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Abstract
Agents and Multi-Agent Systems (MAS) are a technology that has many fields of application, which
extend also to human sciences and where Computational Logic has been widely applied. In this paper, we
join together two of our long-lasting lines of work in this field. In particular, we introduce time and time
intervals into the epistemic logic L-DINF, that copes with group dynamics in MAS.
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1. Introduction

Agents and Multi-Agent Systems are a technology that has many fields of application, which
extend also to human sciences (cf., e.g., the recent book [1]). The applications of Computational
Logic in the field of agents and MAS are several, as can be seen in the surveys [2, 3] (the latter
being very recent). Logic is, in fact, often used to model such kind of systems, as it (at least
potentially) provides verifiability and explainability. In this paper, we join together two of our
long-lasting lines of work in this field.

The first one [4, 5, 6] was aimed at introducing a treatment of time in agents, so that, upon
reception of new perceptions that led to acquire new beliefs, the agent would not have to override
old beliefs, but rather to update the time interval where they resulted to hold. In order not to
restrict the application of our approach only to certain agent-oriented frameworks, we defined
in [6] a “time module” suitable to add time in an easy way into many logic representations of
agents. This module is in practice a particular kind of function, that we called 𝑇 , that assigns a
“timing" to atoms, in terms of either single instants or time intervals. We drew inspiration for this
work from methods to design agent memorization mechanisms inspired, in turn, by models of
human memory [7, 8], that have been developed in cognitive science.

The second line of work [9, 10, 11] has been aimed to formally model via epistemic logic
(aspects of) the group dynamics of cooperative agents. Our overall objective has been to devise

CILC 2022: 37th Italian Conference on Computational Logic, June 29 – July 1, 2022, Bologna, Italy
⋆

Research partially supported by Action COST CA17124 “DigForASP” and by projects INDAM GNCS-2020 NoRMA
and INDAM GNCS-2022 InSANE (CUP_E55F22000270001).

*Corresponding author.
 stefania.costantini@univaq.it (S. Costantini); andrea.formisano@uniud.it (A. Formisano);
valentina.pitoni@univaq.it (V. Pitoni)
� 0000-0002-5686-6124 (S. Costantini); 0000-0002-6755-9314 (A. Formisano); 0000-0002-4245-4073 (V. Pitoni)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:stefania.costantini@univaq.it
mailto:andrea.formisano@uniud.it
mailto:valentina.pitoni@univaq.it
https://orcid.org/0000-0002-5686-6124
https://orcid.org/0000-0002-6755-9314
https://orcid.org/0000-0002-4245-4073
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


agent-oriented logical frameworks that allows a designer to formalize and formally verify Multi-
Agent Systems, modelling the capability to construct and execute joint plans within a group of
agents. We devote a special attention on explainability, in the perspective of Trustworty AI: to
enable human-level explanations to be generated, the syntax of our logic is especially devised
to make it possible to transpose a proof into a natural language. All along, we have taken into
particular account the connection between theory and practice, so as to make our logic actually
usable by a system’s designers. So, we care about aspects related to enabling and performing
physical actions, and to agent’s memory of the action performed, where those aspects are often
neglected in related work. We have proposed in particular a framework called the Logic of
“Inferable” L-DINF, based on epistemic logic, where a group of cooperative agents can jointly
perform actions. I.e., at least one agent of the group can perform the action, either with the
approval of the group or on behalf of the group. We have taken into consideration actions’ cost
[10], and the preferences that each agent can have for what concerns performing each action [11].
We have recently introduced agents’ roles within a group, in terms of the actions that each agent
is enabled by its group to perform. L-DINF has a fully-defined semantics, and a proof of strong
completeness w.r.t. canonical models. In this paper we incorporated the 𝑇 function into L-DINF,
so that actions, goals, plans, of groups of agents are now temporalized, and thus refer to time
instants or time intervals. We have joined the two semantic approaches, preserving the strong
completeness of the axiomatic framework.

The paper is organized as follows. In Section 2 we present syntax, an example of application to
a simple planning problem, namely, a group of researches co-authoring a paper to be submitted,
and semantics of the enhanced epistemic logic. Section 3 presents a revised definition of canonical
model to take into account the temporal aspect. Finally, in Section 4 we shortly conclude.

2. Logical Framework

L-DINF is a logic which consists of a static component and a dynamic one. The static component,
called L-INF, is a logic of explicit beliefs and background knowledge. The dynamic component,
called L-DINF, extends the static one with dynamic operators capturing the consequences of the
agents’ inferential actions on their explicit beliefs as well as a dynamic operator capturing what
an agent can conclude by performing some inferential action in its repertoire.

2.1. Syntax

Let be 𝐴𝑡𝑚 = {𝑝(𝑡1, 𝑡2), 𝑞(𝑡3, 𝑡4), ... , ℎ(𝑡𝑖, 𝑡𝑗), ... } where 𝑝, 𝑞, ℎ are predicate symbols and
each 𝑡ℓ ∈ N. Here an atomic proposition of the form 𝑝(𝑡1, 𝑡2) stands for “p is true from the
time instant 𝑡1 to 𝑡2" with 𝑡1 ⩽ 𝑡2 (Temporal Representation of the external world); as a special
case we can have 𝑝(𝑡1, 𝑡1) which stands for “p is true in the time instant 𝑡1". We also admit
predicate symbols of higher arity, but in that case we assume that the first two arguments are
those that identify the time duration of the belief (e.g., the atomic proposition 𝑜𝑝𝑒𝑛(1, 3, door)
means “the agent knows that the door is open from time 1 to time 3”). By 𝑃𝑟𝑜𝑝 we denote
the set of all propositional formulas, i.e. the set of all Boolean formulas built out of the set
of atomic propositions Atm . The set 𝐴𝑡𝑚𝐴 represents the physical actions that an agent can



perform, including “active sensing” actions (e.g., “let’s check whether it rains”, “let’s measure
the temperature”). Let Agt be a set of agents. In what follows, 𝐼 is a MTL “time-interval” [12]
which is a closed finite interval [𝑡, 𝑙] or an infinite interval [𝑡,∞) (considered open on the upper
bound), for any expressions/values 𝑡, 𝑙 such that 0 ≤ 𝑡 ≤ 𝑙.
The language of L-DINF, denoted by ℒL-DINF, is defined by the following grammar:

𝜙,𝜓 ::= 𝑝(𝑡1, 𝑡2) | ¬𝜙 | 𝜙 ∧ 𝜓 | B𝑖 𝜙 | K𝑖 𝜙 | □𝐼 𝜙 | 𝑑𝑜𝑖(𝜑𝐴, 𝐼) | 𝑐𝑎𝑛_𝑑𝑜𝑖(𝜑𝐴, 𝐼) |
𝑑𝑜𝐺(𝜑𝐴, 𝐼) | 𝑐𝑎𝑛_𝑑𝑜𝐺(𝜑𝐴, 𝐼) | pref _do𝑖(𝜑𝐴, 𝑑, 𝐼) | pref _do𝐺(𝑖, 𝜑𝐴, 𝐼) |
exec𝑖(𝛼) | exec𝐺(𝛼) | [𝐺 : 𝛼]𝜙 | intend 𝑖(𝜑𝐴, 𝐼) | intend𝐺(𝜑𝐴, 𝐼)

𝛼 ::= ⊢(𝜙,𝜓) | ∩(𝜙,𝜓) | ↓(𝜙,𝜓) | ⊣(𝜙,𝜓)

where 𝑝(𝑡1, 𝑡2) ranges over Atm , 𝑑 ∈ N, 𝑖 ∈ Agt and 𝐺 ⊆ Agt . (Other Boolean operators are
defined from ¬ and ∧ in the standard manner.) The language of inferential actions of type 𝛼 is
denoted by ℒACT. The static part L-INF of L-DINF, includes only those formulas not having
sub-formulas of type 𝛼.

