
Three-Step Intelligent Pruning for Data Classification in Just-in-
Time Software Defect Prediction

Nan Luo
1, Ying Ma

1

1 Department of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China

Abstract
Just-in-time software defect prediction technology is a defect prediction method that enables

defect prediction of software change levels. The difficulties of learning classifiers from

imbalanced data is demonstrated in a variety of real-world applications,especially in this era of

big data, which has generated more classification tasks. Researchers have taken many existing

JIT-SDP efforts to assume that the features of software releases remain costant over time.

However, the researchers did not consider that JIT-SDP may be affected by the gradual

evolution of class imbalance. Specifically, class imbalance (that is, the number of changes

caused by defects is not adequately represented) has been changing over time, and the number

of clean class changes and defect class changes may both increase or decrease, so here In this

case, the existing JIT-SDP method becomes inapplicable. Taking these factors into

consideration, we propose a new imbalanced classification framework, which aims to achieve

data class balance by applying a new three-step smart pruning strategy, i.e., first undersampling

the majority class, then undersampling the minority class. Oversampling is performed, since

the minority class becomes the majority class after oversampling, as a result, the final stage is

to intelligently undersample the minority group that eventually becomes the dominant group.

Through these three steps, data balance is achieved before classification. Experiments show

that this new framework is very computationally efficient, leading to better performance even

under highly imbalanced distributions of clean and defective data. At the same time, our

proposed framework can also be easily adapted to most existing learning methods to improve

their performance on imbalanced data.

Keywords1

Machine Learning, JIT-SDP, Class Imbalance, Artifical Intelligence

1. Introduction

It is well known that reducing the number of software defects is a challenging problem, and the

process of software debugging requires high labor and material costs, especially when testing resources

are limited and software teams are often under intense pressure to deliver quickly. Therefore,

researchers have come up with many machine learning methods to predict if there are any flaws in the

source code of software, these machine learning methods can allocate more attention to software

components that may contain defects by rationally distributing testing and inspection efforts. Just-in-

Time (JIT) SDP is a special type of SDP method that, as soon as a software change occurs, identifies

the change that caused the defect (ie Just-in-Time).

In the current big data environment, most classifiers and learning techniques cannot handle the issue

of class imbalance well. Therefore, the issue of class imbalance is also an important factor to be

considered in instant defect prediction research. Among the traditional methods of dealing with

imbalanced data, several common algorithms include upsampling oversample for the minority class and

downsampling undersample for the majority class[1], and artificially synthesized minority class

ISCIPT2022@7th International Conference on Computer and Information Processing Technology, August 5-7, 2022, Shenyang, China

EMAIL: luonan@stu.xmut.edu.cn.com (Nan Luo); maying@xmut.edu.cn (Ying Ma)
©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

128

proposed by Chawla et al.[2]Oversampling (SMOTE). Borderline SMOTE[3], ADASYN[4] (Adaptive

Synthetic Sampling), and Majority Weighted Minority Oversampling (MWMOTE)[5] are some popular

smart sampling strategies.

A technique is used in our job,SSO-SMOTE-SSO is applied instead of oversampling rate boosting

(ORB). The purpose of intelligently pruning training data is achieved by combining undersampling and

oversampling in layers. The SSO algorithm is in charge of intelligent undersampling of majority class

data (expressed in the first and third steps of the algorithm), while the SMOTE algorithm is in charge

of minority class oversampling. Because it prunes both the majority and minority classes and keeps

only sample information that is useful for the classification task, such a sequential combination provides

an efficient solution to the class imbalance problem in the instant software defect prediction task. Our

paper is organized as follows: Section II contains a literature survey related to related work, Section III

has the precise procedures for the suggested strategy for dealing with imbalanced data, Section IV

analyzes the experimental setup and result analysis, and the last section presents general conclusions

are drawn.

2. Related work

In this section, we first briefly introduce the meaning and common evaluation metrics of instant

defect prediction, then introduce class imbalance learning and validation delay in defect prediction, and

finally introduce the methods involved in machine learning to solve class imbalance.

