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Abstract
Accurate detection of landslides plays an important role in post-disaster search and rescue operations. In this paper, we
propose SwinLS for efficient landslide detection in remote sensing images using the swin transformer model. We explore
how to efficiently utilize the self-attention mechanism in swin transformer for landslide detection tasks from two aspects.
The first aspect is the spectral selection and data enhancement. The second aspect is to reduce imbalanced interference. After
that, the performance of the improved swin transformer model is greatly improved, which provides a preliminary exploration
for the application of the visual transformer model for remote sensing landslide detection tasks and even anomaly detection
tasks. Finally, the proposed SwinLS, achieved the 2nd place in the test leaderboard with 73.99% F1 score, and it differs from
the 1st place of 74.54% by only 0.55% F1 score.
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1. Introduction
Landslides have become more frequent due to drastic
climate change, surface activity, and accidents, threaten-
ing the lives and properties of residents in these areas.
Accurate detection of landslides plays an important role
in post-disaster search and rescue operations. As an effi-
cient and convenient solution, automatic interpretation
of landslide areas from remote sensing images has re-
ceived extensive attention from scholars [1]. To advance
this research, Ghorbanzadeh and Xu et al. [2] release a
large-scale landslide detection dataset with pixel-level
labels, named Landslide4Sense, and established a related
benchmark.

The Landslide4Sense dataset contains multi-spectral
imagery from multiple regions and cities collected by
Sentinel-2 satellites. The data format is pixel blocks of
size 128 with 14 spectrum bands including RGB, VEG
(Vegetation Red Edge), NIR, WV (Water vapour), and
SWIR. This dataset is finely marked by experts to pin-
point the location of the landslide. In the Landslide4Sense
benchmark, Ghorbanzadeh and Xu et al [2] tried a se-
ries of classic convolution-based semantic segmentation
models, such as ResUNet[3], PSPNet[4], ContextNet[5]
and DeepLab [6], treating landslide detection as a binary
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supervised pixel-level classification task. Among these
models, they found through experiments that ResUnet
achieved the best verification performance on landslide
detection tasks, which is due to its reasonable utilization
of multi-scale features.

Nonetheless, we believe that this is not enough, be-
cause two important issues of landslide detection are
ignored. The first is the spatial correlation of landslide
data and the second is the imbalanced problem in land-
slide detection. For the former, we were motivated by
the observation that the spectra after the collapse of the
slopes exhibited often strong similarities. For the latter,
we are inspired by the category statistics in Ghorban-
zadeh and Xu’s paper[2], showing that the proportion
of landslides is much smaller than that of non-landslide,
which is in line with the anomaly detection problem. To
address these issues, we introduce the swin transformer
[7] model to capture the relationship between landslide
regions and design a training strategy for it to solve the
imbalance problem.

The swin transformer is a recently proposed vision
transformer model that has demonstrated strong perfor-
mance on numerous tasks [7]. The key technology en-
abling this model is the self-attention mechanism, which
aggregates spatial relationships to extract semantic fea-
tures. However, it is not a good way to directly apply
this model to multi-spectral remote sensing data for land-
slide detection, such as the Landslide4Sense dataset, be-
cause all spectral segments in multispectral contain tar-
get information. Those useless spectra will introduce
massive noise in the feature aggregation process of the
self-attention mechanism. Therefore, we first performed
spectral selection experiments to determine which spec-
tra are suitable for performing self-attention based fea-
ture aggregation. Finally, we use the RGB spectrum to
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train the swin transformer model. To complement it, we
use CUTMIX [8] and random rotation data augmentation
to prevent overfitting of larger capacity models.

To solve the imbalance problem in landslides detec-
tion, we design a two-stage balanced training strategy to
make the model better focus on foreground (landslides)
categories. In the first stage, we train the feature extrac-
tor and classifier with weighted cross entropy loss to get
better feature representation. In the second stage, we
fix the feature extractor and fine-tune the classifier with
ordinary cross entropy loss to weaken the bias of the
classifier. This strategy better mitigates the misleading
of the classifier due to the imbalance between landslide
classes and non-landslide classes.