Notice the expression intend 𝑖(𝜑𝐴, 𝐼), where it is required that 𝜑𝐴 ∈ 𝐴𝑡𝑚𝐴 and 𝐼 is a time
interval. This expression indicates the intention of agent 𝑖 to perform action 𝜑𝐴 in the interval 𝐼
in the sense of the BDI agent model [13]. This intention can be part of an agent’s knowledge base
from the beginning, or it can be derived later. In this paper we do not cope with the formalization
of BDI, for which the reader may refer, e.g., to [14]. So, we will treat intentions rather informally,
assuming also that intend𝐺(𝜑𝐴, 𝐼) holds whenever all agents in group𝐺 intend to perform action
𝜑𝐴 in the interval 𝐼 .

The formula doi(𝜑𝐴, 𝐼), indicates actual execution of action 𝜑𝐴 by agent 𝑖. By precise choice,
do (and similarly doG , that indicates the actual execution of 𝜑𝐴 by the group of agents 𝐺) are not
axiomatized. In fact, they are realized by what has been called in [15] a semantic attachment, i.e.,
a procedure which connects an agent with its external environment in a way that is unknown at
the logical level. The axiomatization concerns only the relationship between doing and being
enabled to do.

The expressions can_doi(𝜑𝐴, 𝐼) and pref _do𝑖(𝜑𝐴, 𝑑, 𝐼) (where, as before, 𝜑𝐴 ∈ 𝐴𝑡𝑚𝐴 and
𝐼 is a time interval) are closely related to doi(𝜑𝐴, 𝐼). In fact, can_doi(𝜑𝐴, 𝐼) is to be seen as an
enabling condition, indicating that agent 𝑖 is enabled to execute action 𝜑𝐴 in the interval 𝐼 , while
instead pref _doi(𝜑𝐴, 𝑑, 𝐼) indicates the level 𝑑 of preference/willingness of agent 𝑖 to perform
that action in the time interval 𝐼 . pref _doG(𝑖, 𝜑𝐴, 𝐼) indicates that agent 𝑖 exhibits the maximum
level of preference on performing action 𝜑𝐴 within all group members in the time interval 𝐼 .
Notice that, if a group of agents intends to perform an action 𝜑𝐴, this will entail that the entire
group intends to do 𝜑𝐴, that will be enabled to be actually executed only if at least one agent
𝑖 ∈ 𝐺 can do it, i.e., it can derive can_doi(𝜑𝐴, 𝐼).

Unlike explicit beliefs, i.e., facts and rules acquired via perceptions during an agent’s operation
and kept in the working memory, an agent’s background knowledge is assumed to satisfy omni-
science principles, such as closure under conjunction and known implication, and closure under
logical consequence, and introspection. In fact, K𝑖 is actually the well-known S5 modal operator
often used to model/represent knowledge. The fact that background knowledge is closed under
logical consequence is justified because we conceive it as a kind of stable reliable knowledge base,
or long-term memory. We assume the background knowledge to include: facts (formulas) known
by the agent from the beginning, and facts the agent has later decided to store in its long-term



memory (by means of some decision mechanism not treated here) after having processed them in
its working memory. We therefore assume background knowledge to be irrevocable, in the sense
of being stable over time.

In the formula □𝐼 𝜑 the MTL Interval “always” operator is applied to a formula, which means
that 𝜑 is always true in the interval 𝐼 . □[0,∞) will sometimes be written simply as □.

A formula of the form [𝐺:𝛼]𝜙, with 𝐺 ⊆ Agt , and where 𝛼 must be an inferential action,
states that “𝜙 holds after action 𝛼 has been performed by at least one of the agents in 𝐺, and all
agents in 𝐺 have common knowledge about this fact”.

Borrowing from [11, 16], we distinguish four types of inferential actions 𝛼 which allow us to
capture some of the dynamic properties of explicit beliefs and background knowledge: ↓(𝜙,𝜓),
∩(𝜙,𝜓), ⊣(𝜙,𝜓), and ⊢(𝜙,𝜓), These actions characterize the basic operations of forming explicit
beliefs via inference:

• ↓(𝜙,𝜓): this action infers 𝜓 from 𝜙, where 𝜓 is an atom, say 𝑝(𝑡1, 𝑡2): an agent, believing
that 𝜙 is true and having in its long-term memory that 𝜙 implies 𝜓 (in some suitable time
interval including [𝑡1, 𝑡2]), starts believing that 𝑝(𝑡1, 𝑡2) is true.

• ∩(𝜙,𝜓): this action closes the explicit beliefs 𝜙 and 𝜓 under conjunction. I.e., ∩(𝜙,𝜓)
characterizes the inferential action of deducing 𝜙 ∧ 𝜓 from the explicit belief 𝜙 and the
explicit belief 𝜓.

• ⊣(𝜙,𝜓): this action performs a simple form of “belief revision”, where 𝜙 and 𝜓 are atoms,
say 𝑝(𝑡1, 𝑡2) and 𝑞(𝑡3, 𝑡4) respectively: an agent, believing 𝑝(𝑡1, 𝑡2) and having in the
long-term memory that 𝑝(𝑡1, 𝑡2) implies ¬𝑞(𝑡3, 𝑡4), removes the timed belief 𝑞(𝑡3, 𝑡4) if the
intervals match. Notice that, should 𝑞 be believed in a wider interval 𝐼 such that [𝑡1, 𝑡2] ⊆ 𝐼 ,
the belief 𝑞(., .) is removed concerning intervals [𝑡1, 𝑡2] and [𝑡3, 𝑡4], but it is left for the
remaining sub-intervals (so, its is “restructured”).

• ⊢(𝜙,𝜓): let 𝜓 be an atom, say 𝑝(𝑡1, 𝑡2). An agent, believing 𝜙 and that 𝜙 implies 𝑝(𝑡1, 𝑡2)
in the working memory (in some suitable time interval including [𝑡1, 𝑡2]), starts believing
𝑝(𝑡1, 𝑡2). This last action operates directly on the working memory without retrieving
anything from the background knowledge.

Formulas of the forms execi(𝛼) and exec𝐺(𝛼) express executability of inferential actions
either by agent 𝑖, or by a group 𝐺 of agents (which is a consequence of any of the group members
being able to execute the action). It has to be read as: “𝛼 is an inferential action that agent 𝑖 (resp.
an agent in 𝐺) can perform”.

2.2. Problem Specification and Inference: An Example

In this section, we propose an example to explain the usefulness of this kind of logic and to
help the reader’s understanding. Consider a group 𝐺 of three agents, who are the authors of a
paper that has to be submitted to a conference: the first author 𝑎 deals with the drafting of the
introduction and finding the references, the second 𝑏 deals with the experiments and the third 𝑐
deals with the formalization part. The second is the only one who can perform the experiments
because he has the required certifications; the others are enabled to perform different tasks, such
as, e.g., write the abstract, search references, check the correctness of the formal part, and so on.



The group receives notification of a deadline for a paper, so they decide to orga-
nize themselves for submitting it. The group will reason, and devise the intention/goal
K𝑖(□𝐼 intendG(submit_fullpaper(t0 , t2 ), I )): the group intends to submit their paper within
the indicated time 𝐼 . Here 𝑡0 is the time instant when the group begins to organize to write the
paper, 𝐼 = [𝑡0, 𝑡1] where 𝑡1 is the deadline and 𝑡2 is the time instant when they really submit the
paper and 𝑡2 ≤ 𝑡1.

