
Towards an Argument Knowledge Base for
Autonomous Debating Systems
Charles Stubbs1, Tommy Yuan1

1Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK

Abstract
This paper addresses the labour-intensive nature and expert annotator requirements of manual argument
annotation by providing an initial sentence-level pipeline for argument identification and sentence
relationship prediction. Before establishing our approach, we review current efforts to produce combined
techniques and the available abstract pipelines. Next, we use the methods indicated in this review to
produce standalone identification and relationship prediction methods. Finally, we apply these methods
in a pipeline to produce a combined approach. The presented results demonstrate effective sentence
identification but shortcomings in relationship detection. Overall, this paper suggests that combined
approaches to argumentation are a promising area requiring further research.

Keywords
Argument Mining, Argument Identification, Sentence Relationship Prediction, Pipeline, Automation,

1. Introduction

Argumentation is a core part of human discourse, allowing us to convey “inclinations, attitudes
or opinions”[1] regarding our views. It also involves our ability to identify “relevant assumptions
and conclusions”[2] and supporting or conflicting arguments. From these, we create maps of
these arguments and their evidence. This process is known as argument mining.

A promising development in the field is IBM’s Project Debater[3], where connected modules
are used for a system to debate humans on specific structured topics. An important module
within this is the AKB (Argument Knowledge Base). It aims to “capture the commonalities
between different debates”[3] in the form of a dataset. Overall, the model relies heavily on the
AKB (produced manually) to provide general arguments in different areas.

Requiring expert annotators, it is intractable to keep pace with the rate of data generation. Au-
tomating this manual process is a valuable asset to discourse. A dataset could be created rapidly
with minimal human interference through the automatic extraction of threads of arguments.

A major limiting factor in automation potential is the lack of public, large-scale, standardised
datasets containing the original texts. A focus on creating such datasets and allowing the
possibility to combine these to create increased volume is essential for machine learning success.
This paper proposes a new combined method for sentence-level argument mining that is

successful using features from unannotated texts. Overall this paper contributes an initial step

CMNA’22: Workshop on Computational Models of Natural Argument, September 12, 2022, Cardiff
Envelope-Open crs553@york.ac.uk (C. Stubbs); tommy.yuan@cs.york.ac.uk (T. Yuan)
GLOBE https://crs553.github.io/ (C. Stubbs); https://www-users.cs.york.ac.uk/~tommy/ (T. Yuan)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:crs553@york.ac.uk
mailto:tommy.yuan@cs.york.ac.uk
https://crs553.github.io/
https://www-users.cs.york.ac.uk/~tommy/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


to automation by combining state-of-the-art methods in a pipeline fashion, with texts requiring
no annotation. Thus overall minimising human argument identification and relationship
recognition between identified arguments.

2. Related Work

This section reviews common structures of pipelines and frameworks, followed by individual
methods for argument mining, and finally, we look at the most promising combined method.

2.1. Argument Mining Pipelines

Argument mining follows a similar structure to manual analysis; Lawrence and Reed[4] define
this in Figure 1. The figure presents the tasks in order of complexity, it suggests that mining is
iterative. This iterative process attempts to address the issue of context-dependent evidence.
They also represent the three critical areas of identification by dashed boxes.

Lippi and Torroni[5] present a simplified pipeline compared to the previous diagram. The
stages within the pipeline are argumentative sentence detection, argument component boundary
detection and argument structure prediction. Following this, they identify three options for
argumentative sentence detection, which are:

1. Two binary classifiers in a pipeline differentiate arguments and non-arguments, then
classify the component type.

2. A multi-class classifier assumes that a sentence contains at most one argument.
3. A set of binary classifiers for each argument component in the chosen model.

In the next step, Lippi and Torroni[5] recognise three overlapping instances for component
boundary detection. The first is the case where a portion of a sentence is a component, the
second is that more than one argument component can be in a sentence, and the third is the
instance a component contains more than one sentence. Finally, Lippi and Torroni use argument
structure prediction to establish links between components; they recognise that the underlying
argument model will influence this step.
These methods contain similar sub-tasks. Lippi and Torroni[5] provide the most intuitive,

clearly explaining each stage. Lawrence and Reed[4], whilst providing a comprehensive method,
detail each stage’s purpose with greater abstraction.

