 vCPU and 128 GB of RAM. We compared the approaches

discussed above to solve Close Link and Company Control over 100 pairs of companies in

the company KG, selected randomly among the ones that are known to be close links or in a

control relationship. We adopted a time limit of 10 minutes for each BCQ. We collected both the

execution times in seconds and nFacts/nPaths, i.e., the ratio between the number of generated

facts and the number of discovered paths for each pair of companies in the BCQ. Intuitively,

it provides an indication of the average number of facts to generate for discovering a new

path between the candidates. Figure 2(a) and Figure 2(b) illustrate the average values of the

measures over the 100 pairs in log10 scale. Many evaluations with Std did not terminate and

we considered 600 seconds as their execution time. Then, we focus on the resulting times and

ratios for 5 random pairs of the 100 close links (Figure 2(c) and Figure 2(d), resp.) and as many

companies in a control relationship (Figure 2(e) and Figure 2(f), resp.). The experiments confirm

the validity of the heuristic-based reasoning we propose, both in terms of the time required to

evaluate the BCQs and the ability to prevent the generation of superfluous facts for the answers.

Indeed, exploiting fitting heuristics such as 𝛿1 and 𝛿2 ensures much better results than the

random-based one, which in some instances behaves worse than Std. Combining them with the

A
*

search proved to be particularly effective, being on average over 3 times faster than Std.

5. Related Work

Current literature includes a variety of optimization techniques that exploit external knowledge

to efficiently solve query-answering tasks. For instance, in the database realm, hint operators

are employed to statically guide the optimizer in the creation of the query execution plan, by

enforcing specific directives (e.g., join order, choice of physical operators for joins, etc.) [24, 25].

Similarly, ad-hoc constraints, modeled via hinting languages [26], can be injected to support

the evaluation of the query plan with the lowest estimated cost. In Datalog settings, especially

featuring recursion and monotonic aggregations, query answering optimizations employ a

123



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

Figure 2: Reasoning statistics for the experimental evaluation.

priori knowledge on: (i) a syntactic level, rewriting the program into a new version that can be

evaluated more efficiently [12]; and, (ii) a semantic level, excluding non-relevant derivations in

the query execution via eager computations [27]. Moreover, the injection of knowledge also

in the form of embeddings has recently been proposed to enable faster reasoning and query-

answering over large-scale datasets [28, 29]. Yet, the heuristic-based reasoning we propose is,

to the best of our knowledge, the first methodology that manages a BCQ answering task as an

informed search problem, guiding the chase via fitting heuristics. Indeed, it enriches our DHint
approach, which guided rule activation via heuristics only from extensional facts, and extends

it by considering the prioritization of all the applicable homomorphisms in the chase [30].

124



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

6. Conclusion

Reasoning over large knowledge graphs, especially in the presence of recursive settings, can be

very time- and space-demanding even for state-of-the-art Datalog
±

-based reasoning systems.

However, when answering Boolean Conjunctive Queries, a subset of the generated facts is

often superfluous for the result. To tackle this problem, we presented heuristic-based reasoning,

a novel reasoning approach that optimizes query evaluation by exploiting external domain

knowledge in the form of a heuristic function. We provided experimental evaluation and applied

such methodology to efficiently solve computationally demanding scenarios over large KGs

in the financial domain. Future work includes extending heuristic-based reasoning with more

advanced informed search strategies, as well as adaptive approaches to select the most suitable

ground heuristic function depending on the use case and the KG.

Acknowledgments

The work on this paper was partially supported by the Vienna Science and Technology Fund

(WWTF) grant VRG18-013.

References

[1] M. Krötzsch, V. Thost, Ontologies for knowledge graphs: Breaking the rules, in: Interna-

tional Semantic Web Conference, Springer, 2016, pp. 376–392.

[2] L. Bellomarini, G. Gottlob, A. Pieris, E. Sallinger, Swift logic for big data and knowledge

graphs, in: IJCAI, Springer, 2017, pp. 2–10.

[3] A. Calì, G. Gottlob, M. Kifer, Taming the infinite chase: Query answering under expressive

relational constraints, JAIR 48 (2013) 115–174.

[4] A. Calì, G. Gottlob, T. Lukasiewicz, A general datalog-based framework for tractable query

answering over ontologies, JoWS 14 (2012) 57–83.

[5] J.-F. Baget, M. Leclère, M.-L. Mugnier, Walking the decidability line for rules with existential

variables., KR 10 (2010) 466–476.

[6] A. Calì, G. Gottlob, T. Lukasiewicz, B. Marnette, A. Pieris, Datalog+/-: A family of logical

knowledge representation and query languages for new applications, in: 2010 25th annual

IEEE symposium on logic in computer science, IEEE, 2010, pp. 228–242.

