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Abstract
The goal of landslide detection is to detect regions with landslide events. It is critical for emergency response and disaster
monitoring. This study is based on the context of Landslide4Sense competition, whose goal is to promote effective and
innovative algorithms to detect landslides across different continents, using Sentinel-2 and ALOS PALSAR data. Considering
its global-scale coverage, studying the generalization performance of the landslide detection model on unseen regions turns
out to be an important task. To this end, we propose a self-training method to improve the generalizability of the landslide
detection model by exploiting the pseudo labels of unlabeled samples with low uncertainty. According to experimental results,
the proposed self-training method is effective in bridging the shifts between labeled and unlabeled data, and achieves the
rank of the 3rd place on the Landslide4Sense competition.
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1. Introduction
With the ongoing climate change and the rapid urbaniza-
tion in landslide-prone terrains, Landslides have become
an increasingly threatening hazard in mountainous ar-
eas and started to affect a large amount of population.
In order to accurately and rapidly monitor the landslide
events occurred over the world, satellite data are con-
sidered as a promising data source owing to their high
global coverage, relatively high temporal and spectral
resolution.

In a technical point of view, the landslide detection
problem based on satellite data can be regarded as a bi-
nary semantic segmentation problem, where the learning
based model is required to distinguish the landslides with
background areas. In the computer vision society, seman-
tic segmentation has always been a popular research
topic. From the earlier Fully Convolution Network (FCN)
[1, 2] to the currently dominating transformer-based ap-
proaches [3, 4], tremendous improvements have been
witnessed with the developments of the network archi-
tecture. As reported in [5], several baseline semantic
segmentation models have demonstrated promising per-
formances in the task of landslide detection.

In addition to designing more sophisticated and task
specific network architectures, the research towards the
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transferability of semantic segmentation model is also
of great importance. Due to the different atmospheric
conditions, shooting angles and illuminations, satellite
data across different regions may have large domain shifts
[6]. As a result, the semantic segmentation model trained
on specific areas may fail to generalize to different unseen
regions across the world in different periods of time.

Self-training approaches have been demonstrated to
be effective in promoting the generalizability of deep
learning models in the field of semi-supervised learning
and domain adaptation [7]. They first generate pseudo
labels on the unlabeled data based on a teacher model
pre-trained on labeled data. Then the pseudo labels with
high confidence will be used to supervise the training
of the student model on the unlabeled data. With this
considered, we propose a self-training method based on a
Monte-Carlo dropout uncertainty [8] and class-balanced
thresholding. The contributions of this paper can be
listed as follows:

• We propose a self-training method based on
Monte-Carlo dropout uncertainty and class-
balanced thresholding on the task of landslide
detection. The experimental results demonstrate
that the proposed method can provide significant
improvements over the baseline, and help to im-
prove the generalizability of semantic segmenta-
tion models.

• We technically prove the effectiveness of the pro-
posed method on Landslide4Sense competition,
where we achieve the 3rd prize with a testing F1
score of 73.50%.
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Figure 1: Pipeline of the proposed self-training method. In each training step, a batch of labeled and unlabeled data will
be given to the teacher and the student models, where data augmentations and mix-up operation [9] will be applied to the
student model branch. For labeled data, supervised losses will be calculated based on the provided labels. For unlabeled data,
we first apply Monte-Carlo dropout [8] on the teacher model to estimate the uncertainty of unlabeled predictions, and then
generate the pseudo labels based on a class-balanced threshold (see 2.3). The teacher model will be fixed during training.

2. Methodology
We illustrate the pipeline of the proposed method in Fig.
1. The remaining parts of this section will formulate the
landslide detection problem and elaborate the methodol-
ogy in details.