Among the physical actions that agents in the group can perform are for instance the
following: submit_abstract , do_experiment , write_introduction,write_formal_part and
write_experiment_results.

The group will now be required to perform a planning activity. Assume that, as a result of the
planning phase, the knowledge base of each agent 𝑖 contains the following rule, that specifies
how to reach the intended goal in terms of actions to perform and sub-goals to achieve (listed
after the “ → ”):

K𝑖

(︀
□𝐼 intendG(submit_fullpaper(t0 , t2 ), I ) → □𝐼1intendG(submit_abstract(t0 , t3 ), I1 )

∧□𝐼2intendG(do_experiment(t0 , t4 ), I2 )
∧□𝐼 intendG(write_formal_part(t0 , t5 ), I )

)︀
where 𝐼1, 𝐼2 ⊆ 𝐼 , 𝑡3 is the time instant when the author submit the abstract and 𝑡3 ≤ 𝑡1, 𝑡4 is
the time instant when the author 𝑏 has finished his experiment and he has written the results
at 𝑡4 ≤ 𝑡1, finally 𝑡5 is the time instant when the other agent has finished to write the formal
part. Thanks to the axiomatization, which we are going to explain in Section 2.5, we have that
intendG(𝜑A, I ) ↔ ∀𝑖 ∈ 𝐺 intendi(𝜑A, I ), each agent has the specialized rule (for 𝑖 ≤ 3):

K𝑖

(︀
□𝐼 intendi(submit_fullpaper(t0 , t2 ), I ) → □𝐼1intendi(submit_abstract(t0 , t3 ), I1 )∧

□𝐼2intendi(do_experiment(t0 , t4 ), I2 )∧
□𝐼 intendi(write_formal_part(t0 , t5 ), I )

)︀
Therefore, the following is entailed for each of the agents:

K𝑖

(︀
□𝐼 intendi(submit_fullpaper(t0 , t2 ), I ) → □𝐼1intendi(submit_abstract(t0 , t3 ), I1 )

)︀
K𝑖

(︀
□𝐼 intendi(submit_fullpaper(t0 , t2 ), I ) → □𝐼2intendi(do_experiment(t0 , t4 ), I2 )

)︀
K𝑖

(︀
□𝐼 intendi(submit_fullpaper(t0 , t2 ), I ) → □𝐼 intendi(write_formal_part(t0 , t5 ), I )

)︀
.

Assume now that the knowledge base of each agent 𝑖 contains also the following general
rules, stating that the group is available to perform each of the necessary actions. Which agent
will in particular perform each action 𝜑𝐴? According to items (t4) and (t7) in the definition
of truth values, listed in the next section, for L-DINF formulas, this agent will be chosen as
the one which best prefers to perform this action, among those that can do it. Formally, in
the present situation, pref _doG(i , 𝜑A, I ) identifies the agent 𝑖 in the group with the highest
degree of preference on performing 𝜑𝐴, and can_doG(𝜑A, I ) is true if there is some agent 𝑖
in the group which is able and allowed to perform 𝜑𝐴, i.e., 𝜑𝐴 ∈ 𝐴(𝑖, 𝑤) ∧ 𝜑𝐴 ∈ 𝐻(𝑖, 𝑤).



K𝑖

(︀
□𝐼1(intendG(submit_abstract(t0 , t3 ), I1 ) ∧ can_doG(submit_abstract(t0 , t3 ), I1 )∧
pref _doG(i , submit_abstract(t0 , t3 ), I1 )) → □𝐼1doG(submit_abstract(t0 , t3 ), I1 )

)︀
K𝑖

(︀
□𝐼2(intendG(do_experiment(t0 , t4 ), I2 ) ∧ can_doG(do_experiment(t0 , t4 ), I2 )∧
pref _doG(i , do_experiment(t0 , t4 ), I2 )) → □𝐼2doG(do_experiment(t0 , t4 ), I2 )

)︀
K𝑖

(︀
□𝐼(intendG(write_formal_part(t0 , t5 ), I ) ∧ can_doG(write_formal_part(t0 , t5 ), I )∧
pref _doG(i ,write_formal_part(t0 , t5 ), I )) → □𝐼doG(write_formal_part(t0 , t5 ), I )

)︀
As before, such rules can be specialized to each single agent.

K𝑖

(︀
□𝐼1(intendi(submit_abstract(t0 , t3 ), I1 ) ∧ can_doi(submit_abstract(t0 , t3 ), I1 )∧
pref _doi(i , submit_abstract(t0 , t3 ), I1 )) → □𝐼1doi(submit_abstract(t0 , t3 ), I1 )

)︀
K𝑖

(︀
□𝐼2(intendi(do_experiment(t0 , t4 ), I2 ) ∧ can_doi(do_experiment(t0 , t4 ), I2 )∧
pref _doi(i , do_experiment(t0 , t4 ), I2 )) → □𝐼2doi(do_experiment(t0 , t4 ), I2 )

)︀
K𝑖

(︀
□𝐼(intendi(write_formal_part(t0 , t5 ), I ) ∧ can_doi(write_formal_part(t0 , t5 ), I )∧
pref _doi(i ,write_formal_part(t0 , t5 ), I )) → □𝐼doi(write_formal_part(t0 , t5 ), I )

)︀
So, for each action 𝜑𝐴 required by the plan, there will be some agent (let us assume for sim-

plicity only one), for which doi(𝜑A, I ) will be concluded. In our case, the agent 𝑎 will conclude
doa(submit_abstract(t0 , t3 ), I1 ); the agent 𝑏 will conclude dob(do_experiment(t0 , t4 ), I2 )
and the agent 𝑐 will conclude doc(write_formal_part(t0 , t5 ), I ).

2.3. Semantics

Now we can go into the details of semantics, definition 2.1 introduces the notion of L-INF model,
which is then used to introduce semantics of the static fragment of the logic. Before that we define
the “time” function 𝑇 that associates to each formula the time interval in which this formula is
true and operates as follows:

• 𝑇 (𝑝(𝑡1, 𝑡2)) = [𝑡1, 𝑡2], which stands for “p is true in the time interval [𝑡1, 𝑡2]" where
𝑡1, 𝑡2 ∈ N; as a special case we have 𝑇 (𝑝(𝑡1, 𝑡1)) = 𝑡1, which stands for “p is true in the
time instant 𝑡1" where 𝑡1 ∈ N (time instant);

• 𝑇 (¬𝑝(𝑡1, 𝑡2)) = 𝑇 (𝑝(𝑡1, 𝑡2)), which stands for “p is not true in the time interval [𝑡1, 𝑡2]"
where 𝑡1, 𝑡2 ∈ N;

• 𝑇 (𝜙 op 𝜓) = 𝑇 (𝜙)
⨄︀
𝑇 (𝜓) with 𝑜𝑝 ∈ {∨,∧,→}, which is the unique smallest interval

including both 𝑇 (𝜙) and 𝑇 (𝜓);
• 𝑇 (B𝑖𝜙) = 𝑇 (𝜙);
• 𝑇 (K𝑖𝜙) = 𝑇 (𝜙);
• 𝑇 (□𝐼𝜙) = 𝐼 where 𝐼 is a time interval;
• 𝑇 ([(𝐺 : 𝛼)]𝜙) there are different cases depending on the inferential action 𝛼:

1. 𝑇 ([𝐺 : ↓(𝜙,𝜓)]𝜓) = 𝑇 (𝜓);
2. 𝑇 ([𝐺 : ∩(𝜙,𝜓)] (𝜙 ∧ 𝜓)) = 𝑇 (𝜙)