Finally, the proposed method called SwinLS, achieved
the 2nd place in the test leaderboard with 73.99% F1
score, and it differs from the 1st place of 74.54% by only
0.55% F1 score.

2. Methods
As shown in Figure 1, SwinLS is a network of codec
structure, and there are hop links between codecs. Its
encoder 𝐸 is composed of the base structure of swin
transformer, which has a powerful feature representation
capability. Its decoder 𝐷 uses a convolutional structure
for decoding and fusing multi-level features for output.
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Image-level loss

Pixel-level loss

Landslide?
No:0  Yes: 1

Input RGB image

Model structure 

Stage1: Training

Stage2: Fixed Stage2: Training

2x

4x
8x
16x

Figure 1: Network structure diagram.

For self-attention mechanism in swin transformer to
work better in the landslide detection, we performed
spectral selection experiments (see Tabel 1 and Figure 1),
Finally, we selected the RGB spectrum from the multi-
spectral input into the model. To alleviate the foreground
and background imbalance in landslide detection, we de-
sign a two-stage training strategy. In the first stage, the
codecs are trained simultaneously. For any input samples
𝑥𝑖 ∈ 𝑅𝑤×ℎ×3, we use weighted cross-entropy loss 𝐿𝑤𝑐𝑒

and Lovasz loss 𝐿𝑙𝑜𝑣 [9] for balanced training as follows,

argmin
𝐸,𝐷

𝐿𝑤𝑐𝑒 + 𝐿𝑙𝑜𝑣 + 𝐿𝑖𝑐𝑒. (1)

The 𝐿𝑖𝑐𝑒 loss is the image-level loss performed in high-
level semantic features in the encoder to assist training,
which is defined as follows,

𝐿𝑖𝑐𝑒 = − 1

|𝒳 |
∑︁
𝑥𝑖∈𝒳

𝛿(𝑦𝑖) log𝑀𝑃 (𝐸(𝑥𝑖)), (2)

where 𝛿 is pointer function. When there is a pixel stand
for positive sample (landslide) in 𝑦, its value is 1, oth-
erwise it is 0. 𝑀𝑃 (·) is a fully connected layer with a
global pooling operation. 𝒳 stands for the total data set.
The 𝐿𝑤𝑐𝑒 loss is defined as follows,

𝐿𝑤𝑐𝑒 = − 1

|𝒳 |
∑︁
𝑥𝑖∈𝒳

𝑁𝑛𝑒𝑔

𝑁𝑝𝑜𝑠
𝑦𝑖 log𝐷(𝐸(𝑥𝑖)), (3)

where 𝑁𝑛𝑒𝑔 stands for the number of negative samples
(non-landslides) and 𝑁𝑝𝑜𝑠 stands for the number of posi-
tive samples (landslides) in any input image 𝑥. As men-
tioned in [10], this re-weighting method can play a posi-
tive role in balancing the feature distribution of positive
and negative samples. However, the classifier will still be
biased. Therefore, in the second stage, we fix the trained
encoder 𝐸 and use the standard cross-entropy loss 𝐿𝑐𝑒

to train the decoder 𝐷.

argmin
𝐷

𝐿𝑐𝑒 + 𝐿𝑖𝑐𝑒. (4)

3. Experiment
In this section, we show the performance of the methods
proposed above, respectively. Due to the limited number
of submissions of test data in the final stage, the data
provided in our ablation experiments are all performance
on the validation set.

Spectral selection Since the Transformer model
needs to perform feature aggregations using self-
attention mechanism to extract high-level semantic fea-
tures. If irrelevant spectral information occupies domi-
nant information, it will have a significant impact on the
performance of swin transformer. To this end, we per-
form a set of experiments verifying the effect of different
spectral inputs, as shown in Table 1.

