
Disaster Detection from SAR Images with Different
Off-Nadir Angles Using Unsupervised Image Translation
Jian Song1,2, Bruno Adriano2 and Naoto Yokoya1,2,∗

1The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
2RIKEN AIP, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

Abstract
Synthetic aperture radar (SAR) images observed at different off-nadir angles have different intensities, and change detection
methods using difference images do not work well. This problem hinders emergency response when there is no archive data
with a consistent off-nadir angle as emergency SAR observation. In this paper, we investigate unsupervised image translation
methods based on generative adversarial networks and autoencoders to detect flood and landslide areas using SAR images
observed at different off-nadir angles. Comprehensive experiments of disaster detection using ALOS-2 PALSAR-2 images for
three floods and two landslides show that the developed methods can significantly improve the accuracy of disaster detection
using pre- and post-disaster images observed at different off-nadir angles.
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1. Introduction
Synthetic aperture radar (SAR) can acquire images in bad
weather conditions and at night, and thus it is effective
in assessing the situation during emergency response.
In particular, floods and landslides are often caused by
heavy rainfall, and since the weather conditions are often
bad, SAR images are more suitable than optical images
for rapid detection of disaster areas in a wide area.
The straightforward method for detecting flood and

landslide areas from SAR is image analysis [1], such
as thresholding the difference between pre- and post-
disaster images. This method assumes that the two
images are observed at the same off-nadir angle. Re-
cently, with the success of advanced machine learning
algorithms, researchers have developed techniques using
pairs of SAR data and deep convolutional neural net-
works [2, 3]. Although previous methods have excellent
performance for detecting land changes, they still fol-
low the primary assumption of image analysis: having a
set of pre- and post-disaster images with almost similar
acquisition conditions (e.g., off-nadir angle). Attempts
to perform change detection analysis using SAR images
with different acquisition conditions have been focused
mainly on urban environments or forest areas by exploit-
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ing the double-bounce features of SAR images [4, 5, 6].
However, considering that floods primarily occur on plain
surfaces, where the SAR’s double-bounce is almost negli-
gible, we can not apply the previous techniques directly
to assess flood extent assessment.
In this paper, we study disaster area detection using

SAR images with different off-nadir angles by unsuper-
vised image translation. Two methods are developed,
one that accounts for changes in the ground surface and
one that does not. We conduct experiments on several
datasets of flood and landslide disasters and investigate
the characteristics of these methods with respect to the
magnitude of the difference in off-nadir angles.

2. Image Translation for Change
Detection

To cope with nonlinear differences between two period
images caused by differences in off-nadir angles, we in-
vestigate unsupervised image translation based on con-
volutional neural networks (CNNs). Encoder-decoder
neural networks are applied to translate one image into
an image obtained at the same off-nadir angle as the
other image. The following subsections describe two
methods investigated in this paper: 1) image translation
based on conditional generative adversarial networks
(cGAN) [7, 8] that does not consider the presence or
absence of change, and 2) image translation based on
code-aligned autoencoders [9] that takes into account
surface change.
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Figure 1: cGAN-based image translation without considera-
tion of change.
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Figure 2: Code-aligned autoencoders (CAA).

2.1. Conditional Generative Adversarial
Networks

Figure 1 shows an overview of the cGAN-based image
translation method that does not consider the presence
or absence of change. The developed method consists
of a generator with an encoder-decoder structure (i.e.,
U-Net [10]) to translate low-pass filtered image 1 into
low-pass filtered image 2 during the training phase, and
a discriminator to determine whether the transformed
image is the true low-pass filtered image 2. The generator
learns to trick the discriminator and the discriminator
learns to detect that the translated image is false. In the
inference stage, we discard the discriminator and apply
the generator to the original image 1 to convert to image 2
with the same off-nadir angle. The method assumes that
the low-pass filtered image pair contains relatively slight
changes in the ground surface. Thus, differences in im-
ages due to differences in off-nadir angles are somewhat
easier to transform using a U-Net than differences in im-
ages due to changes in the ground surface; therefore, the
generator only achieves the translation corresponding
to the former. The difference image between translated
image 1 and image 2 is subjected to thresholding to detect
the change area.

2.2. Code-Aligned Autoencoders
We extend the image translation-based change detection
method proposed by Luppino, et al. [9] that takes changes

into account. Figure 2 shows an overview of the method.
We train two different encoder-decoders for each disaster
image pair by switching decoders. One is used to trans-
form the pre-disaster image 𝑋 ∈ ℝℎ×𝑤 to the post-disaster
image 𝑌 ∈ ℝℎ×𝑤 with the same off-nadir angle, and the
other is used to transform the post-disaster 𝑌 ∈ ℝℎ×𝑤 im-
age to the pre-disaster image 𝑋 ∈ ℝℎ×𝑤 with the same off-
nadir angle. This dual encoder-decoder structure helps
to increase the robustness of the final change detection.
ℎ and 𝑤 are the height and width of the image used when
training the CNNs. Each CNN consists of an encoder (𝐸𝑋,
𝐸𝑌) that extracts semantic information about the ground
surface and a decoder (𝐷𝑋, 𝐷𝑌) that restores the style
of the image (including the effect of off-nadir angles).
The features (𝑍𝑋, 𝑍𝑌) extracted for each image are passed
to the other decoder to transform the image style. To
achieve unsupervised learning, the final loss function is
a combination of the four loss functions described be-
low. The differences from [9] are that the loss function is
changed from the 𝐿2 norm to the 𝐿1 norm and that image
modulation based on the Fourier transform is utilized for
preprocessing.
Reconstruction loss: The solid black line process in
Figure 2 indicates the image reconstruction; the recon-
struction loss is the 𝐿1 norm of the difference between
the inputs and outputs so that each encoder-decoder net-
work acts as an autoencoder that outputs the same image
as the one used for input:

𝐿𝑟 = 𝔼𝑋[‖�̃� − 𝑋‖1] + 𝔼𝑌[‖�̃� − 𝑌 ‖1], (1)

where �̃� = 𝐷𝑋(𝐸𝑋(𝑋)) and �̃� = 𝐷𝑌(𝐸𝑌(𝑌 )).
Weighted translation loss: The following weighted
translation loss is considered so that the result of im-
age translation by switching decoders matches the other
image in areas where there is no change in the ground
surface:

𝐿𝑡 = 𝔼𝑋[‖𝑀 ⊙ (�̂� − 𝑋)‖1] + 𝔼𝑌[‖𝑀 ⊙ (�̂� − 𝑌 )‖1], (2)

where �̂� = 𝐷𝑋(𝐸𝑌(𝑌 )), �̂� = 𝐷𝑌(𝐸𝑋(𝑋)), 𝑀 is a weight
matrix that approaches 0 for pixels with ground surface
changes and 1 for pixels without changes, and ⊙ is an
element-wise product.
Cycle-consistency loss: Two iterations of an image
translation should match the original image, which can
be implemented by the following cycle consistency loss:

𝐿𝑐 = 𝔼𝑋[‖ ̄𝑋 − 𝑋‖1] + 𝔼𝑌[‖ ̄𝑌 − 𝑌 ‖1], (3)

where ̄𝑋 = 𝐷𝑋(𝐸𝑌(�̂� )) and ̄𝑌 = 𝐷𝑌(𝐸𝑋(�̂� )).
Code correlation loss: All three losses above represent
the conditions that the translated image must satisfy as
loss functions, but no explicit regularization is given as
to what features the encoder should extract. We consider
the following loss function so that the information about



the change in correlation between all pixels in each input
image is reflected in the features to be extracted by the
encoder:

𝐿𝑧 = 𝔼𝑋,𝑌[‖𝑅 − 𝑆‖1], (4)

where the correlation matrix 𝑆 ∈ ℝ𝑛×𝑛 (𝑛 = ℎ × 𝑤) is
defined by

𝑆𝑖,𝑗 = 1 − 1
√𝑛

‖𝐴𝑋
𝑖 − 𝐴𝑌

𝑗 ‖2 𝑖, 𝑗 ∈ {1, ..., 𝑛},

𝐴𝑋
𝑖 = [𝐴𝑋

𝑖,1, ..., 𝐴𝑋
𝑖,𝑛], 𝐴𝑌

𝑗 = [𝐴𝑌
𝑗,1, ..., 𝐴𝑌

𝑗,𝑛],

𝐴𝑋
𝑖,𝑗 = exp(−(𝑋𝑖 − 𝑋𝑗)2), 𝐴𝑌

𝑖,𝑗 = exp(−(𝑌𝑖 − 𝑌𝑗)2).