2.2. Standalone Methods

Moens et al.[6] detects argumentative sentences with each as a vector of features. Using a
multinomial naïve Bayes classifier and a maximum entropy model, the features tested had a
maximum accuracy of 74%; there is an accuracy reduction with legal text, speculated to be
due to a lack of training examples. Palau and Moens[7] continue this work, moving on to
proposition classification, achieving an F-score of 71%, 6% higher than a context-free grammar
(CFG) when using maximum entropy and SVM model on the ECHR corpora. They then review
a CFG for argument structure identification, obtaining a 60% accuracy and a 70% F1 score.



Figure 1: Argument Analysis Diagram[4]

Goudas et al.[8] evaluate classifiers by testing methods with “state-of-the-art features” and
“new features”. The new set of additional features, combined with state-of-the-art features,
present an advantage in both argumentative section detection and claim and premise extraction.
Ajjour et al.[9] present a method for textual segmentation as a “token labelling problem”

using three machine learning models. As a baseline, Ajjour re-implements Stab’s method[10],
reporting a worse F-score of 82.7 when compared to Stab’s results. They then offer methods
of type SVM, CRF and Bi-LSTM. Evaluating the results, Bi-LSTM produces significantly better
results using all features compared to Stab’s original implementation.

Cabrio and Villata[11] presents the most commonly used component detection and relations
prediction methods. It outlines that in most cases, SVMs, parsing algorithms, and logistic
regression are among the three most frequently used approaches. This popularity could indicate
the most promising practices currently concerning argument mining.
Using the initial three stages by Lippi and Torroni[5] introduced in 2.1, a classifier of some

form must be chosen in all cases. They state the most common, including SVMs, and that there
is “no clear evidence to tell which classifier should be preferred”, thereby inferring that all listed
classifiers would be suitable.
Expanding on using SVMs, Mochales and Moens[12] use SVMs and a maximum entropy

model to classify conclusions and premises on the ECHR corpus. They attain “68.1% and 74.0%
F1 measure, respectively”. This best-case scenario was found when using features such as
combined words and text statistics (i.e. sentence length, average word length and the number
of punctuation marks).



2.3. Combined Method

Discourse Indicators(DI) are used by Lawrence and Reed[13] to identify a connection between
adjacent propositions and whether they support or attack the argument. According to them, DI
are often used as a feature within argument mining; however, they instead present a standalone
method. Webber et al.[14] defined DI as explicit linguistic expressions between statements.
These either indicate support or conflict and can thus be used to infer general patterns regarding
some arguments. In Lawrence and Reed’s[13] results, this method of identification provides
a high precision value of 0.89 but a low recall - 0.04. Consequently, the F1 score is low. They
conclude it could be a “useful component” but is “inadequate” “unless supplemented by other
methods”.

The subsequent approach considered by Lawrence and Reed[13] is “Topical Similarity”, which
demonstrates how a change in topic relates tree structure formation. Their method performs
best on non-directed edges. Whilst it has high precision, it fails to find most connectives falling
victim to a low recall.

The final individual approach uses an argumentation scheme structure. They present two
commonly used structures, followed by a naiv̈e Bayes classifier and a POS-tagger and add the
tag frequency as an individual feature. This method gives F-scores of 0.93 and 0.75 - which
consider the correct identification of one proposition type.
Lawrence and Reed[13] combine the aforementioned approaches in a supervised manner.

Firstly by applying using discourse indicators, assuming that they are always correct, then
identifying the scheme structure, and finally connecting any missed schemes through topical
similarity. They obtain a better recall and F1 score from this combination than from any
individual method.

Whilst their method provides good results, annotation is required as it uses already identified
propositions. Building on their work, our combined method aims to identify sentence-level
propositions and feed them into a relationship identification method.

3. Methods

This section introduces the dataset and the tools used to parse it. We then progress on to the
individual methods and end with the combined method.

3.1. Dataset

Automating annotations using large generalised datasets presents a challenge due to the lack
of standardisation. Dataset structures differ greatly, as some original texts can be missing.
Lawrence and Reed[13] use a cleaned version of AIFdb’s AraucariaDB1. Since it lacks most of
the original texts, it is inadequate for our use case. Consequently, our results are not directly
comparable to Lawrence and Reed’s approach[13].
Stab[10] creates the Essay Corpus v22, which contains the initial text. Each text contains

premises, claims and one major claim. This dataset is ideal due to the texts being available

1AraucariaDB: https://corpora.aifdb.org/araucaria
2Stab’s Essay Corpus v2: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2422

https://corpora.aifdb.org/araucaria
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2422


and being able to be split into training and testing sets. To load the dataset we use Németh’s
loader3 and Milz’s corpus parser 4 [15]. This corpus was chosen over the former by Lawrence
and Reed[13], as it contains the original text for all annotations.

