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Abstract 
Tensor decomposition is an essential tool for analyzing data in many fields, such as sociology, 

financial encryption and signal processing. According to the “Curse of Dimensionality,” the 

time and the space cost of the tensor decomposition increase quickly with the tensor size. The 

high-performance GPU-based tensor-train (TT) and tensor-ring (TR) decompositions imple-

mentations are proposed in this paper. Firstly, we utilize the high-parallel Jacobi-based singular 

value decomposition (SVD) for replacing the traditional SVD to match the GPU structure. 

Secondly, we design a high-performance matrix multiplication on GPU. Thirdly, by observing 

data storage, we propose optimized memory access to reduce the memory footprint. Moreover, 

we conducted experiments to verify the performance of our algorithm on a V100 GPU. Our 

optimized GPU-based TT and TR decomposition implementations get maximum of 6.67× and 

6.36× speedups over the basic implementations. 
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1. Introduction

Tensor decomposition is an extension of matrix decomposition in higher dimensions. It is an 

essential tool in social relation prediction [1], financial encryption [2], and image processing [3]. Where 

tensor-train (TT) and tensor-ring (TR) decomposition have been widely used in signal processing [4], 

computer vision [5], and data mining [6]. According to the “Curse of Dimensionality,” tensor 

decomposition’s time and space cost increase quickly with the size and dimension of the tensor. It is a 

critical mission to develop high-performance tensor decompositions.  Currently, CPU-based TT and 

TR decompositions [9, 10] do not take full advantage of the algorithms’ parallelism, making it difficult 

to process large amounts of data.  

This paper utilizes GPUs to achieve high-performance TT and TR decomposition algorithms. 

Moreover, we conducted experiments comparing existing CPU algorithms with our optimized GPU 

algorithms, showing that our optimized TT and TR decomposition implemen-tations on GPUs are 

efficient. 

There are three major contributions to this paper: 

• This paper proposes high-performance GPU-based third-order TT and TR decom-positions

with the same accuracy as CPUs.

• This paper proposes efficient memory access of tensors in GPUs, an efficient diago-nal matrix

and matrix multiplication, and utilizes the high-parallel Jacobi-based SVD for replacing the

traditional SVD. The optimized algorithms reduce memory footprint and tensor matricization.

• This paper conducts experiments to verify the performance of TT and TR decompositions on

one Tesla V100 GPU. The optimized TT and TR decomposition implementations get maximum of

6.67  and 6.36  speedups over the GPU basic implementations.
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2. Tensor-Train and Tensor-Ring Decompositions

This section describes notations, TT decomposition, and TR decomposition. 

2.1 Operations and Notations 

This paper utilizes boldface lowercase letters 𝐚 ∈ ℝn , boldface uppercase letters 𝑨 ∈ ℝn1×n2 , and

uppercase calligraphic letters 𝒜 ∈ ℝn1×n2×n3  to denote vectors, matrices, and tensors, respectively.

Tensor contractions is represented with the ∘ symbol. 

2.2 Tensor-Train Decomposition 

Figure 1:  The display diagram of the d-th tensor tensor-train decomposition. 

Figure 1 shows that the TT decomposition [9] uses three third-order core tensors to express a third-

order tensor 𝒜 ∈ ℝ𝑛1×𝑛2×𝑛3 by tensor contractions:

𝒜 = 𝒢(1) ∘ 𝒢(2) ∘ 𝒢(3),  (1) 

where 𝒢(𝑘) ∈ Rrk−1×nk×rk expresses the k-th core tensor. [r0, r1, r2, r3] expresses the TT-ranks where

r0 = r3 = 1. Therefore, 𝒢(1) and 𝒢(3) are second-order tensors (matrices).

The tensor-train structure is one of the tensor networks and is represented in Figure 1 by the graphical 

modeling [7]. The connections between two tensors indicate tensor contractions. The original tensor 𝒜 

is obtained by the tensor contractions of all tensors on the left. The steps of third-order TT 

decomposition [9] are described in Algorithm 1. In the third and tenth lines of Algorithm 1, we convert 

a tensor 𝒞(𝑘−1) into a matrix 𝐂 with rk−1nk rows and ∏ ni
3
i=k+1  columns and a matrix 𝑼 into a tensor

𝒢(k) with nk columns, rk in the third direction, and rk−1 rows and by reshaping operations, respectively.