In Table 1, we discovered an interesting phenomenon.
With the increase of spectral banks, the performance of
the fully convolutional models, such as deeplabv3 and
Unet, show a gradually increasing trend, while the per-
formance of swin transformer is severely degraded. We
find out it is because the dimensionality enhancement
in the fully convolutional model may attenuate the neg-
ative effects of irrelevant channels. Swin transformer,
on the other hand, uses the dot product to preform the
self-attention mechanism. When the spectral content
unrelated to the landslide dominates, the attention is se-
riously dissipated, which makes the aggregated features



Table 1
Spectral selection experiments. In this table, the RGB denotes
the red, green, and blue spectral. SWIR denotes the 3-band
far infrared in Sentinel-2. NGB denotes the near-infrared,
green, and blue spectral. NIR denotes the near-infrared spec-
tral. PCA refers to the use of dimensionality reduction tech-
niques [11] for compressing the original 14 banks into 3 banks.
Besides, the encoder of unet model is replaced by resnet-32
and the encoder of deeplab model is also resnet-32. The en-
coder of swin transformer is swin-B. The metrics reported in
the table are F1 scores.

Input spectral banks Input banks Swin Deeplabv3 Unet
RGB 3 65.6 58.0 59.2
SWIR 3 55.6 50.2 52.1
NGB 3 60.8 59.2 58.9

PCA [11] 3 49.5 46.8 52.4
RGB + NIR 4 63.3 57.2 59.4

RGB + SWIR 6 58.2 55.9 59.8
RGB + NIR + SWIR 7 54.8 57.5 60.0

All banks 14 55.8 57.8 61.1

contain a lot of noise and are less discriminative. Through
the above experiments, we selected the RGB spectrum as
the input of swin transformer. Moreover, we clearly show
a visualization of the dissipation of swin transformer’s
attention as the spectrum increases, as shown in Figure
2. This figure further verifies the above conclusion.

a. Image b. RGB c. RGB+SWIR d. RGB+NIR+SWIR e. Ground Truth

Figure 2: Visualization of the feature activation map of the
swin transformer when inputting different spectral banks.
We show the features from the last layer of swin transformer
model in the training set.The redder the feature activation di-
agram, the greater the response.

In addition, Table 1 also shows that the swin trans-
former without any enhancements shows a very good
baseline performance after properly selecting the spec-
trum. Therefore, our subsequent implementations rely
on this strong baseline model to further improve the
performance for detecting landslide.

Data augmentation When the task of landslide de-
tection only uses RGB spectrum, the data pattern will be
relatively simple, which increases the risk of overfitting.

In addition, the swin transformer model has a large ca-
pacity and is easier to memorize and lose generalization
under such simple data. To this end, we designed data
augmentation experiments to verify the transformation
methods for landslide detection using only RGB spectral
information, as shown in Table 2. We also add the Unet
model that uses all banks to compare with it.

Table 2
Data augmentation experiments. For both models, we ran-
domly flip the input data as the baseline. The metrics re-
ported in the table are F1 scores.

Transformation Swin transformer Unet
None (baseline) 65.6 61.1

color enhancement 62.1 60.3
cutout [12] 65.9 62.1
cutmix [8] 66.0 62.6

rotate and shift 69.8 63.7

Table 2 shows that random color augmentation de-
grades the performance of swin transformer, while it
improves the Unet model. We analyze that this is be-
cause the RGB samples to be tested are also collected
from mountainous areas, and the color space is not rich,
so color enhancement leads to invalid generalization. The
purpose of these two strategies, cutout and cutmix, is to
disrupt the spatial layout of images so that the model can
learn robust representations, and both slightly improve
the performance of the two models. For swintransformer,
the most effective way to enhance the data is to rotate
and translate the data, which directly improves the F1
score by 4.2%. This augmentation increases the difficulty
of capturing the relationship between landslides, which
is very effective for swin transformer model. For unet,
although this method is effective, the overall improve-
ment strength is not as good as that of swin transformer.
In general, after the data enhancement of rotation and
translation, the F1 score of transformer is 6.1% higher
than that of unet.