⨄︀
𝑇 (𝜓), the smallest interval including 𝑇 (𝜙) and

𝑇 (𝜓);
3. 𝑇 ([𝐺 : ⊣(𝜙,𝜓)]𝜓) returns the “restructured" interval where 𝜓 is true;
4. 𝑇 ([𝐺 : ⊢(𝜙,𝜓)]𝜓) = 𝑇 (𝜓);



• 𝑇 (𝑑𝑜𝑖(𝜑𝐴, 𝐼)) = 𝑇 (𝑑𝑜𝐺(𝜑𝐴, 𝐼)) = 𝐼;
• 𝑇 (𝑐𝑎𝑛_𝑑𝑜𝑖(𝜑𝐴, 𝐼)) = 𝑇 (𝑐𝑎𝑛_𝑑𝑜𝐺(𝜑𝐴, 𝐼)) = 𝐼;
• 𝑇 (intend 𝑖(𝜑𝐴, 𝐼)) = 𝑇 (intend𝐺(𝜑𝐴, 𝐼)) = 𝐼;
• 𝑇 (pref _do𝑖(𝜑𝐴, 𝑑, 𝐼)) = 𝑇 (pref _do𝐺(𝑖, 𝜑𝐴, 𝐼)) = 𝐼;
• 𝑇 (exec𝑖(𝛼)) = 𝑇 (exec𝐺(𝛼)) = 𝑇 ([(𝐺 : 𝛼)]𝜙).

Definition 2.1, below, depends on a given set of world 𝑊 and a valuation function, namely
a mapping 𝑉 : 𝑊 −→ 2Atm . For each world 𝑤 ∈ 𝑊 , let 𝑡1 the minimum time instant of
𝑇 (𝑝(𝑡1, 𝑡)) where 𝑝(𝑡1, 𝑡) ∈ 𝑉 (𝑤) and let 𝑡2 be the supremum time instant (we can have 𝑡2 = ∞)
w.r.t. the atoms 𝑝(𝑡, 𝑡2) in 𝑉 (𝑤). Whenever useful, we denote 𝑤 as 𝑤𝐼 where 𝐼 = [𝑡1, 𝑡2], which
identifies the world in a given interval.

Notice that many relevant aspects of an agent’s behaviour are specified in the definition of
L-INF model, including which mental and physical actions an agent can perform, which is the cost
of an action and which is the budget that the agent has available, which is the preference degree
of the agent to perform each action. This choice has the advantages of keeping the complexity of
the logic under control, and of making these aspects modularly modifiable. As before let Agt be
the set of agents.

Definition 2.1. A model is a tuple 𝑀 = (𝑊,𝑁,ℛ, 𝐸,𝐵,𝐶, 𝐴,𝐻, 𝑃, 𝑉, 𝑇 ) where:

• 𝑊 is a set of worlds (or situations);
• ℛ = {𝑅𝑖}𝑖∈Agt is a collection of equivalence relations on 𝑊 : 𝑅𝑖 ⊆ 𝑊 ×𝑊 for each
𝑖 ∈ Agt;

• 𝑁 : Agt ×𝑊 −→ 22
𝑊

is a neighborhood function such that, for each 𝑖 ∈ Agt , each
𝑤𝐼 , 𝑣𝐼 ∈𝑊 , and each 𝑋 ⊆𝑊 these conditions hold:

(C1) if 𝑋 ∈ 𝑁(𝑖, 𝑤𝐼) then 𝑋 ⊆ {𝑣𝐼 ∈𝑊 | 𝑤𝐼𝑅𝑖𝑣𝐼},
(C2) if 𝑤𝐼𝑅𝑖𝑣𝐼 then 𝑁(𝑖, 𝑤𝐼) = 𝑁(𝑖, 𝑣𝐼);

• 𝐸 : Agt ×𝑊 −→ 2ℒACT is an executability function of mental actions such that, for each
𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈𝑊 , it holds that:

(D1) if 𝑤𝐼𝑅𝑖𝑣𝐼 then 𝐸(𝑖, 𝑤𝐼) = 𝐸(𝑖, 𝑣𝐼);

• 𝐵 : Agt ×𝑊 −→ N is a budget function such that, for each 𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈𝑊 , the
following holds

(E1) if 𝑤𝐼𝑅𝑖𝑣𝐼 then 𝐵(𝑖, 𝑤𝐼) = 𝐵(𝑖, 𝑣𝐼);

• 𝐶 : Agt × ℒACT ×𝑊 −→ N is a cost function such that, for each 𝑖 ∈ Agt , 𝛼 ∈ ℒACT,
and 𝑤𝐼 , 𝑣𝐼 ∈𝑊 , it holds that:

(F1) if 𝑤𝐼𝑅𝑖𝑣𝐼 then 𝐶(𝑖, 𝛼, 𝑤𝐼) = 𝐶(𝑖, 𝛼, 𝑣𝐼);

• 𝐴 : Agt ×𝑊 −→ 2𝐴𝑡𝑚𝐴 is an executability function for physical actions such that, for
each 𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈𝑊 , it holds that:

(G1) if 𝑤𝐼𝑅𝑖𝑣𝐼 then 𝐴(𝑖, 𝑤𝐼) = 𝐴(𝑖, 𝑣𝐼);

• 𝐻 : Agt ×𝑊 −→ 2𝐴𝑡𝑚𝐴 is an enabling function for physical actions such that, for each
𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈𝑊 , it holds that:



(G2) if 𝑤𝐼𝑅𝑖𝑣𝐼 then 𝐻(𝑖, 𝑤𝐼) = 𝐻(𝑖, 𝑣𝐼);

• 𝑃 : Agt ×𝑊 ×𝐴𝑡𝑚𝐴 −→ N is a preference function for physical actions 𝜑𝐴 such that,
for each 𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈𝑊 , it holds that:

(H1) if 𝑤𝐼𝑅𝑖𝑣𝐼 then 𝑃 (𝑖, 𝑤𝐼 , 𝜑𝐴) = 𝑃 (𝑖, 𝑣𝐼 , 𝜑𝐴);

• 𝑉 :𝑊 −→ 2Atm is a valuation function;
• T is the “Time Function", defined before.

To simplify the notation, let 𝑅𝑖(𝑤𝐼) = {𝑣𝐼 ∈ 𝑊 | 𝑤𝐼𝑅𝑖𝑣𝐼}, for 𝑤𝐼∈𝑊 . The set 𝑅𝑖(𝑤𝐼)
identifies the situations that agent 𝑖 considers possible at world 𝑤𝐼 . It is the epistemic state of
agent 𝑖 at 𝑤𝐼 . In cognitive terms, 𝑅𝑖(𝑤𝐼) can be conceived as the set of all situations that agent 𝑖
can retrieve from its long-term memory and reason about.

While 𝑅𝑖(𝑤𝐼) concerns background knowledge, 𝑁(𝑖, 𝑤𝐼) is the set of all facts that agent 𝑖
explicitly believes at world𝑤𝐼 , a fact being identified with a set of worlds. Hence, if𝑋 ∈ 𝑁(𝑖, 𝑤𝐼)
then, the agent 𝑖 has the fact 𝑋 under the focus of its attention and believes it. We say that
𝑁(𝑖, 𝑤𝐼) is the explicit belief set of agent 𝑖 at world 𝑤𝐼 .

The executability of inferential actions is determined by the function 𝐸. For an agent 𝑖,
𝐸(𝑖, 𝑤𝐼) is the set of inferential actions that agent 𝑖 can execute at world 𝑤𝐼 in time interval
𝐼 . The value 𝐵(𝑖, 𝑤𝐼) is the budget the agent has available to perform inferential actions in
time interval 𝐼 . Similarly, the value 𝐶(𝑖, 𝛼, 𝑤𝐼) is the cost to be paid by agent 𝑖 to execute the
inferential action 𝛼 in the world 𝑤𝐼 in time interval 𝐼 . The executability of physical actions is
determined by the function 𝐴. For an agent 𝑖, 𝐴(𝑖, 𝑤𝐼) is the set of physical actions that agent 𝑖
can execute at world 𝑤𝐼 in time interval 𝐼 . 𝐻(𝑖, 𝑤𝐼) instead is the set of physical actions that
agent 𝑖 is enabled by its group to perform always in 𝐼 . Which means, 𝐻 defines the role of an
agent in its group, via the actions that it is allowed to execute.

Agent’s preference on executability of physical actions is determined by the function 𝑃 . For
an agent 𝑖, and a physical action 𝜑𝐴, 𝑃 (𝑖, 𝑤𝐼 , 𝜑𝐴) is an integer value 𝑑 indicating the degree of
willingness of 𝑖 to execute 𝜑𝐴 at world 𝑤𝐼 .

Constraint (C1) imposes that agent 𝑖 can have explicit in its mind only facts which are
compatible with its current epistemic state. Moreover, according to constraint (C2), if a world
𝑣𝐼 is compatible with the epistemic state of agent 𝑖 at world 𝑤𝐼 , then agent 𝑖 should have the
same explicit beliefs at 𝑤𝐼 and 𝑣𝐼 . In other words, if two situations are equivalent as concerns
background knowledge, then they cannot be distinguished through the explicit belief set. This
aspect of the semantics can be extended in future work to allow agents make plausible assumptions.
Analogous properties are imposed by constraints (D1), (E1), and (F1). Namely, (D1) imposes
that agent 𝑖 always knows which inferential actions it can perform and those it cannot. (E1) states
that agent 𝑖 always knows the available budget in a world (potentially needed to perform actions).
(F1) determines that agent 𝑖 always knows how much it costs to perform an inferential action.
(G1) and (H1) determine that an agent 𝑖 always knows which physical actions it can perform and
those it cannot, and with which degree of willingness, where (G2) specifies that an agent also
knows whether its group gives it the permission to execute a certain action or not, i.e., if that
action pertains to its role in the group.

Given a model 𝑀 = (𝑊,𝑁,ℛ, 𝐸,𝐵,𝐶,𝐴,𝐻, 𝑃, 𝑉, 𝑇 ), 𝑖 ∈ Agt , 𝐺 ⊆ Agt , 𝑤𝐼 ∈ 𝑊 , and a



formula 𝜙 ∈ ℒL-INF, we introduce the following shorthand notation:

‖𝜙‖𝑀𝑖,𝑤𝐼
= {𝑣𝐼 ∈𝑊 : 𝑤𝐼𝑅𝑖𝑣𝐼 and 𝑀, 𝑣𝐼 |= 𝜙}

whenever 𝑀, 𝑣𝐼 |= 𝜙 is well-defined (see below). Then, truth values of L-DINF formulas are
inductively defined as follows:

(t1) 𝑀,𝑤𝐼 |= 𝑝(𝑡1, 𝑡2) iff 𝑝(𝑡1, 𝑡2) ∈ 𝑉 (𝑤𝐼) and 𝑇 (𝑝(𝑡1, 𝑡2)) ⊆ 𝐼

(t2) 𝑀,𝑤𝐼 |= execi(𝛼) iff 𝛼 ∈ 𝐸(𝑖, 𝑤𝐼) and 𝑇 (execi(𝛼)) ⊆ 𝐼

(t3) 𝑀,𝑤𝐼 |= exec𝐺(𝛼) iff ∃𝑖∈𝐺 with 𝛼 ∈ 𝐸(𝑖, 𝑤𝐼) and 𝑇 (execG(𝛼)) ⊆ 𝐼

(t4) 𝑀,𝑤𝐼 |= can_do𝑖(𝜑𝐴, 𝐽) iff 𝜑𝐴 ∈ 𝐴(𝑖, 𝑤𝐼) ∩𝐻(𝑖, 𝑤𝐼) and 𝐽 ⊆ 𝐼

(t5) 𝑀,𝑤𝐼 |= can_do𝐺(𝜑𝐴, 𝐽) iff ∃𝑖∈𝐺 with 𝜑𝐴 ∈ 𝐴(𝑖, 𝑤𝐼) ∩𝐻(𝑖, 𝑤𝐼) and 𝐽 ⊆ 𝐼

(t6) 𝑀,𝑤𝐼 |= pref _do𝑖(𝜑𝐴, 𝑑, 𝐽) iff 𝜑𝐴 ∈ 𝐴(𝑖, 𝑤𝐼), 𝑃 (𝑖, 𝑤𝐼 , 𝜑𝐴) = 𝑑 and 𝐽 ⊆ 𝐼

(t7) 𝑀,𝑤𝐼 |= pref _do𝐺(𝑖, 𝜑𝐴, 𝐽) iff 𝑀,𝑤|=pref _do𝑖(𝜑𝐴, 𝑑, 𝐽) for 𝑑=max{𝑃 (𝑗, 𝑤, 𝜑𝐴) |
𝑗 ∈ 𝐺 ∧ 𝜑𝐴∈𝐴(𝑗, 𝑤)∩𝐻(𝑗, 𝑤)} and 𝐽 ⊆ 𝐼

(t8) 𝑀,𝑤𝐼 |= ¬𝜙 iff 𝑀,𝑤 ̸|= 𝜙 and 𝑇 (¬𝜙) ⊆ 𝐼

(t9) 𝑀,𝑤𝐼 |= 𝜙 ∧ 𝜓 iff 𝑀,𝑤 |= 𝜙 and 𝑀,𝑤 |= 𝜓 with 𝑇 (𝜙), 𝑇 (𝜓) ⊆ 𝐼

(t10) 𝑀,𝑤𝐼 |= B𝑖 𝜙 iff ||𝜙||𝑀𝑖,𝑤 ∈ 𝑁(𝑖, 𝑤) with 𝑇 (𝜙) ⊆ 𝐼

(t11) 𝑀,𝑤𝐼 |= K𝑖 𝜙 iff 𝑀,𝑣 |= 𝜙 for all 𝑣 ∈ 𝑅𝑖(𝑤) with 𝑇 (𝜙) ⊆ 𝐼

(t12) 𝑀,𝑤𝐼 |= □𝐽 𝜙 iff 𝑇 (𝜙) ⊆ 𝐽 ⊆ 𝐼 and for all 𝑣𝐼 ∈ 𝑅𝑖(𝑤𝐼) it holds 𝑀,𝑤𝐼 |= 𝜙

As seen above, a physical action can be performed by a group of agents if at least one agent of
the group can do it, and the level of preference for performing this action is set to the maximum
among those of the agents enabled to do this action. For any inferential action 𝛼 performed by
any agent 𝑖, we set:
𝑀,𝑤 |= [𝐺 : 𝛼]𝜙 iff 𝑀 [𝐺:𝛼], 𝑤 |= 𝜙

where 𝑀 [𝐺:𝛼] = ⟨𝑊,𝑁 [𝐺:𝛼],ℛ, 𝐸,𝐵[𝐺:𝛼], 𝐶,𝐴,𝐻, 𝑃, 𝑉, 𝑇 ⟩, is the model representing the fact
that the execution of an inferential action 𝛼 affects the sets of beliefs of agent 𝑖 and modifies
the available budget in a certain time interval 𝐼 . Such operation can add new beliefs by direct
perception, by means of one inference step, or as a conjunction of previous beliefs. Hence, when
introducing new beliefs (i.e., performing mental actions), the neighborhood must be extended
accordingly.

The following condition characterizes the circumstances in which an action may be performed,
and by which agent(s):

enabled𝑤𝐼 (𝐺,𝛼) : ∃𝑗 ∈ 𝐺 (𝛼 ∈ 𝐸(𝑗, 𝑤) ∧ 𝐶(𝑗,𝛼,𝑤𝐼)
|𝐺| ≤ minℎ∈𝐺𝐵(ℎ,𝑤𝐼))

with 𝑇 ([𝐺:𝛼]𝜙) ⊆ 𝐼 . This condition states when an inferential action is enabled. In the above
particular formulation (that is not fixed, but can be customized to the specific application domain)
if at least an agent can perform it and if the “payment” due by each agent (obtained by dividing
the action’s cost equally among all agents of the group) is within each agent’s available budget.
In case more than one agent in 𝐺 can execute an action, we implicitly assume the agent 𝑗
performing the action to be the one corresponding to the lowest possible cost. Namely, 𝑗 is such
that 𝐶(𝑗, 𝛼, 𝑤𝐼)=minℎ∈𝐺𝐶(ℎ, 𝛼,𝑤𝐼). Other choices might be viable, so variations of this logic



can be easily defined simply by devising some other enabling condition and, possibly, introducing
differences in neighborhood update. Notice that the definition of the enabling function basically
specifies the “concrete responsibility” that agents take while concurring with their own resources
to actions’ execution. Also, in case of specification of various resources, different corresponding
enabling functions might be defined.

2.4. Belief Update

In this kind of logic, updating an agent’s beliefs accounts to modify the neighborhood of the
present world. The updated neighborhood 𝑁 [𝐺:𝛼] resulting from execution of a mental action 𝛼
by a group 𝐺 of agents is as follows.

𝑁 [𝐺:↓(𝜓,𝜒)](𝑖, 𝑤𝐼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑁(𝑖, 𝑤𝐼) ∪ {||𝜒||𝑀𝑖,𝑤𝐼

} if 𝑖 ∈ 𝐺 and 𝑇 ([𝐺 : ↓(𝜓, 𝜒)]𝜒) ⊆ 𝐼 and
enabled𝑤𝐼 (𝐺, ↓(𝜓, 𝜒)) and
𝑀,𝑤𝐼 |= B𝑖𝜓 ∧K𝑖(𝜓 → 𝜒)

𝑁(𝑖, 𝑤𝐼) otherwise

𝑁 [𝐺:∩(𝜓,𝜒)](𝑖, 𝑤𝐼) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑁(𝑖, 𝑤𝐼) ∪ {||𝜓 ∧ 𝜒||𝑀𝑖,𝑤𝐼
} if 𝑖 ∈ 𝐺 and

𝑇 ([𝐺 : ∩(𝜓,𝜒)](𝜓 ∧ 𝜒)) ⊆ 𝐼 and
enabled𝑤𝐼 (𝐺,∩(𝜓,𝜒)) and
𝑀,𝑤𝐼 |= B𝑖𝜓 ∧B𝑖𝜒

𝑁(𝑖, 𝑤𝐼) otherwise

𝑁 [𝐺:⊢(𝜓,𝜒)](𝑖, 𝑤𝐼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑁(𝑖, 𝑤𝐼) ∪ {||𝜒||𝑀𝑖,𝑤𝐼

} if 𝑖 ∈ 𝐺 and 𝑇 ([𝐺 :⊣ (𝜓, 𝜒)]𝜒) ⊆ 𝐼 and
enabled𝑤𝐼 (𝐺,⊢(𝜓,𝜒)) and
𝑀,𝑤𝐼 |= B𝑖𝜓 ∧B𝑖(𝜓 → 𝜒)

𝑁(𝑖, 𝑤𝐼) otherwise

Notice that, after an inferential action 𝛼 has been performed by an agent 𝑗 ∈ 𝐺, all agents 𝑖 ∈ 𝐺
see the same update in the neighborhood. Conversely, for any agent ℎ ̸∈ 𝐺 the neighborhood
remains unchanged (i.e., 𝑁 [𝐺:𝛼](ℎ,𝑤) = 𝑁(ℎ,𝑤𝐼)). However, even for agents in 𝐺, the
neighborhood remains unchanged if the required preconditions, on explicit beliefs, knowledge,
and budget, do not hold (and hence the action is not executed). Notice also that we might devise
variations of the logic by making different decisions about neighborhood update to implement,
for instance, partial visibility within a group.

For formulas of the form [𝐺 : ⊣(𝜓, 𝜒)]𝜒, we take in account the following ground case:
given 𝑄 = 𝑞(𝑗, 𝑘) such that 𝑇 (𝑞(𝑗, 𝑘)) = 𝑇 (𝑞(𝑡1, 𝑡2)) ∩ 𝑇 (𝑞(𝑡3, 𝑡4)) with 𝑗, 𝑘 ∈ N and
𝑃 ≡

(︁(︀
𝑀,𝑤𝐼 |= B𝑖(𝑝(𝑡1, 𝑡2)) ∧ B𝑖(𝑞(𝑡3, 𝑡4)) ∧ K𝑖(𝑝(𝑡1, 𝑡2) → ¬𝑞(𝑡3, 𝑡4))

)︀
and

(︀
𝑇 ([𝐺 :⊣

(𝑝(𝑡1, 𝑡2), 𝑞(𝑡3, 𝑡4))]𝑞(𝑡5, 𝑡6)) ⊆ 𝐼
)︀

and there is no interval 𝐽 ⊋ 𝑇 (𝑝(𝑡1, 𝑡2)) s.t. B𝑖(𝑞(𝑡5, 𝑡6))



where 𝑇 (𝑞(𝑡5, 𝑡6))=𝐽
)︁

:

𝑁 [𝐺:⊣(𝑝(𝑡1,𝑡2),𝑞(𝑡3,𝑡4))](𝑖, 𝑤𝐼) =

{︂
𝑁(𝑖, 𝑤𝐼) ∖ {||𝑄||𝑀𝑖,𝑤𝐼

} if 𝑃 holds
𝑁(𝑖, 𝑤𝐼) otherwise

The following update of the budget function determines how each agent in 𝐺 contributes to
cover the costs of execution of an action, by consuming part of its available budget. We assume,
however, that only inferential actions that add new beliefs have a cost. I.e., forming conjunction
and performing belief revision are actions with no cost. As before, for an action 𝛼, we require
enabled𝑤𝐼 (𝐺,𝛼) to hold and assume that 𝑗 ∈ 𝐺 executes 𝛼. Then, depending on 𝛼, we have:

𝐵[𝐺:↓(𝜓,𝜒)](𝑖, 𝑤𝐼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐵(𝑖, 𝑤𝐼)− 𝐶(𝑗,↓(𝜓,𝜒),𝑤𝐼)

|𝐺| if 𝑖 ∈ 𝐺 and 𝑇 ([𝐺 : ↓(𝜓, 𝜒)]𝜒) ⊆ 𝐼 and

enabled𝑤𝐼 (𝐺, ↓(𝜓, 𝜒)) and
𝑀,𝑤𝐼 |= BI𝑖𝜓 ∧K𝑖(𝜓 → 𝜒)

𝐵(𝑖, 𝑤𝐼) otherwise

𝐵[𝐺:⊢(𝜓,𝜒)](𝑖, 𝑤𝐼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐵(𝑖, 𝑤𝐼)− 𝐶(𝑗,⊢(𝜓,𝜒),𝑤𝐼)

|𝐺| if 𝑖 ∈ 𝐺 and 𝑇 ([𝐺 : ⊢(𝜓,𝜒)]𝜒) ⊆ 𝐼 and

enabled𝑤𝐼 (𝐺,⊢(𝜓,𝜒)) and
𝑀,𝑤𝐼 |= B𝑖𝜓 ∧B𝑖(𝜓 → 𝜒)

𝐵(𝑖, 𝑤𝐼) otherwise

We write |=L-DINF 𝜙 to denote that 𝑀,𝑤𝐼 |= 𝜙 holds for all worlds 𝑤𝐼 of every model 𝑀 .
We introduce below relevant consequences of our formalization. For lack of space we omit

the proof, that can be developed analogously to what done in previous work [10]. For any set of
agents 𝐺 and each 𝑖 ∈ 𝐺, we have the following:

∙ |=L-INF (K𝑖(𝜙→ 𝜓)) ∧B𝑖 𝜙) → [𝐺 : ↓(𝜙,𝜓)]B𝑖 𝜓.
Namely, if an agent has 𝜙 among beliefs and K𝑖(𝜙 → 𝜓) in its background knowledge,
then as a consequence of the action ↓(𝜙,𝜓) the agent and any group 𝐺 to which it belongs
start believing 𝜓.