2.1. JIT-SDP

The software defect prediction technology mainly includes module-level, file-level and change-level

defect prediction according to different prediction granularities. The change-level defect prediction

aims at predicting whether the introduced code has defects when the developer submits the code. , so it

is also called just-in-time defect prediction. Kim et al.[6] were the first to investigate JIT-SDP. They

classified changes into clean and defective changes based on software change features such as adding

and removing deltas, directory/file names, metrics complexity, and so on. Several other research has

looked into the features of software changes that lead to defects and the underlying metrics (i.e., input

characteristics) used to predict them, Shihab et al.[7] investigated dangerous(defect-causing) changes,

including the day of the week[8] and time of day[9] when the change was committed. Lines of code

had been introdduced, and flaws were touching files, they discovered (i.e. ratio of bug fixes to total

changes touching files), number of bug reports associated with commits, and developer experience were

the top indicators of risky changes. Kamei et al.[10] conducted one of the largest JIT-SDP studies. They

used a number of factors gleaned from commits and bug reports, which are thought to be good markers

of software modifications that result in problems. They demonstrated that the indicators they utilised in

their research were highly predictive for both open source and commercial applications. As a result, we

employ the same measures in this study. The general just-in-time software defect prediction model is

shown in Figure 1.

Figure 1: Just-in-time defect prediction frame-work in general

129

2.2. Verification Latency in JIT-in-SDP

The fact that the labels of training samples may come later than their input features is referred to as

validation latency. Tan et al.[11] discovered that neglecting validation delays results in unduly

optimistic predictions of prediction performance, so they propose storing additional batches of training

data over time and using all batches received to develop a JIT -SDP classifier. After a predetermind

waiting time has elapsed, training examples are only available for building fresh batches. Their research

did not look into how long it takes to identify problems in the real world, and their proposed solution

assumes no change in class imbalance. Unlike their work, this study explores the impact of class

imbalance evolution on the JIT-SDP classifier’s prediction performance over time, provides techniques

to better handle class imbalance evolution, and investigates how long software changes normally take

to be identified as generating the defect class.

2.3. SDP Class Imbalance Learning

Class imbalance refers to the fact that the number of instances from different classes is not the same,

or even varies greatly. This is a common occurrence in a variety of real-world applications, such as in

fraud detection (normal vs. fraudulent), medicine (healthy vs. sick), software changes (clean vs.

defective). Mahmood et al.[12] showed that as the data became more imbalanced, the predictive

performance of the SDP classifier (according to the Mathews correlation coefficient) became worse;

Wang and Yao[13] did not Balanced learning techniques have been comprehensively studied, including

resampling, threshold shifting, and ensemble; Bennin et al.[14] presented a synthetic oversampling

approach based on genetic chromosome theory. Kamei et al.[15] studied the application of four

resampling strategies for fault-prone module detection. However, these methods adopt a fixed

resampling rate and consider the imbalance rate to be fixed over time, i.e., there is no need to

contemplate the growth of a class imbalance. Specifically, rather of allowing the resampling rate to

dynamically adjust to the current level of imbalance in the data, their parameter tuning procedure locks

the resampling rate utilised across the dataset to a single value. Uneven distribution of data brings great

difficulty to applying canonical learning algorithms on unbalanced data only. Although such problems

have been extensively studied, the existing models' performance still needs to be enhanced.

2.4. Machine Learning to Tackle Cla-ss Imbalance Evolution

To cope with class imbalance evolution, Wang et al.[16] suggested two online class imbalance

learning methods: enhanced undersampling online bagging UOB (Undersampling Online Bagging) and

improved oversampling online bagging OOB (Oversampling Online Bagging) (Oversampling Online

Bagging). These approaches keep track of the present rate of imbalance, i.e. the ratio of examples

𝜌𝑐
(𝑡)

belonging to each class 𝑐 ∈ {0,1} as follows:

𝜌𝑐
(𝑡)

= 𝜃′𝜌𝑐
(𝑡−1)

+ (1 − 𝜃′)(𝑦(𝑡) == 𝑐), (1)

where t represents the current time step; each time step corresponds to the algorithm being presented

with a new training example;(𝑦(𝑡) == 𝑐) represents if the training sample at time t is class c, it returns

1, otherwise it returns 0; 0 ≪ 𝜃 ‘ ≤ 1, 𝜃 ‘ is a predefined parameter, which is emphasized for adjusting

the latest data. A smaller 𝜃 ‘ is used for the current data, 𝜌𝑐
(𝑡)

 can reflect the change of the imbalance

rate faster, but noise may have a greater impact. Tracking the evolution of class imbalances entails

tracking (but not yet resolving) variations in imbalance rates. For the first time, this work investigates

the class imbalance evolution learning method under the condition of JIT-SDP, based on UOB and

OOB.