[7] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veldhuizen,

G. Washburn, Design and implementation of the LogicBlox system, in: SIGMOD, 2015, pp.

1371–1382.

[8] P. Barceló, R. Pichler, Datalog in Academia and Industry: Second International Workshop,

Datalog 2.0, Vienna, Austria, September 11-13, Proceedings, volume 7494, Springer, 2012.

[9] A. Calì, G. Gottlob, A. Pieris, Towards more expressive ontology languages: The query

answering problem, Artificial Intelligence 193 (2012) 87–128.

[10] V. Vianu, Datalog unchained, in: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, 2021, pp. 57–69.

125



Teodoro Baldazzi et al. CEUR Workshop Proceedings 114–126

[11] D. Maier, A. O. Mendelzon, Y. Sagiv, Testing implications of data dependencies, ACM

Transactions on Database Systems (TODS) 4 (1979) 455–469.

[12] Y. R. Wang, M. A. Khamis, H. Q. Ngo, R. Pichler, D. Suciu, Optimizing recursive queries

with program synthesis, arXiv preprint arXiv:2202.10390 (2022).

[13] P. Atzeni, L. Bellomarini, D. Benedetto, E. Sallinger, Traversing knowledge graphs with

good old (and new) joins., in: KR4L@ ECAI, 2020, pp. 3–9.

[14] S. Abiteboul, R. Hull, V. Vianu, Foundations of databases, volume 8, Addison-Wesley

Reading, 1995.

[15] M. Alviano, W. Faber, G. Greco, N. Leone, Magic sets for disjunctive datalog programs,

Artificial Intelligence 187 (2012) 156–192.

[16] A. Dsouza, N. Tempelmeier, R. Yu, S. Gottschalk, E. Demidova, Worldkg: A world-scale

geographic knowledge graph, in: CIKM, 2021, pp. 4475–4484.

[17] L. Bellomarini, D. Benedetto, G. Gottlob, E. Sallinger, Vadalog: A modern architecture for

automated reasoning with large knowledge graphs, Information Systems (2020) 101528.

[18] L. Bellomarini, E. Sallinger, G. Gottlob, The Vadalog System: Datalog-based reasoning for

knowledge graphs, VLDB 11 (2018).

[19] P. Atzeni, L. Bellomarini, M. Iezzi, E. Sallinger, A. Vlad, Augmenting logic-based knowledge

graphs: The case of company graphs., in: KR4L@ ECAI, 2020, pp. 22–27.

[20] P. Atzeni, L. Bellomarini, M. Iezzi, E. Sallinger, A. Vlad, Weaving enterprise knowledge

graphs: The case of company ownership graphs., in: EDBT, 2020, pp. 555–566.

[21] T. Baldazzi, L. Bellomarini, E. Sallinger, P. Atzeni, Eliminating harmful joins in warded

datalog+/-, in: International Joint Conference on Rules and Reasoning, Springer, 2021, pp.

267–275.

[22] S. Russell, P. Norvig, Ai a modern approach, Learning 2 (2005) 4.

[23] A. Gulino, S. Ceri, G. Gottlob, E. Sallinger, L. Bellomarini, Distributed company control

in company shareholding graphs, in: 2021 IEEE 37th International Conference on Data

Engineering (ICDE), IEEE, 2021, pp. 2637–2648.

[24] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, T. Neumann, How good are query

optimizers, really?, VLDB 9 (2015) 204–215.

[25] S. Chaudhuri, Query optimizers: time to rethink the contract?, in: Proceedings of the 2009

ACM SIGMOD, 2009, pp. 961–968.

[26] N. Bruno, S. Chaudhuri, R. Ramamurthy, Power hints for query optimization, in: 2009

IEEE 25th ICDE, IEEE, 2009, pp. 469–480.

[27] C. Zaniolo, A. Das, J. Gu, Y. Li, M. Li, J. Wang, Developing big-data application as queries:

an aggregate-based approach (2021).

[28] A. Vlad, S. Vahdati, M. Nayyeri, L. Bellomarini, E. Sallinger, Towards hybrid logic-based and

embedding-based reasoning on financial knowledge graphs., in: EDBT/ICDT Workshops,

2022.

[29] L. Bellomarini, E. Sallinger, S. Vahdati, Reasoning in knowledge graphs: An embeddings

spotlight, in: Knowledge Graphs and Big Data Processing, volume 12072 of Lecture Notes
in Computer Science, Springer, 2020, pp. 87–101.

[30] T. Baldazzi, D. Benedetto, M. Brandetti, A. Vlad, L. Bellomarini, E. Sallinger, Heuristic-based

reasoning on financial knowledge graphs., in: EDBT/ICDT Workshops, 2022.

126


	1 Introduction
	2 Preliminaries
	3 Reasoning with Heuristics
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion

