
Datalog with Existential Quantifiers and Temporal
Operators (Extended Abstract)
Matthias Lanzinger1, Przemysław A. Wałęga1

1University of Oxford, Department of Computer Science, Wolfson Building, Parks Road, Oxford OX1 3QD, United
Kingdom

1. Introduction

We report on our ongoing research on extending Datalog with existential rules and metric
temporal operators. Such an extension would be of high practical importance; however, as we
show, many commonly studied syntactic restrictions yielding decidable fragments of Datalog
with existential rules (known as Datalog∃, Datalog±, or tuple-generating dependencies TGDs)
are not applicable in the temporal setting. Indeed, most of these restrictions are either too
weak to guarantee decidability or cannot be naturally extended to the our setting. In turn, we
propose to combine syntactic restrictions with semantic modifications as a possible path towards
decidable reasoning, and present first complexity results in this novel direction. Moreover, we
discuss promising alternative properties under which efficient reasoning in the presence of
existential quantification and temporal operators may be possible.

Our main aim is to extend DatalogMTL [1]—a temporal Datalog with operators from metric
temporal logic MTL [2] interpreted over the rational time line—with existential rules while, at
the same time, preserving decidability of reasoning. DatalogMTL is a highly expressive language
with a number applications, for example, in stream reasoning [3] and temporal ontology-based
query answering [4, 5]. By allowing for MTL operators in Datalog atoms, it allows us to write
atoms such asx1,4𝐴(𝑥, 𝑦), which states that the atom 𝐴(𝑥, 𝑦) did hold at some past time point
which is at least 1 and at most 4 seconds ago, whereas ⊟1,4𝐴(𝑥, 𝑦) states that 𝐴(𝑥, 𝑦) did hold
continuously during the above mentioned interval of time.

We propose an extension, DatalogMTL∃, of DatalogMTL with existential rules, which allows
us to use existential quantifiers in rule heads. For example, it allows us for writing a rule

∃𝑦 ⊟[10,10] NobelIn(𝑥, 𝑦)← Nobel10thAniv(𝑥),

which states that if 𝑥 celebrates the 10th anniversary of receiving the Nobel prize, there needs
to exist a category 𝑦 in which, 10 years ago, 𝑥 received the Nobel prize. The access to both MTL
operators and existential rules, provides a powerful extension of Datalog. The main obstacle, as

Datalog 2.0 2022: 4th International Workshop on the Resurgence of Datalog in Academia and Industry, September 05,
2022, Genova - Nervi, Italy
$ matthias.lanzinger@cs.ox.ac.uk (M. Lanzinger); przemyslaw.walega@cs.ox.ac.uk (P. A. Wałęga)
� 0000-0002-7601-3727 (M. Lanzinger); 0000-0003-2922-0472 (P. A. Wałęga)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

139

mailto:matthias.lanzinger@cs.ox.ac.uk
mailto:przemyslaw.walega@cs.ox.ac.uk
https://orcid.org/0000-0002-7601-3727
https://orcid.org/0000-0003-2922-0472
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Matthias Lanzinger et al. CEUR Workshop Proceedings 139–144

we show next, is that combining temporal operators and existential rules quickly leads to bad
computational behaviour. Consequently, it raises a question how to construct decidable (and
preferably low-complexity) variants of DatalogMTL∃.

2. Our Results on DatalogMTL∃

In this section, we give a summary of our ongoing research on the complexity of reasoning
in DatalogMTL∃ and in its modifications. We also discuss some conceptual challenges which
disallow for using standard reasoning techniques in existential rules.

Our so-far obtained results are summarised in Table 1, where we consider DatalogMTL∃

under the natural and uniform semantics, separately, as well as standard syntactical restrictions,
constituted by guarded and weakly acyclic programs. By the natural semantics we mean that
whenever an existential rule ‘fires’ it can invent arbitrary new constants. Hence, the same
ground existential rule can invent different constants when fired in different time points; this
can lead to undesired meaning of existential rules and also to bad computational behaviour—
since we consider an infinite, and moreover dense, rational time line. In contrast, by the uniform
semantics, we mean that a ground existential rule invents the same constants in all time points
it fires; in this sense applications of existential rules are ‘uniform’. Moreover, together with
standard open-world assumption (OWA), which allows for new values invention by existential
rules, we consider also closed-world assumption (CWA) which cannot invent new constants.
Note that existential quantification under CWA can be seen as a disjunction over all explicitly
mentioned constants in the program, so it is less interesting from the conceptual point of view,
but in practice can be useful for the concise representation of huge disjunctions.

Full DatalogMTL∃ Guarded programs Weakly acyclic programs

Natural se-
mantics

OWA undecidable undecidable undecidable

CWA undecidable

Uniform
semantics

OWA undecidable undecidable 2-ExpSpace-co.
CWA ExpSpace-co.

Table 1
Fact entailment and consistency checking complexity in DatalogMTL∃

Regarding the results in Table 1, we observe that under the natural semantics, undecidability
of the full DatalogMTL∃ follows immediately from the well-known undecidability of Datalog∃.
However, we additionally show that the guarded and weakly acyclic fragments of DatalogMTL
are already undecidable, which is in contrast to Datalog∃. Notably, even the CWA case is
undecidable under natural semantics (even for programs that are simultaneously guarded and
weakly-acyclic), highlighting the difficulty of reasoning in DatalogMTL∃. Thus, DatalogMTL∃

under natural semantics is undecidable in all case we considered.
Regarding the uniform semantics, we shown that reasoning in DatalogMTL∃ becomes signifi-

cantly easier. It is still undecidable already for guarded programs, which is again in a significant
contrast to Datalog∃. However, in the case of weakly acyclic DatalogMTL∃ programs, both fact

140

Matthias Lanzinger et al. CEUR Workshop Proceedings 139–144

entailment and consistency checking are decidable, and in particular, 2-ExpSpace-complete
(cf., 2-ExpTime-completeness of weakly acyclic Datalog∃ [6]). Finally, under CWA, reasoning
becomes ExpSpace-complete for full DatalogMTL∃, as well as for guarded and weakly-acyclic
programs.

It is worth emphasising that we use guardedness and weak acyclicity in DatalogMTL∃ in
the same way as they are used in Datalog∃, so we do not provide any additional conditions
for temporal operators. While it may seem naïve to ignore the temporal dimension, our reduc-
tions demonstrate essential obstacles in providing time-sensitive versions of these properties.
Indeed, our undecidability argument for the guarded fragment shows that we can construct
a program simulating computations of a Turing machine, such that the program uses only a
single existential rule without temporal operators

∃𝑧Next(𝑦, 𝑧)← Next(𝑥, 𝑦)

and the only temporal operator used in the program is ⊟1, for example, in rules of the form

Next(𝑥, 𝑦)← ⊟1Next(𝑥, 𝑦).

Hence, extending the guardedness notion to temporal operators in a way that prohibits our
reduction would have to restrict the language to the point where even the most basic temporal
reasoning is excluded. Notably, our reduction implies also undecidability of existential extensions
of much simpler temporal formalisms such as Temporal Datalog [7] or Datalog1𝑆 [8] which
consider the discrete timeline and allow for very simple temporal operators only.

Similarly, it may seem natural to extend the definition of weak acyclicity by treating each
predicate as if it had an additional implicit time attribute, and thus also a corresponding vertex
for the time dimension in the dependency graph (cf., [6]). However, our construction in the
undecidability proof for weakly acyclic programs under natural semantics would apply even if
we use such a time-aware notion of weak acyclicity.

3. Future Research Directions

Among other important fragments for which Datalog∃ is decidable but which are not mentioned
in our analysis so far, are the linear, shy [9], and sticky [10] fragments. Research on such
fragments of DatalogMTL∃ may lead to interesting temporal languages, but it also introduces
conceptual challenges.

In particular, the shy fragment identifies (a subset) of programs that are parsimonious, which
are programs for which inference using the parsimonious chase [9] is always correct. The key
element of the parsimonious chase is that, roughly speaking, rules are not triggered for an in-
stance when there is a homomorphism of body and head into the instance. While non-existential
DatalogMTL admits (transfinite) fixpoint semantics that could be extended to a chase procedure,
the temporal dimension of the problem requires a temporal notion of homomorphism. Since
every time point effectively has its own interpretation, a temporal notion of homomorphism
requires some quantification over time points, e.g., there is some time point 𝑡, such that there
is a homomorphism into the interpretation for time point 𝑡, or for some interval 𝐼 , there is a

141

Matthias Lanzinger et al. CEUR Workshop Proceedings 139–144

homomorphism into every instance in the interval. However, natural definitions of temporal
homomorphisms yield highly unintuitive semantics and it therefore remains unclear whether
any analogue to the parsimonious chase is possible for DatalogMTL∃.

The natural immediate questions that are still open concern the decidability of DatalogMTL∃

for the linear and sticky fragments. However, again techniques from Datalog∃ are difficult to
adapt to the temporal setting and reasoning is significantly more complex even in the linear case.
Indeed, fact entailment in linear DatalogMTL is already PSpace-complete in data complexity,
i.e., the same complexity as in full DatalogMTL [11]. Understanding the complexity of the linear
fragment is also an important precursor to understanding warded DatalogMTL∃. The warded
fragment of Datalog∃ [12] is known to provide a promising balance of good computational
properties and expressivity for real-world applications (see [13]) and may be of interest in the
DatalogMTL∃ context.

Sticky Datalog∃ enjoys very good computational properties [14], in particular sticky Datalog∃

programs are FO-rewritable. However, FO-rewritability is clearly not given in the presence of
MTL operators. Sticky Datalog∃ also induces certain beneficial properties in chase procedures
and it remains open whether these properties also hold in the temporal setting due to technical
differences in the fixpoint semantics between DatalogMTL and Datalog.

Note that many other fragments of Datalog∃ that have been studied in the literature, such
as the weakly-guarded or frontier-guarded fragments (cf., [15, 16]), generalise the guarded
fragment and thus can not yield decidable fragments of DatalogMTL∃.

4. Conclusion & Outlook

The discussion in the previous sections has highlighted that many of the key properties that
have been identified for decidable Datalog∃ fragments are no longer helpful in DatalogMTL∃.
This motivates the study of new restrictions which lead to decidable reasoning in the presence
of temporal operators and existential quantifiers. Our results suggest that purely syntactical
restrictions are too limited in the presence of temporal operators. In future work we will study
the combination of syntactic fragments that control existential quantification, together with
properties that are known to control expansion in the time dimension in DatalogMTL, such as
MTL-acyclicity [17].

Finally, since existential rules with MTL operators have proven to be useful in various industry
applications, such as, technical specifications, verification of banking agreements [18], and fact-
checking economic claims [19], we aim to also explore practical algorithms and implementations
for reasoning in (fragments and variations of) DatalogMTL∃.

Acknowledgements

Our work has been supported by the EPSRC projects OASIS (EP/S032347/1), AnaLOG (EP/P025943/1),
and UK FIRES (EP/S019111/1), the SIRIUS Centre for Scalable Data Access, and Samsung Re-
search UK. Matthias Lanzinger acknowledges support by the Royal Society “RAISON DATA”
project (Reference No. RP\R1\201074).

142

Matthias Lanzinger et al. CEUR Workshop Proceedings 139–144

References

[1] S. Brandt, E. G. Kalaycı, V. Ryzhikov, G. Xiao, M. Zakharyaschev, Querying log data with
metric temporal logic, J. Artif. Intell. Res. (2018) 829–877.

[2] R. Koymans, Specifying real-time properties with metric temporal logic, Real-Time Syst. 2
(1990) 255–299.

[3] P. A. Wałęga, B. Cuenca Grau, M. Kaminski, Reasoning over streaming data in metric
temporal Datalog, in: Proc. of AAAI, 2019, pp. 1941–1948.

[4] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev,
Ontology-mediated query answering over temporal data: A survey, in: Proc. of TIME,
2017, pp. 1–37.

[5] S. Kikot, V. Ryzhikov, P. A. Wałęga, M. Zakharyaschev, On the data complexity of ontology-
mediated queries with MTL operators over timed words, in: Proc. of DL, 2018.

[6] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa, Data exchange: Semantics and query answer-
ing, Theor. Comput. Sci. 336 (2005) 89–124. URL: https://doi.org/10.1016/j.tcs.2004.10.033.
doi:10.1016/j.tcs.2004.10.033.

[7] A. Ronca, M. Kaminski, B. Cuenca Grau, B. Motik, I. Horrocks, Stream reasoning in
temporal Datalog, in: Proc. of AAAI, 2018, pp. 1941–1948.

[8] J. Chomicki, T. Imieliński, Temporal deductive databases and infinite objects, in: Proc. of
PODS, 1988, pp. 61–73.

[9] M. Alviano, N. Leone, M. Manna, G. Terracina, P. Veltri, Magic-sets for Datalog with
existential quantifiers, in: Proc. of Datalog 2.0, 2012, pp. 31–43. URL: https://doi.org/10.
1007/978-3-642-32925-8_5. doi:10.1007/978-3-642-32925-8_5.

[10] A. Calì, G. Gottlob, A. Pieris, Towards more expressive ontology languages: The query
answering problem, Artif. Intell. 193 (2012) 87–128. URL: https://doi.org/10.1016/j.artint.
2012.08.002. doi:10.1016/j.artint.2012.08.002.

[11] P. A. Wałęga, B. Cuenca Grau, M. Kaminski, E. V. Kostylev, Tractable fragments of Datalog
with metric temporal operators, in: Proc. of IJCAI, 2020, pp. 1919–1925.

[12] G. Berger, G. Gottlob, A. Pieris, E. Sallinger, The space-efficient core of Vadalog, in:
D. Suciu, S. Skritek, C. Koch (Eds.), Proc. of PODS, ACM, 2019, pp. 270–284. URL: https:
//doi.org/10.1145/3294052.3319688. doi:10.1145/3294052.3319688.

[13] L. Bellomarini, G. Gottlob, A. Pieris, E. Sallinger, Swift logic for big data and knowledge
graphs, in: Proc. of IJCAI, 2017, pp. 2–10. URL: https://doi.org/10.24963/ijcai.2017/1. doi:10.
24963/ijcai.2017/1.

[14] A. Calì, G. Gottlob, A. Pieris, Advanced processing for ontological queries, In Proc. of VLDB
Endow. 3 (2010) 554–565. URL: http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R49.pdf.
doi:10.14778/1920841.1920912.

[15] G. Gottlob, S. Rudolph, M. Simkus, Expressiveness of guarded existential rule languages,
in: R. Hull, M. Grohe (Eds.), Proc. of PODS, ACM, 2014, pp. 27–38. URL: https://doi.org/10.
1145/2594538.2594556. doi:10.1145/2594538.2594556.

[16] G. Gottlob, T. Lukasiewicz, A. Pieris, Datalog+/-: Questions and answers, in: Proc. of KR,
2014. URL: http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7965.

[17] P. A. Wałęga, M. Zawidzki, B. Cuenca Grau, Finitely materialisable Datalog programs with
metric temporal operators, in: Proc. of KR, 2021, pp. 619–628.

143

https://doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1007/978-3-642-32925-8_5
https://doi.org/10.1007/978-3-642-32925-8_5
http://dx.doi.org/10.1007/978-3-642-32925-8_5
https://doi.org/10.1016/j.artint.2012.08.002
https://doi.org/10.1016/j.artint.2012.08.002
http://dx.doi.org/10.1016/j.artint.2012.08.002
https://doi.org/10.1145/3294052.3319688
https://doi.org/10.1145/3294052.3319688
http://dx.doi.org/10.1145/3294052.3319688
https://doi.org/10.24963/ijcai.2017/1
http://dx.doi.org/10.24963/ijcai.2017/1
http://dx.doi.org/10.24963/ijcai.2017/1
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R49.pdf
http://dx.doi.org/10.14778/1920841.1920912
https://doi.org/10.1145/2594538.2594556
https://doi.org/10.1145/2594538.2594556
http://dx.doi.org/10.1145/2594538.2594556
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7965

Matthias Lanzinger et al. CEUR Workshop Proceedings 139–144

[18] M. Nissl, E. Sallinger, Modelling smart contracts with DatalogMTL, in: Proc. of EDBT/ICDT,
2022.

[19] M. Mori, P. Papotti, L. Bellomarini, O. Giudice, Neural machine translation for fact-checking
temporal claims, in: Proc. of FEVER, 2022, pp. 78–82. doi:10.18653/v1/2022.fever-1.
8.

144

http://dx.doi.org/10.18653/v1/2022.fever-1.8
http://dx.doi.org/10.18653/v1/2022.fever-1.8

	1 Introduction
	2 Our Results on DatalogMTL∃
	3 Future Research Directions
	4 Conclusion & Outlook