∙ |=L-INF (K(𝑝(𝑡1, 𝑡2) → ¬𝑞(𝑡3, 𝑡4)) ∧B𝑖𝑝(𝑡1, 𝑡2) ∧B𝑖𝑞(𝑡3, 𝑡4)) →
[(𝐺 : ⊣(𝑝(𝑡1, 𝑡2), 𝑞(𝑡3, 𝑡4)))]B𝑖𝑞(𝑡5, 𝑡6),

where 𝑇 (𝑞(𝑡5, 𝑡6)) = 𝑇 (𝑞(𝑡3, 𝑡4)) ∖ 𝑇 (𝑞(𝑡1, 𝑡2)).
Namely, if agent 𝑖 has 𝑞(𝑡3, 𝑡4) as one of its beliefs, 𝑞 is not believed outside
𝑇 (𝑞(𝑡3, 𝑡4)), the agent perceives 𝑝(𝑡1, 𝑡2) where 𝑇 (𝑝(𝑡1, 𝑡2)) ⊆ 𝑇 (𝑞(𝑡3, 𝑡4)), and has
K𝑖(𝑝(𝑡1, 𝑡2) → ¬𝑞(𝑡3, 𝑡4)) in its background knowledge. Then after the mental op-
eration ⊣(𝑝(𝑡1, 𝑡2), 𝑞(𝑡3, 𝑡4)) the agent starts believing 𝑞(𝑡5, 𝑡6)) where 𝑇 (𝑞(𝑡5, 𝑡6)) =
𝑇 (𝑞(𝑡3, 𝑡4)) ∖ 𝑇 (𝑞(𝑡1, 𝑡2)).

∙ |=L-INF (B𝑖𝜙 ∧B𝑖𝜓) → [𝐺 : ∩(𝜙,𝜓)]B𝑖(𝜙 ∧ 𝜓).
Namely, if an agent has 𝜙 and 𝜓 as beliefs, then as a consequence of the action ∩(𝜙,𝜓)
the agent and any group 𝐺 to which it belongs start believing 𝜙 ∧ 𝜓.



∙ |=L-INF (B𝑖(𝜙→ 𝜓)) ∧B𝑖 𝜙) → [𝐺 : ⊢(𝜙,𝜓)]B𝑖, 𝜓.
Namely, if an agent has 𝜙 among its beliefs and B𝑖(𝜙→ 𝜓) in its working memory, then
as a consequence of the action ⊢(𝜙,𝜓) the agent and any group 𝐺 to which it belongs start
believing 𝜓.

2.5. Axiomatization

Below we introduce the axiomatization of our logic. The L-INF and L-DINF axioms and inference
rules are the following:

1. (K𝑖 𝜙 ∧K𝑖(𝜙→ 𝜓)) → K𝑖 𝜓;
2. K𝑖 𝜙→ 𝜙;
3. ¬K𝑖(𝜙 ∧ ¬𝜙);
4. K𝑖 𝜙→ K𝑖K𝑖 𝜙;
5. ¬K𝑖 𝜙→ K𝑖 ¬K𝑖 𝜙;
6. B𝑖 𝜙 ∧K𝑖 (𝜙↔ 𝜓) → B𝑖 𝜓;
7. B𝑖 𝜙→ K𝑖B𝑖 𝜙;
8. □𝐼𝜙 ∧□𝐼(𝜙→ 𝜓) → □𝐼(𝜓);
9. □𝐼𝜙→ □𝐽𝜙 with 𝐽 ⊆ 𝐼;

10. 𝜙
K𝑖 𝜙

;
11. [𝐺 : 𝛼]𝑝↔ 𝑝;
12. [𝐺 : 𝛼]¬𝜙↔ ¬[𝐺 : 𝛼]𝜙;
13. exec𝐺(𝛼) → K𝑖 (exec𝐺(𝛼));
14. [𝐺 : 𝛼](𝜙 ∧ 𝜓) ↔ [𝐺 : 𝛼]𝜙 ∧ [𝐺 : 𝛼]𝜓;
15. [𝐺 : 𝛼]K𝑖 𝜙↔ K𝑖 ([𝐺 : 𝛼]𝜙);
16. [𝐺 : ↓(𝜙,𝜓)]B𝑖 𝜒 ↔ B𝑖 ([𝐺 : ↓(𝜙,𝜓)]𝜒) ∨ [𝐺 : ↓(𝜙,𝜓)]B𝑖 𝜒 ↔

(︀
(B𝑖 𝜙 ∧ K𝑖 (𝜙 →

𝜓)) ∧ [𝐺 : ↓(𝜙,𝜓)]B𝑖 𝜒↔ K𝑖 ([𝐺 : ↓(𝜙,𝜓)]𝜒↔ 𝜓)
)︀
;

17. [𝐺 : ∩(𝜙,𝜓)]B𝑖 𝜒↔ B𝑖 ([𝐺 : ∩(𝜙,𝜓)]𝜒)∨ [𝐺 : ∩(𝜙,𝜓)]B𝑖 𝜒↔
(︀
(B𝑖 𝜙∧B𝑖 𝜓)∧ [𝐺 :

∩(𝜙,𝜓)]B𝑖 𝜒↔ K𝑖 [𝐺 : ∩(𝜙,𝜓)]𝜒↔ (𝜙 ∧ 𝜓)
)︀
;

18. [𝐺 : ⊢(𝜙,𝜓)]B𝑖 𝜒 ↔ B𝑖 ([𝐺 : ⊢(𝜙,𝜓)]𝜒) ∨ [𝐺 : ⊢(𝜙,𝜓)]B𝑖 𝜒 ↔
(︀
(B𝑖 𝜙 ∧ B𝑖 (𝜙 →

𝜓)) ∧ [𝐺 : ⊢(𝜙,𝜓)]B𝑖 𝜒↔ K𝑖 ([𝐺 : ⊢(𝜙,𝜓)]𝜒↔ 𝜓)
)︀
;

19. [𝐺 : ⊣(𝜙,𝜓)]¬B𝑖 𝜒↔ B𝑖 ([𝐺 : ⊣(𝜙,𝜓)]𝜒) ∨ [𝐺 : ⊣(𝜙,𝜓)]¬B𝑖 𝜒↔
(︀
(B𝑖 𝜙 ∧K𝑖 (𝜙→

¬𝜓)) ∧ [𝐺 : ⊣(𝜙,𝜓)]¬B𝑖 𝜒↔ K𝑖 ([𝐺 : ⊣(𝜙,𝜓)]𝜒↔ 𝜓)
)︀
;

20. intendG(𝜑A, I ) ↔ ∀𝑖 ∈ 𝐺 intendi(𝜑A; I );
21. do𝐺(𝜑𝐴, 𝐼) → can_do𝐺(𝜑𝐴, 𝐼);
22. do𝑖(𝜑𝐴, 𝐼) → can_do𝑖(𝜑𝐴, 𝐼) ∧ pref _doG(i , 𝜑A, I );
23. 𝜓↔𝜒

𝜙↔𝜙[𝜓/𝜒]
.