3.2. Discourse Indicators

The proposed method is to use Discourse Indicators similarly to Lawrence’s method[13]. The
implementation will be standalone; it will not differentiate between support and conflict and
will be tested on three sets of indicators5. The first is Lawrence’s original[13] (example: not and
no). Another is called Premise indicators (example: in view of, as shown). And a combined set.
Before running the method, we apply pre-processing, where the data is split into sentences

with punctuation removed. Figure 2 is a sample of the algorithm. Given a text, adjacent
sentences are parsed to the lower case. At the end of argument 1 and the start of argument 2,
the sentences are checked to ascertain if the connecting ends contain indicators. If either does,
they are tagged as related.

Figure 2: Example of the algorithm using Lawrence’s original indicators[13]

3.3. Machine Learning Models

SVMs are shown to be useful in classification tasks. As outlined in the research section, Lippi
and Torroni[5] offer a general guideline for the stages at which classification can be used. The
first of these is a binary classifier to discern which sentences contain arguments. In all cases
listed in Lippi and Torroni’s work, some form of classifier must be used. They indicate no clear
preference but list SVMs amongst other state-of-the-art options.

3.3.1. Argumentative Classifier

Using the aforementioned guidelines to construct an SVM, we first aim to classify if a sentence is
argumentative; if not, then it is discarded. A sentence is argumentative if it contains a premise,
claim or major claim. Using features from Mochales’ research [12] and adding some additional
features, we create the features in Table 1. Table 2 provides an example of the features in Table 1.
3Németh’s loader: https://github.com/negedng/argument_BERT/blob/master/preprocessing/data_loader.py
4Milz’s parser: https://github.com/Milzi/arguEParser
53 Sets of Indicators: https://github.com/crs553/Towards-Automatic-Argument-Mining/tree/main/Models

https://github.com/negedng/argument_BERT/blob/master/preprocessing/data_loader.py
https://github.com/Milzi/arguEParser
https://github.com/crs553/Towards-Automatic-Argument-Mining/tree/main/Models


Table 1
Features for Argumentative Classifier(AC) Dataset

Feature Description

Sentence Vectors Vectorisation with stop words removed
TriBefore Vectorisation of last three words in the sentence before with

stop words removed
TriAfter Vectorisation of first three words in the sentence after with stop

words removed
DocPosition Sentence position in a document
PuncNumber Number of punctuation marks a sentence contains

Table 2
Feature example of Table 1 (vectorisation not applied for readability)

Feature Example

Sentence Vectors point view firmly believe attach importance cooperation
primary education

TriBefore individuals whole life
TriAfter first all cooperation

DocPosition 0.31
PuncNumber 1

The original sentence was “From this point of view, I firmly believe that we should attach more
importance to cooperation during primary education”, the example is from Stab’s Corpus. These
textual features are vectorised through TF-IDF vectorisation. When vectorising, unigrams and
bigrams are included, and stop-words are removed before sentence processing. If a sentence
is first or last in the text, “$$$” is used instead to indicate that there is no adjacent sentence -
this is specifically for the TriBefore/TriAfter feature. To form the labels, the assumption is the
sentence is argumentative if it has a relation within the dataset.

3.3.2. Relationship Occurrence Model

Moving on to another step in Lippi and Torroni’s guidelines[5], we present a method for
relationship identification using an SVM. All sentence relations must be constructed for the
document in preparation for the identification process. They are related if they contain a relation
in the annotated dataset. When preparing the data, we create features as shown in Table 3.
Relations are created between all argumentative sentences.

3.4. Combining into a pipeline

From the literature review, we find that Discourse Indicators were determined to be “inadequate”,
when standalone, “for identifying even a small percentage of the argumentative structure”[13].
In order to obtain the best results, we now combine this method with the Machine Learning
Model proposed in the previous subsection.
Figure 3 shows an abstract overview of how this combined pipeline will work. Exploring

this diagram further, the original text files are inputted and prepared by creating the features



Table 3
Features for Relationship Occurrence Classifier (ROC)

Feature Description

Sentence1 Vectorisation of first sentence
Sentence2 Vectorisation of second sentence
Three1 Vectorisation containing last three words of first sentence
Three2 Vectorisation of first three words of second sentence
Pos1 POS tagging of sentence 1
Pos2 POS tagging of sentence 2