2.3 Tensor-Ring Decomposition 

Figure 2: The display diagram of the d-th tensor tensor-ring decomposition. 

Figure 2 shows that the TR decomposition [10] uses three third-order core tensors 𝒢(𝑘) ∈
ℝrk×nk×rk+1 , k = 1,2,3 to express a third-order tensor 𝒜 ∈ ℝ𝑛1×𝑛2×𝑛3 by tensor contractions:

𝒜 = 𝒢(1) ∘ 𝒢(2) ∘ 𝒢(3),                                                      (2)
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where tensor contractions are calculated between tensors and also between  𝒢(1) and 𝒢(3). [r0, r1, r2, r3] 
expresses the TR-ranks. Because of the ring structure of TR tensors, r0 = r3 do not need to be forced 

to equal 1, which is used to distinguish between TR and TT structures. TR structure is another special 

case of tensor networks and steps of TR decomposition [10] are described in Algorithm 2. 

3. High-performance Third-order Tensor-Train and Tensor-Ring 
Decompositions on GPUs 

3.1 Parallelization Schemes 

In this section, we propose three parallel optimizations for TT decomposition in Algorithm 1 and 

TR decomposition in Algorithm 2.  

Jacobi SVD in Parallel 

In TT and TR decompositions, the matrix SVD operations take up the most time, reaching 67%. The 

traditional SVD operation is not matched to GPU structure because of its low parallelism characteristics. 

As a substitute, Jacobi SVD [8] is adopted to match the GPU’s high-parallelism feature. Jacobi SVD 

needs an iteration number and an accuracy to determine when the algorithm terminates. Under the single 

precision of data and calculation, this paper set the maximum iteration to 100 and the accuracy to 10e-

8 for getting the minimum error in experiments. 

 

 

The algorithm stops when the number of iterations reaches the maximum number of iterations or the 

error between the repaired matrix and the original matrix reaches a preset threshold. 

Diagonal Matrix and Matrix Multiplication in Parallel 

Diagonal matrix and matrix multiplication is the operation with the second longest time occupation 

in the eleventh line of Algorithm 1 and the eleventh and fifth lines of Algorithm 2. The time cost of 

these operations increases rapidly with the dimension size of data. We find that the traditional processes 

introduce redundant calcula-tions because values exist only on the diagonal. Therefore, we accelerate 

the computation using the following parallel computation method: 

𝑺𝑽T = parallel(sk ⋅ 𝑽k
T),                                                      (3)  

where sk  and  𝑽k
T represent the k-th value and row of matrix 𝑺 on the diagonal and matrix 𝑽T. This 

parallel computation method takes advantage of parallelism and reduces redundant computations. 

Element-wise Product in Parallel 
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The sixth line to the ninth line of Algorithm 1 and the fifth line to the seventh line of Algorithm 2 

are the element-wise products which can be calculated in parallel. We utilize the following parallel 

method to perform the element-wise product s ⋅ s, with m = #(s): 

parallel (sm−k+1
(0)

= sk ⋅ sk) , 1 ≤ k ≤ m.                                     (4)  

 

 
Figure 3: A schematic diagram of the tensor’s layout in memory. 

3.2 Optimized Memory Access 

Figure 3 exhibits a third-order tensor’ column-major layout in memory. The tensor data is stored as 

a front slice of the column master. We adopt the column-major layout in memory to meet the data 

reading requirements of two libraries: cuSOLVER and cuBLAS. In addition, this kind of memory 

access method can directly get the mode-1 unfolding of the tensor without the tensor matricization 

reducing the overhead. 

To reduce the memory footprint and the overhead of truncation operations in Algorithm 1 and 

Algorithm 2, the front truncation sub-sections of matrix 𝑽T and vector s  are calculated directly in the 

eleventh line of Algorithm 1 and the eleventh and fifth lines of Algorithm 2. We utilize the direct 

conversion in memory to reduce the overhead of tensor permuting operations in the tenth and eleventh 

lines of Algorithm 2. Moreover, through this optimized memory access method, the reshape operations 

are eliminated in Algorithms. These algorithms generate a lot of intermediate variables, which 

introduces much memory footprint and time overhead. Therefore, we reuse the allocated memory and 

dynamically delete and allocate intermediate variables in GPU memory to reduce memory consumption. 
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3.3 Efficient Data Transfer 

The input and output data volumes of TT and TR decompositions increase quickly with tensor sizes, 

which results in high time consumption of data transfer between CPUs and GPUs. To reduce the 

overhead of access space in transmission, the cores 𝒢1, 𝒢2, 𝒢3   are combineded into an array 𝑐 . 