2.1. Problem Formulations
In the landslide detection problem, we are given a set
of labeled training data 𝒟𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑡𝑟, 𝑦𝑡𝑟}, and un-
labeled test data 𝐷𝑡𝑒𝑠𝑡 = {𝑥𝑡𝑒}, where 𝑥𝑡𝑟 , 𝑦𝑡𝑟 , and
𝑥𝑡𝑒 ∈ R𝐻×𝑊 are each training patch, training label, and
test patch, respectively. Our task is to train a semantic
segmentation model on 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡, and optimize
its performance on 𝒟𝑡𝑒𝑠𝑡. The overall loss function of
the proposed method is:

ℒ = ℒ𝑚𝑖𝑥
𝑠𝑢𝑝 + ℒ𝑚𝑖𝑥

𝑝𝑠𝑒 . (1)

The mix supervised loss ℒ𝑚𝑖𝑥
𝑠𝑢𝑝 and pseud label loss ℒ𝑚𝑖𝑥

𝑝𝑠𝑒

will be formulated in Sec. 2.4

2.2. Supervised Losses
We use cross entropy loss and jaccard loss as the super-
vised losses:

ℒ𝑠𝑢𝑝(𝑥𝑡𝑟, 𝑦𝑡𝑟) = ℒ𝑐𝑒𝑡(𝑥𝑡𝑟, 𝑦𝑡𝑟) + ℒ𝑗𝑎𝑐(𝑥𝑡𝑟, 𝑦𝑡𝑟). (2)

2.3. Self-training
As shown in Fig. 1, a teacher model pre-trained on the
training data will be used to generate pseudo labels for
supervising the student model. However, since the raw
pseudo labels are usually noisy, a selection strategy is
required to filter out the misclassified pixels.

First, we use the Monte-Carlo dropout strategy [8] to
estimate an uncertainty map for each input test patch.
More specifically, we forward the test patch to the source
model with 10 different runs. In each run, random
dropout with 0.3 dropping rate will be applied to the
feature map obtained by the first convolution layer. The
variances of 10 different output logits will be considered
as the uncertainty map.

Second, we mask out the uncertain predictions from
the teacher model. Inspired by [7], we propose to select
a certain proportion of the pixels for each class with the
lowest uncertainty among all the test data. To this end,
90% of the background pixels and 70% of the landslide
pixels are utilized, and the others will be ignored when
calculating the losses. Finally, the pseudo label loss can
be formulated by:

ℒ𝑝𝑠𝑒(𝑥𝑡𝑒, 𝑦𝑡𝑒) = ℒ𝑐𝑒𝑡(𝑥𝑡𝑒, 𝑦𝑡𝑒) + ℒ𝑗𝑎𝑐(𝑥𝑡𝑒, 𝑦𝑡𝑒). (3)

Here 𝑦𝑡𝑒 corresponds to the pseudo labels generated by
the teacher model.



2.4. Mix-up Strategy
To prevent the model from overfitting to the training data,
a mix-up strategy [9] is applied to both the training and
test data to further increase the generalizability. Given
a batch of training and test data, the mixed data can be
generated by:

𝑥̃𝑡𝑟 = 𝜆𝑥𝑡𝑟 + (1− 𝜆)𝑥
′
𝑡𝑟,

𝑥̃𝑡𝑒 = 𝜆𝑥𝑡𝑒 + (1− 𝜆)𝑥
′
𝑡𝑒.

(4)

Here 𝑥
′
𝑡𝑟 is derived from 𝑥𝑡𝑟 , where all the image patches

in the same batch are shuffled. 𝜆 is a scalar randomly
sampled from a predefined beta distribution during train-
ing. Then we can reformulate the supervised and pseudo
label losses as:

ℒ𝑚𝑖𝑥
𝑠𝑢𝑝 = 𝜆ℒ𝑠𝑢𝑝(𝑥̃𝑡𝑟, 𝑦𝑡𝑟) + (1− 𝜆)ℒ𝑠𝑢𝑝(𝑥̃𝑡𝑟, 𝑦

′
𝑡𝑟),

ℒ𝑚𝑖𝑥
𝑝𝑠𝑒 = 𝜆ℒ𝑝𝑠𝑒(𝑥̃𝑡𝑒, 𝑦𝑡𝑒) + (1− 𝜆)ℒ𝑝𝑠𝑒(𝑥̃𝑡𝑒, 𝑦

′

𝑡𝑒).
(5)

2.5. Post-processing
We apply the dense conditional random field (DenseCRF)
[10] as a post-processing technique to better match the
predicted landslide contours with the ground truth.

3. Experiments

3.1. Datasets
The proposed method is developed and evaluated on
the Landslide4Sense competition [5]. The provided data
consist of 12 Sentinel-2 bands and 2 topological bands
including SLOP and DEM, both of which are derived
from ALOS PALSAR. Each band is resized to 10 meter
resolution per pixel. The data are cropped to 128× 128
patches. 3799, 245 and 800 patches are provided for
training, validation and testing, respectively.