3. Proposed Method

In this section, SSO and SMOTE are the essential components of our suggested hybrid SSOMaj-

SMOTE-SSOMin. We present information regarding SSO, SMOTE, and the proposed variant three-

130

step sampling approach, as well as the related pseudo-code introduction.

3.1. Verification Latency Learning C-lassification Framework

Because we have no way of knowing whether a new software change will produce a bug at the

moment it is submitted, we consider that within Ω (wait time) days after the change submission, once

the change is found to cause a defect, the change will be marked as causing a defect Defective class

changes that would otherwise be marked as clean class changes. This waiting time Ω can be set by the

software administrator. After many experiments, it is found that it is more appropriate to set the waiting

time value to 90 days. This framework can also be applied to other classifiers.

3.2. A Three-step intelligent prun-ing strategy:SSO-SMOTE-SSO

To better address the problem of class imbalance, we use a three-step smart pruning technique to

replace the ORB[17] algorithm. Inspired by the work on oversampling and undersampling methods for

dealing with imbalanced classes, we try to stack several sampling methods in steps, i.e. perform a smart

pruning process for imbalanced classes through specific consecutive three processes. : 1. First, use the

sample subspace optimization algorithm (SSO) to undersample the majority class. SSO is a strategy for

locating the most representative majority class samples through intelligent majority class

undersampling, and then use these samples with the minority class. Class combination to provide

distinguishing information between the two; 2. Oversample the minority class using the SMOTE

algorithm. SMOTE's core strategy entails analysing minority class samples and artificially synthesising

new samples based on the minority class samples, which are then added to the data set; 3. The SSO

algorithm is used again to undersample the minority class after oversampling, so this strategy is called

SSO-SMOTE-SSO. Figures 2 to 4 summarize the pseudocode of the three algorithms involed.

Figure 2: Pseudo-code for SSO

Figure 3: Pseudo-code for SMOTE

Figure 4: Pseudo-code for SSO-SMOTE-SSO

131

4. Experiments & Analysis

To analyse the performance of just-in-time (JIT) models, we employ two well-known software

projects, QT and OPENSTACK. Developed by The Qt Company, Qt is a cross-platform application

framework that allows individual developers and organizations to contribute. OPENSTACK is an open-

source cloud computing software platform that is delivered as an infrastructure-as-a-service, giving

clients access to their resources. To obtain software changes that cause defect classes, we use Commit

Guru[18], a tool that evaluates and delivers change-level analysis, which provides change-level

indicators: (1) the size of the change; (2) what was the file changed; (3) the proliferation of changes; (4)

the developers' experience in making the adjustments; (5) the reason for the changes. The datasets used

in our work are simply summarised in Table I. Mc Intosh and Kamei [19] originally gathered and

curated this dataset. After final processing, Table 1 shows the relevant information from the two project

datasets, with the QT dataset having 23,912 commits and the OPENSTACK dataset having 22,757

commits.

Table 1
Information of the dataset used in this work

Dataset
Timespan Commits Imbalance ratio

Clean:defect start end clean defect total

QT 06/2011 03/2014 20330 3582 23912 5.676:1
OPENSTACK 01/2011 02/2014 16830 5927 22757 2.840:1

In the research of immediate defect prediction, the AUC score is often used as the evaluation index

of the model. AUC stands for Area under the Receiver Operating Characteristic Curve, and it refers to

the area beneath the curve of the receiver operating characteristic (ROC), which is mainly used for

Investigates performance on imbalanced class datasets, with values ranging from 0 to 1. The suggested

approach is used to analyse the QT and OPENSTACK data sets, and the ROC curve's area under the

curve (AUC) is given in Table 2. The results of multiple experiments show that for the treatment of

class imbalance problems, SSO-SMOTE is used. - The effect obtained by SSO processing the dataset

is more significant than that obtained by using only a single SMOTE method.

Table 2
Area Under Curve (AUC) from ROC curve analysis for various datasets

Methods QT OPENSTACK

SMOTE 0.742 0.758
SSO-SMOTE-SSO 0.765 0.803

5. Conclusion

In this paper, we identify and predict approxi-mately 50,000 modifications from two open source

projects using an innovative methodology that combines oversampling and undersampling methods to

finish the processing of imbalance classes in on-the-fly software defect prediction.This study

investigates the evolution of class imbalance in JIT-SDP, demonstrating that class imbalance is a

significant issue in JIT-SDP by verifying the delay architecture, after that, a three-step intelligent

sampling for class imbalance dataset was used. The method is used in a model that predicts software

defects in real time, and the correction of unbalanced data is completed before the classification process,

and the balanced data set is obtained to complete the defect prediction. In real datasets, the proposed

mixed sampling strategy provides an effective solution to the imbalanced number of clean and faulty

class changes (i.e. QT and OPENSTACK). Our future research will focus on how to handle class-

imbalanced data distributions more quickly and accurately to produce an on-the-fly software defect

prediction model with shorter run times and more accurate prediction outputs.

132

6. References

[1] Japkowicz, Nathalie, and Shaju Stephen. "The class imbalance problem: A systematic study."

Intelligent data analysis 6, no. 5 (2002): 429-449.

[2] Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. "SMOTE:

synthetic minority over-sampling technique." Journal of artificial intelligence research 16 (2002):

321-357

[3] Han, Hui, Wen-Yuan Wang, and Bing-Huan Mao. "Borderline-SMOTE: a new over-sampling

method in imbalanced data sets learning." In International Conference on Intelligent Computing,

pp. 878-887. Springer, Berlin, Heidelberg, 2005.

[4] He, Haibo, Yang Bai, Edwardo A. Garcia, and Shutao Li. "ADASYN: Adaptive synthetic sampling

approach for imbalanced learning." In Neural Networks, 2008. IJCNN 2008.(IEEE World

Congress on Computational Intelligence). IEEE International Joint Conference on, pp. 1322-1328.

IEEE, 2008.

[5] Barua, Sukarna, Md Monirul Islam, Xin Yao, and Kazuyuki Murase. "MWMOTE--majority

weighted minority oversampling technique for imbalanced data set learning." IEEE Transactions

on Knowledge and Data Engineering 26, no. 2 (2014): 405-425.

[6] S. Kim, E. J. W. Jr., and Y. Zhang, “Classifying software changes: Clean or buggy?” IEEE
Transactions on Software Engineering (TSE), vol. 34, no. 2, pp. 181–196, 2008.

[7] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial study on the risk of software

changes,” in Proceedings of the 20th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), 2012, pp. 1–11.

[8] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce ´ fixes?” in Proceedings
of the 17th International Workshop on Mining Software Repositories, ser. MSR ’05, 2005, pp.

1–5.

[9] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer experience affect commit

bugginess?” in Proceedings of the 8th Working Conference on Mining Software Repositories
(MSR), 2011, pp. 153–162.

[10] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi, “A large-

scale empirical study of just-in-time quality assurance,” IEEE Transactions on Software
Engineering (TSE), vol. 39, no. 6, pp. 757–773, 2013.

[11] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for imbalanced data,” in

Proceedings of the 37th International Conference on Software Engineering (ICSE), 2015, pp.

99–108.

[12] Z. Mahmood, D. Bowes, P. Lane, and T. Hall, “What is the impact of imbalance on software defect

prediction performance?” in Proceedings of the 11th International Conference on Predictive
Models and Data Analytics in Software Engineering (PROMISE), 2015, pp. 4.1–4.4.

[13] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,” IEEE
Transactions on Reliability (TR), vol. 62, no. 2, pp. 434–443, 2013.

[14] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah, “Mahakil: Diversity based

oversampling approach to alleviate the class imbalance issue in software defect prediction,” IEEE
Transactions on Software Engineering (TSE), vol. 44, no. 6, pp. 534–550, June 2018.

[15] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K. Matsumoto, “The effects of over and

under sampling on fault-prone module detection,” in Proceedings of the 1st International
Symposium on Empirical Software Engineering and Measurement (ESEM), 2007, pp. 196–204.

[16] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble methods for online class

imbalance learning,” IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 27,

no. 5, pp. 1356–1368, 2015.

[17] Cabral G G, Minku L L, Shihab E, et al. Class imbalance evolution and verification latency in just-

in-time software defect prediction[C]//2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE). IEEE, 2019: 666-676.

[18] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convolutional neural

networks,” arXiv preprint arXiv:1301.3557, 2013.

133

[19] S. McIntosh and Y. Kamei, “Are fifix-inducing changes a moving target?: A longitudinal case

study of just-in-time defect prediction,” in Proceedings of the 40th International Conference on
Software Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp. 560– 560. [Online].

Availa-ble:http://doi.acm.org/10.1145/3180155.3182514.

134