Meanwhile, [𝑛1, 𝑛2, 𝑛3] are used to store dimensions of the input tensor and [r0, r1, r2, r3] are used to 

store TR-ranks or TT-ranks. Therefore, k-th core is acquired through 𝒢𝓀 = reshape(𝐜(∏ rjnjrj+1
k−1
j=1 ,

∏ rjnjrj+1
k
j=1 ), [rk−1, nk, rk]) , 𝐜(∏ rjnjrj+1

k−1
j=1 , ∏ rjnjrj+1

k
j=1 )  denotes the elements from 

∏ rjnjrj+1
k−1
j=1  to ∏ rjnjrj+1

k
j=1 . 

 

 
Figure 4: Speedups and running time of third-order TT decomposition on two Intel CPUs and a Tesla 

V100 GPU. 

4. Performance Evaluation 

Our experiments run on a server with 80 GB host memory. The server is equipped with two Intel 

Xeon E5-2640 V4 CPUs. Each CPU has ten cores supporting twenty hardware threads. Moreover, the 

server is equipped with one Tesla V100 GPU with 32GB device memory and 5,120 CUDA cores @1.53 

GHz. We focus on the speedups of our experiment result: speedup = (CPU running time)/(GPU running 

time). The relative square error (RSE) is utilized to measure the error of data before and after 

decomposition: RSE = ||𝒜 − 𝒢(1) ∘ 𝒢(2) ∘ 𝒢(3)||F/||𝒜||F. The experiment tensor data are obtained by 

tensor contractions of three small tensors. For the Jacobi SVD, under single precision, the accuracy ɛ is 

set to10e-8, and the max iteration time is set to 100.  

The speedups and running time of our optimized third-order TT decomposition are exhibited in 

Figure 4. The tensor sizes vary from 100 × 100 × 100  to 1,200 × 1,200 × 1,200 . The CPU 

implemen-tation is referred from MATLAB code [9]. Because of the GPU memory size, the maximum 

tensor size that can be processed is 1,200 × 1,200 × 1,200 on Tesla V100 GPU. Compared with the 

CPU implementations, the optimized GPU implement-tation obtains 14.25× on average and up to 

24.80× speedups, which are higher than the GPU baseline implementation. The RSE of CPU and GPU 

are on the 10e-4 level. In our experiment, the speedups of the optimized implementations have a general 

upward trend. 
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Figure 5: Speedups and running time of third-order TR decomposition on two Intel CPUs and a Tesla 

V100 GPU. 

The speedups and running time of our optimized third-order TR decomposition are exhibited in 

Figure 5. The CPU implementation is referred from MATLAB code [11]. Compared with the CPU 

implementations, our optimized GPU implementation achieves 11.35 ×  on average and up to 

21.77× speedups, which are higher than GPU baseline implementations. The RSE of CPU and GPU 

are also on the 10e-4 level. Because of the overhead of iteration and data transfer, the speedup is less 

than one when the size of tensor is 100 × 100 × 100. The speedups of the optimized TR decomposition 

keep increasing with the size of tensor. 

5. Conclusions 

High-performance third-order tensor-train and tensor-ring decomposition implementations on GPUs 

are proposed in this paper. To improve the efficiency of the algorithms, three optimization strategies 

are proposed. First, efficient memory access is proposed to reduce the memory footprint. Second, 

parallelization strategies are widely adopted in algorithms to match GPUs. Third, we use the high-

parallel Jacobi SVD to reduce time for critical calculations.  

Moreover, we experimentally verify the advantages of our optimized decomposition algorithms. The 

third-order TT and TR decompositions get maximum of 6.67× and 6.36× speedups. Implementing 

multi-GPU implementations of high-order TT and TR decompositions is our future work. Meanwhile, 

the optimized third-order TT and TR decomposition algorithms will be combined into the cuTensor 

library [6]. 
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