3.2. Implementation Details
For the overall training setting, we use SGD optimizer
with Nesterov acceleration to train the network, where
the momentum and weight decay are set to 0.9 and
5× 10−4, respectively. The batch size is set to 16, and
the training lasts for 60, 000 iterations. For data pre-
processing, we normalize the first 12 bands by linearly
scaling them to the range of [0, 1]. For data augmen-
tation, we perform random flipping, random resizing
and cropping, and finally resize the patch to the size of
256× 256.

The time period of the Landslide4Sense competition
includes a validation phase and a test phase. During

the validation phase, only validation data are released.
During the test phase, the test data will be available, yet
the chances for submitting the results for evaluation will
be limited. With this as background information, we give
the workflow of training our final model as follows.

• Model 1. We first train a base model using solely
the training data, which means the teacher branch
in Fig. 1 is blocked. ResNet50 [11] and Deeplab
V3+ [12] are used as the backbone and the de-
coder, respectively. The ResNet50 backbone is
initialized using the ImageNet pretrained weights.
The training lasts for only 30, 000 iterations to
avoid overfitting.

• Model 2. This model is developed during the
validation phase, where we use Model 1 as the
teacher model, and validation data as the unla-
beled data. The architecture is based on HRNet
[13].

• Model 3. Compared to Model 2, the only differ-
ence of Model 3 is that we apply a ResNext50
[14] backbone and a Deeplab V3+ [12] architec-
ture.

• Final Model. The final model uses all the valida-
tion and test data as unlabeled data. Following Fig.
1, its student model is pre-trained on Model 3,
and Model 2 is considered as the teacher model.

3.3. Results
The final results on the test leaderboard are shown in
Tab. 1. For our methods, we plot the results of the Final
Model andModel 2. Due to the limited submission times,
the other models were not evaluated. By comparing the
results of Model 2 to Final Model, one can observe that
pre-training on a different architecture (Model 3) helps
to improve the performance of the Final Model.

Some qualitative results on the testing data are shown
in Fig. 2. According to the results, the proposed method
can successfully distinguish the road areas with the land-
slides, which are similar to each other in RGB appear-
ances. However, some small landslides that fall to the
road are also ignored (see the first two rows). By compar-
ing the raw predictions and the post-processed results,
we notice that DenseCRF will remove some isolated land-
slide predictions, but help to shrink them to better fit
to the spatial topology (see red rectangles in the last
column).

3.4. Ablation Study
We perform the ablation study based on the validation
data and list the results in Tab. 2. It can be observed that
both Model 2 and Model 3 are superior to Model 1 by
a large margin. In addition, if the self-training branch is
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Figure 2: Qualitative results on test data. From left to right columns, we visualize the RGB, DEM and SLOP channels of the
data, MC-dropout-based uncertainty maps, predictions from the network and the post-processed results by DenseCRF.

Table 1
F1 score (%) during the test phase.

Team Name F1

kingdrone 74.54
seek 73.99

ours (Final Model) 73.50
ours (Model 2) 72.50

sikui 71.87
sklgp 71.29
bao18 70.15

blocked, the performance will be decreased. This demon-
strates the effectiveness of the proposed self-training
method.

4. Conclusions
This paper studies the landslide detection problem and
propose a self-training method to improve the generaliz-
ability of the semantic segmentation model. The experi-
mental results on Landslide4Sense dataset demonstrate
that the proposed method can help to bridge the gap

Table 2
Ablation study results during the validation phase (%). “w/o
ST” means the self-training or the teacher model branch in
Fig. 1 is blocked. “CRF” means DenseCRF is activated as the
post-processing method.

Model Precision Recall F1

Model 1 69.70 82.60 75.60
Model 1 + CRF 76.82 80.48 78.61

Model 2 (w/o ST) 66.96 81.23 73.41
Model 2 75.60 82.21 78.76

Model 2 + CRF 82.45 78.36 80.35

Model 3 (w/o ST) 65.63 82.31 73.03
Model 3 73.89 82.34 77.88

Model 3 + CRF 80.19 78.94 79.56

between labeled and unlabeled data.
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