(5)

The correlation matrix 𝑅 ∈ ℝ𝑛×𝑛 (𝑛 = ℎ × 𝑤) is defined by

𝑅𝑖,𝑗 =
(𝑍𝑋

𝑖 )𝑇𝑍 𝑌
𝑗 + 𝑍𝑚𝑎𝑥

2𝑍𝑚𝑎𝑥
𝑖, 𝑗 ∈ {1, ..., 𝑛},

𝑍𝑚𝑎𝑥 = max
𝑖∈(1,...,𝑛)

{‖𝑍𝑋
𝑖 ‖, ‖𝑍 𝑌

𝑖 ‖}.
(6)

Correlations between pixels of input images are assumed
to reflect information about the ground surface rather
than observational conditions such as off-nadir angles,
because they are not affected by changes in the overall
brightness of the image. So with 𝐿𝑧 we can restrict the
features to have a similar correlation to force the encoder
to output the features we want.
The final loss function is defined as the linear sum of

the above four loss functions as follows: 𝐿 = 𝜆𝑟𝐿𝑟 +𝜆𝑡𝐿𝑡 +
𝜆𝑐𝐿𝑐 + 𝜆𝑧𝐿𝑧. The matrix 𝑀 is initialized to a 0 matrix in
the initial stage of training, i.e., only 𝐿𝑟, 𝐿𝑐 and 𝐿𝑧 are
involved in the optimization. Along with updating the
parameters of the CNNs, the weight matrix 𝑀, which
represents the presence or absence of change, is also
updated according to the following equation:

𝑀 = 1 − 𝛿,

𝛿 =
𝑑(�̂� , 𝑋 ) + 𝑑(�̂� , 𝑌 )

2
,

(7)

where 𝑑 denotes the calculation of the difference map by
setting the threshold value. Partially cropped patches
of the image to be analyzed are used to train the CNN
models. After training, image translation is applied to
the entire image, and Otsu’s method [11] is applied to
the difference image for final change detection.

2.3. Image Modulation Based on Fourier
Transform

The success of the CAA algorithm depends on whether
or not it can proceed from a reasonable weight matrix
𝑀 in the initial stage of learning. If the differences in
off-nadir angles are large, there is a problem of not con-
verging to a good local optimal solution. Therefore, as
a pre-processing step, we use as the input image for the
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Figure 3: Image modulation based on Fourier transform.
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Figure 4: Example of Fourier transform-based image mod-
ulation for Kinugawa (9.12) data. (Best viewed with zoom
in.)

CAA algorithm an image in which the low-frequency
component of one image (pre-disaster image) is made
closer to the low-frequency component of the other im-
age (post-disaster image), thereby reducing the difference
between the two images in terms of overall intensity.
Figure 3 shows an overview of image modulation

based on the Fourier transform. First, a two-dimensional
Fourier transform is applied to each image to separate the
amplitude and phase information. Next, the amplitude of
the low-frequency component of image 1 is replaced by
the amplitude of the low-frequency component of image
2. The simplest method for replacing the amplitude is to
use a two-dimensional rectangular function to replace
components below a certain frequency, but in this paper,
a linear summation using a two-dimensional Gaussian
function was employed for more natural image modula-
tion. The standard deviation (𝜎) of the Gaussian function
is a parameter that adjusts the degree to which high-
frequency components are modulated. Finally, the mod-
ulated image is obtained by applying a two-dimensional
inverse Fourier transform to the phase of image 1 and
the amplitude modulated by the linear sum. Figure 4
shows an example of image modulation based on the
Fourier transform. It can be seen that after modulation,
the brightness of the entire image approaches that of
image 2, but the detailed pattern of the image is inherited
from image 1.



Table 1
Observation conditions and image size of ALOS-2 PALSAR-2 images for seven datasets.

Disaster
Dataset name

Acquisition
date

Orbit
direction

Observation
direction

Off-nadir
angle

Image size
pixels (km)

Sep. 2015 Kanto/Tohoku
heavy rainfall
Kinugawa (9.12)

2015.09.12
2014.10.06
2014.09.13

Left
Left
Left

Descending
Descending
Descending

35.4
25.6
35.4

1504×3656
(7.5×18.3)

Sep. 2015 Kanto/Tohoku
heavy rainfall
Kinugawa (9.13)

2015.09.13
2014.09.13

Left
Left

Descending
Descending

52.1
35.4

1490×3479
(7.5×17.4)

Sep. 2015 Kanto/Tohoku
heavy rainfall
Kinugawa (9.16)