Similarity Cosine similarity between two vectorised sentences

Figure 3: Combined Pipeline Abstract Component Overview

outlined in Table 1. The dataset is then fed into the Argumentative Classifier, where it is
predicted on. These predictions are then passed to the relational data translation component,
where only argumentative predictions are kept. These classes are then paired with all possible
sentence combinations within their text file. Features are created from these classes, as shown
in Table 3, and then the relational dataset is produced.
The final methods in Figure 3 are the Relationship Occurrence Classifier and the Discourse

Indicators (DI) algorithm. The predictions from these results are combined with DI predictions
being taken as always correct for the positive case. If it does not predict a link, the decision is
then passed to the result of the link classifier. It should be noted that Discourse Indicators will
be based on the best-performing indicators.
At each stage, selected features were constructed from the original text. The aim was to

minimise the need for initial annotation and human influence other than correct labels for
model training.



4. Results

4.1. Individual Components

4.1.1. Discourse Indicators

The Discourse Indicator (DI) results in Table 4. Reviewing the three sets of indicators shows
that premise indicators have the best precision, whereas combined have the best recall and
F1-score. Combined and premise indicators perform better because both contain indicators
specifically developed for this dataset. In all cases, recall is low; this can indicate a high number
of false negatives, possibly due to some arguments not containing the indicators listed. Since
the premise indicators produce the best accuracy, we will use this in our combined method.

Table 4
Results Discourse Indicators (DI) for different sets of indicators

Type Precision Recall F1
Discourse 0.60 0.02 0.04
Premise 0.74 0.01 0.03

Combined 0.65 0.03 0.06

4.1.2. Argumentative Classifier

Argumentative classifier, shown in Table 5, performs well in all testing metrics. This indicates
its reliability in argument classification.

Table 5
Results report for Classifiers

Precision Recall F1 Case Number

AC 0.77 0.97 0.86 1697
non-arg label 0.72 0.19 0.3 446
arg label 0.77 0.97 0.86 1251

ROC 0.60 0.62 0.15 30651
not-linked label 0.96 0.6 0.74 28928
linked label 0.08 0.62 0.15 1723

4.1.3. Relationship Occurrence Classifier

Relationship Occurrence Classifier (ROC) performs better in recall and F1 than DI at relationship
prediction. The lower precision is down to a skew in the dataset towards the not-linked label.
This is because data appears challenging to separate. This conclusion is supported by the fact
that the number of sentences in the linked label is 16 times smaller than in the non-linked case.



4.2. Overall Pipeline

By combining these components to produce the pipeline, the results are shown in Table 6. We
can conclude that when compared to the independent ROC and DI after AC indicated in the
aforementioned table, the overall pipeline performs better than its individual counterparts in
terms of recall in both cases and F1 in the DI case. It should be noted that in Table 6 overall
recall and F1 are only for the positive case, whilst precision is averaged.

Table 6
Score report for pipeline

Stages Precision Recall F1 -

AC 0.75 0.97 0.85 -
DI 0.78 0.23 0.12 -

ROC 0.73 0.40 0.15 -

Final pipeline Support Cases

Overall 0.62 0.53 0.14 28427
not-linked 0.96 0.63 0.76 26771
linked 0.08 0.53 0.14 1656

Examining the Support Cases in Table 6 we can see a significant skew towards the not-linked
case; this imbalance is likely due to the data not being easily separable. This issue affects
relationship methods more when the AC stage is included than when operating individually.

5. Conclusion

The indicators experiment performs better on the premise and combined indicators than the
discourse indicators. This is likely due to premise indicators being explicitly developed for
Stab’s dataset. Further work on more accurate general indicators could be valuable in producing
a more reliable method.

Argumentative classification is the most reliable part of the pipeline and effectively identifies
whether a sentence is argumentative. It should be noted that the “arg” label performs better than
the “non-arg” label, with an F1 score difference of 0.83, indicating the SVM with the features
outlined above can effectively identify arguments at a sentence level.

Link relationships are a different story, with a low F1-score compared to their accuracy and
recall; this indicates a high rate of false positives. This is probably due to the imbalance towards
the non-linked cases, with 14 out of 15 cases in this category.