Balanced training We tried multiple sets of meth-
ods for balanced training, to verify the effectiveness of
these methods, as shown in Table 3. Among them, nor-
mal training is a one-stage training method using cross
entropy loss. For weighted cross entropy loss, we use
the scale coefficients of positive samples and negative
samples as the loss weighting coefficient of negative sam-
ples. This method has achieved a certain improvement
by weighting the positive and negative pixels, but the im-
provement is relatively limited. Focal loss [13] balances
easy and hard samples by modifying their gradients for
back propagation, and is also used in many unbalanced
scenarios. But on this task, the performance degrades
when this loss is added. Our analysis is that it has a great
influence on the gradient, and inappropriate hyperpa-
rameters will greatly affect the performance. Lovasz loss



[9] is a loss that directly optimizes the IoU coefficients,
which is efficient and used as the first stage loss for our
balanced training. Balanced training achieves the best
performance, which further corrects the bias of the clas-
sifier. Finally, balanced training improves the F1 score by
4.1% on the basis of baseline. The results of this strategy
are visualized in Figure 4.

Table 3
Balance training experiments. We use swin transformer with
data augmentation and normal training (only using cross en-
tropy loss) as the baseline model. The metrics reported in the
table are F1 scores.

Training Swin transformer Unet
Normal training 69.8 63.7

Weighted cross entropy 70.8 64.9
Focal loss [13] 68.2 61.8
Lovasz loss [9] 72.3 66.4

Balance training 73.9 67.7

Self-training. We also use self-training techniques
to further improve the model performance, as shown in
Table 4. We verify who to select pseudo-labels is suitable
for landslide detection. We sorted the output probabil-
ities predicted in the previous stage, selected the top
𝜆% high-confidence pixel-level pseudo-labels and added
them to the training data for self-training. The number
of percentages selected should be explored, i.e. 𝜆.

Table 4
Self-training experiments with different 𝜆 values. ST denotes
the self-training.

𝜆 Precision (%) Recall(%) F1(%)
- (Before ST) 73.4 74.7 73.9

50% 65.2 80.5 72.7
70% 69.3 79.5 73.7
90% 72.4 77.1 74.9
100% 78.2 74.2 76.1

In Table 4, we found that when 𝜆 is small, the accuracy
rate after self-training will degrade seriously, but the re-
call rate will improve significantly. This is because when
the 𝜆 is small, the selected landslide area is only located
in the center of the landslide, and the pixels in the sur-
rounding area will be ignored due to low confidence. This
makes the self-trained model tend to predict all surround-
ing similar blocks as landslides, resulting in increased
over-detection of landslides. As the selected landslide
area continues to increase, the accuracy of the model
continues to rise, and the recall rate begins to decline.
This shows that with the addition of many inaccurate
pseudo-labels, it has played a strong role in preventing
over-detection. And the model can learn more knowledge
about the samples to be tested from the noisy training
data, which increases the accuracy.

a. Test Image b. 𝝀𝝀 = 𝟓𝟓𝟓𝟓𝟓 c. 𝝀𝝀 = 𝟕𝟕𝟓𝟓𝟓 d. 𝝀𝝀 = 𝟗𝟗𝟓𝟓𝟓 e. 𝝀𝝀 = 𝟏𝟏𝟓𝟓𝟓𝟓𝟓

Figure 3: Visualization of pseudo labels when different
lambda values are selected. In the pseudo labels, black rep-
resents Class 0 (non landslide), red represents class 1 (land-
slide), and white represents ignored classes.

a. Test Image b. Normal Training c. Balance Training d. Self Training

Figure 4: Visualization of model output after adding differ-
ent strategies.

In practical application, we can reasonably design this
parameter according to the requirements. When we need
to roughly find more areas that may be landslides, we
design a smaller lambda. When we need to detect the
landslide area more accurately, we design a larger lambda.

Furthermore, we visualize example plots for picking
pseudo-labels with different 𝜆 values, as shown in Figure
3. We also visualize the output of the self-trained model
in Figure 4, which further supports the above conclusion.
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