We write L-DINF ⊢𝜙 to denote that 𝜙 is a theorem of L-DINF. It can be verified that the
above axiomatization is sound for the class of L-INF models, namely, all axioms are valid and
inference rules preserve validity. In particular, soundness of axioms 16–19 follows from the
semantics of [𝐺:𝛼]𝜙, for each inferential action 𝛼, as previously defined. Notice that, by abuse of



notation, we have axiomatized the special predicates concerning intention and action enabling.
Axioms 20–22 concern in fact physical actions, stating that: what is intended by a group of agents
is intended by them all; and, neither an agent nor a group of agents can do what it is not enabled
to do. Such axioms are not enforced by the semantics, but are supposed to be enforced by a
designer’s/programmer’s encoding of parts of an agent’s behaviour. In fact, axiom 20 enforces
agents in a group to be cooperative. Axioms 21 and 22 ensure that agents will attempt to perform
actions only if their preconditions are satisfied, i.e., if they can do them. We do not handle such
properties in the semantics as done, e.g., in dynamic logic, because we want agents’ definition
to be independent of the practical aspect, so we explicitly intend to introduce flexibility in the
definition of such parts.

3. Canonical Model and Strong Completeness

In this section we adapt the notion of canonical model for L-INF introduced in [10] to deal with
the time component. The proof of strong completeness of the framework directly exploits the
notion of canonical model by applying a standard argument. Time is handled in the semantics
by means of the time function 𝑇 and the definition of canonical L-INF model is immediately
obtained from the one in [10], as follows:

Definition 3.1. Let Agt be a set of agents. The canonical L-INF model is a tuple 𝑀𝑐 =
⟨𝑊𝑐, 𝑁𝑐,ℛ𝑐, 𝐸𝑐, 𝐵𝑐, 𝐶𝑐, 𝐴𝑐, 𝐻𝑐, 𝑃𝑐, 𝑉𝑐, 𝑇𝑐⟩ where:

• 𝑊𝑐 is the set of all maximal consistent subsets of ℒL-INF;
• ℛ𝑐 = {𝑅𝑐,𝑖}𝑖∈Agt is a collection of equivalence relations on 𝑊𝑐 such that, for every
𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈𝑊𝑐, 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼 if and only if (for all 𝜙, K𝑖 𝜙 ∈ 𝑤𝐼 implies 𝜙 ∈ 𝑣𝐼 );

• For 𝑤 ∈ 𝑊𝑐, 𝜙 ∈ ℒL-INF let 𝐴𝜙(𝑖, 𝑤𝐼) = {𝑣 ∈ 𝑅𝑐,𝑖(𝑤𝐼) | 𝜙 ∈ 𝑣}. Then, we put
𝑁𝑐(𝑖, 𝑤𝐼)={𝐴𝜙(𝑖, 𝑤𝐼) | B𝑖 𝜙 ∈ 𝑤𝐼};

• 𝐸𝑐 : Agt ×𝑊𝑐 −→ 2ℒACT is such that, for each 𝑖∈Agt and 𝑤𝐼 , 𝑣𝐼∈𝑊𝑐, if 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼 then
𝐸𝑐(𝑖, 𝑤𝐼) = 𝐸𝑐(𝑖, 𝑣𝐼);

• 𝐵𝑐 : Agt ×𝑊𝑐 −→ N is such that, for each 𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈ 𝑊𝑐, if 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼 then
𝐵𝑐(𝑖, 𝑤𝐼) = 𝐵𝑐(𝑖, 𝑣𝐼);

• 𝐶𝑐 : Agt×ℒACT×𝑊𝑐 −→ N is such that, for each 𝑖 ∈ Agt , 𝛼 ∈ ℒACT, and 𝑤𝐼 , 𝑣𝐼 ∈𝑊𝑐,
if 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼 then 𝐶𝑐(𝑖, 𝛼, 𝑤𝐼) = 𝐶𝑐(𝑖, 𝛼, 𝑣𝐼);

• 𝐴𝑐 : Agt ×𝑊𝑐 −→ 2𝐴𝑡𝑚𝐴 is such that, for each 𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈ 𝑊𝑐, if 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼
then 𝐴𝑐(𝑖, 𝑤𝐼) = 𝐴𝑐(𝑖, 𝑣𝐼);

• 𝐻𝑐 : Agt ×𝑊𝑐 −→ 2𝐴𝑡𝑚𝐴 is such that, for each 𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈ 𝑊𝑐, if 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼
then 𝐻𝑐(𝑖, 𝑤𝐼) = 𝐻𝑐(𝑖, 𝑣𝐼);

• 𝑃𝑐 : Agt×𝑊𝑐×𝐴𝑡𝑚𝐴 −→ N is such that, for each 𝑖 ∈ Agt and 𝑤𝐼 , 𝑣𝐼 ∈𝑊 , if 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼
then 𝑃𝑐(𝑖, 𝑤𝐼 , 𝜑𝐴) = 𝑃𝑐(𝑖, 𝑣𝐼 , 𝜑𝐴);

• 𝑉𝑐 :𝑊𝑐 −→ 2Atm is such that 𝑉𝑐(𝑤𝐼) = Atm ∩ 𝑤𝐼 ;
• 𝑇𝑐 : the time function defined as before.

Analogously to what done before, let 𝑅𝑐,𝑖(𝑤𝐼) denote the set {𝑣𝐼 ∈ 𝑊𝑐 | 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼}, for each
𝑖 ∈ Agt . 𝑀𝑐 is an L-INF model as defined in Definition 2.1, since, it satisfies conditions



(C1),(C2),(D1),(E1),(F1),(G1),(G2),(H1). Hence, it models the axioms and the inference rules
1–19 and 23 introduced before (while, as mentioned in Section 2.5, axioms 20–22 are assumed to
be enforced by the specification of agents behaviour). Consequently, the following properties
hold too. Let 𝑤𝐼 ∈𝑊𝑐, then:

• given 𝜙 ∈ ℒL-INF, it holds that K𝑖 𝜙 ∈ 𝑤𝐼 if and only if ∀𝑣𝐼 ∈𝑊𝑐 such that 𝑤𝐼𝑅𝑐,𝑖𝑣𝐼 we
have 𝜙 ∈ 𝑣;

• for 𝜙 ∈ ℒL-INF, if B𝑖 𝜙 ∈ 𝑤𝐼 and 𝑤𝐼𝑅𝑐,𝑖𝑣 then B𝑖 𝜙 ∈ 𝑣𝐼 ;

Thus, 𝑅𝑐,𝑖-related worlds have the same knowledge and 𝑁𝑐-related worlds have the same
beliefs, i.e. there can be 𝑅𝑐,𝑖-related worlds with different beliefs.

By proceeding similarly to what done in [16], we obtain the proof of strong completeness.
For lack of space, we list the main theorems but omit lemmas and proofs, that we have however
developed analogously to what done in previous work [10].

Theorem 3.1. L-INF is strongly complete for the class of L-INF models.

Theorem 3.2. L-DINF is strongly complete for the class of L-INF models.

4. Conclusions

In this paper we proposed a possible way to enrich the epistemic logic introduced in [9, 10, 11],
originally designed to express group dynamics of cooperative agents, with the possibility of
specifying time intervals to express the time periods in which agents’ acting takes place. Hence,
by adapting the treatment introduced in [6], an enriched semantics for formulas, as well as a
new belief update mechanism, has been suitably designed for the new temporalized logic. The
approach appears promising and its usefulness has been shown by outlining a not trivial example.
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