A similar result is seen in the pipeline; AC performs similarly to the individual components
and thus would be ideal for future use. Following this success, we prepare these identifications
with all other combinations. For relationship prediction, both cases perform well in terms of
precision and recall but perform worse in terms of F1-score. This is probably due to the original
instances containing a randomised dataset of all possible outcomes, and the training set is
limited to only propositions contained within it rather than all potential link cases.

Whilst the pipeline6 does not produce the ideal result, we can conclude that for unannotated
6Code repository for all cases: https://github.com/crs553/Towards-Automatic-Argument-Mining

https://github.com/crs553/Towards-Automatic-Argument-Mining


data, a process filtering at each stage is appropriate as an initial component towards an automatic
argument mining system. How this pipeline should be formed requires more research, and full
exploration of the stages outlined in Lippi and Torroni’s guidelines[5] should be explored. In its
current form, it cannot provide annotations for argument knowledge bases, such as the AKB in
Project Debater[3], due to its overall accuracy and the unknown repeatability across different
domains. Further analysis is required to determine the cause of classification error.

References

[1] A. Peldszus, M. Stede, From argument diagrams to argumentation mining in texts: A
survey, International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) 7
(2013) 1–31.

[2] P. Besnard, A. Hunter, Elements of argumentation, volume 47, MIT press Cambridge, 2008.
[3] N. Slonim, Y. Bilu, C. Alzate, R. Bar-Haim, B. Bogin, F. Bonin, L. Choshen, E. Cohen-Karlik,

L. Dankin, L. Edelstein, et al., An autonomous debating system, Nature 591 (2021) 379–384.
[4] J. Lawrence, C. Reed, Argument mining: A survey, Computational Linguistics 45 (2020)

765–818.
[5] M. Lippi, P. Torroni, Argumentation mining: State of the art and emerging trends, ACM

Trans. Internet Technol. 16 (2016).
[6] M.-F. Moens, E. Boiy, R. M. Palau, C. Reed, Automatic detection of arguments in legal

texts, in: Proceedings of the 11th international conference on Artificial intelligence and law,
Association for Computing Machinery, New York, NY, USA, 2007, pp. 225–230.

[7] R. M. Palau, M.-F. Moens, Argumentationmining: the detection, classification and structure
of arguments in text, in: Proceedings of the 12th international conference on artificial
intelligence and law, Barcelona, Spain, 2009, pp. 98–107.

[8] T. Goudas, C. Louizos, G. Petasis, V. Karkaletsis, Argument extraction from news, blogs,
and social media, in: Hellenic Conference on Artificial Intelligence, Springer, 2014, pp.
287–299.

[9] Y. Ajjour, W.-F. Chen, J. Kiesel, H. Wachsmuth, B. Stein, Unit segmentation of argumen-
tative texts, in: Proceedings of the 4th Workshop on Argument Mining, Association for
Computational Linguistics, Copenhagen, Denmark, 2017, pp. 118–128.

[10] C. Stab, I. Gurevych, Parsing argumentation structures in persuasive essays, Computational
Linguistics 43 (2017) 619–659.

[11] E. Cabrio, S. Villata, Five years of argument mining: a data-driven analysis., in: Interna-
tional Joint Conferences on Artificial Intelligence IJCAI, volume 18, 2018, pp. 5427–5433.

[12] R. Mochales, M.-F. Moens, Argumentation mining, Artificial Intelligence and Law 19 (2011)
1–22.

[13] J. Lawrence, C. Reed, Combining argument mining techniques, in: Proceedings of the 2nd
Workshop on Argumentation Mining, Denver, Colorado, US, 2015, pp. 127–136.

[14] B. Webber, M. Egg, V. Kordoni, Discourse structure and language technology, Natural
Language Engineering 18 (2012) 437–490.

[15] T. Milz, Argue - an argumentation mining and modelling approach for classication of argu-
mentative discourse units and structures., University of Passau, Master’s thesis, 2017.


	1 Introduction
	2 Related Work
	2.1 Argument Mining Pipelines
	2.2 Standalone Methods
	2.3 Combined Method

	3 Methods
	3.1 Dataset
	3.2 Discourse Indicators
	3.3 Machine Learning Models
	3.3.1 Argumentative Classifier
	3.3.2 Relationship Occurrence Model

	3.4 Combining into a pipeline

	4 Results
	4.1 Individual Components
	4.1.1 Discourse Indicators
	4.1.2 Argumentative Classifier
	4.1.3 Relationship Occurrence Classifier

	4.2 Overall Pipeline

	5 Conclusion