2015.09.16
2019.06.29

Left
Left

Descending
Descending

13.9
35.4

1490×3479
(7.5×17.4)

July 2018 heavy rainfall
Kurashiki

2018.07.07
2018.06.14
2018.04.04

Right
Right
Right

Ascending
Ascending
Ascending

38.7
45.1
38.7

3081×2983
(21.9×21.2)

July 2020 heavy rainfall
Saga

2020.07.04
2020.06.08
2016.04.16

Left
Right
Left

Descending
Descending
Descending

50.5
32.8
50.5

8224×2720
(16.4×5.4)

July 2018 heavy rainfall
Hiroshima

2018.07.08
2018.06.20
2015.04.19

Right
Right
Right

Descending
Descending
Descending

48
35.4
48

3117×2603
(7.8×6.5)

2018 Hokkaido Eastern
Iburi earthquake

Hokkaido

2018.09.06
2017.10.28
2018.08.23

Left
Left
Left

Ascending
Ascending
Ascending

38.2
42.7
38.2

6134×5904
(12.2×11.8)

3. Experiments

3.1. Data
Experiments on disaster area detection are conducted
using ALOS-2 PALSAR-2 imagery of three floods (the
September 2015 Kanto/Tohoku heavy rainfall, the July
2018 heavy rainfall, and the July 2020 heavy rainfall) and
two landslide disasters (the July 2018 heavy rainfall and
the 2018 Hokkaido Eastern Iburi earthquake) in Japan.
Binary polygon data of inundation areas and landslide
disaster areas published by the Geospatial Information
Authority of Japan (GSI) are used as the ground truth data.
For the September 2015 Kanto/Tohoku heavy rainfall,
there are images observed on three different days after
the disaster and the corresponding ground truth data,
so they are treated as three independent experiments.
Therefore, there are seven experimental datasets in total.

Table 1 shows the observation conditions and image
sizes for the seven datasets composed of 19 ALOS-2
PALSAR-2 images used in this study. For those datasets
having 3 images, we have a pair of images with the same
off-nadir angle before and after the disaster. The results
of change detection using the same off-nadir angle im-
ages are used as reference information to evaluate the
accuracy of the developed methods. In all experiments,
images with speckle noise reduced by bilateral filtering
were used as input.

3.2. Evaluation Method
The F-score is used as a metric to evaluate the accuracy
of change detection. The effectiveness of the investi-
gated methods is verified by comparing the following
five methods.

• Thresholding of difference images of the same
off-nadir angle images; it will be referred to as
Reference

• Thresholding of difference images of different off-
nadir angle images

• cGAN-based image translation
• CAA-based image translation
• CAA-based image translation using image modu-
lation based on Fourier transforms as preprocess-
ing (denoted as CAA-FT)

In order to evaluate the effectiveness of image translation
for change detection, the change detection method in this
study was unified into the simplest thresholding method.
Thresholding is applied to the case of reduced pixel values
in the case of floods, and to both increased and decreased
pixel values in the case of landslides.

3.3. Results
Table 2 shows the quantitative evaluation results of dis-
aster area detection using F-scores for the seven experi-
ments. Figures 5 and 6 show the visual results of flood



Table 2
Quantitative evaluation of disaster area detection (F-score). Bold type indicates the best performance of the method using
images with different off-nadir angles.

Kinugawa (9.12) Kinugawa (9.13) Kinugawa (9.16) Kurashiki Saga Hiroshima Hokkaido
Angle diff. 9.8 16.7 21.5 6.4 17.7 12.6 4.5

Reference 0.6551 — — 0.4216 0.2065 0.0849 0.2967
Threshold 0.5187 0.1322 0.0560 0.3410 0.0798 0.0825 0.2861
cGAN 0.6446 0.3843 0.1331 0.4046 0.1341 0.0620 0.1962
CAA 0.5739 0.4672 0.4087 0.3783 0.3037 0.1535 0.2010

CAA-FT 0.3936 0.5142 0.3767 0.3272 0.3463 0.1646 0.2659

Thresholding
(same off-nadir angle) CAA CAA-FTcGAN

0.5187 0.5739 0.39360.64460.6551

Thresholding
(different off-nadir angles)

Post-disaster
35.4 degree

Pre-disaster
25.6 degree

■ TN    □ TP    ■ FN    ■ FP

Figure 5: Flood detection results in Kinugawa (2015.09.12) during the September 2015 Kanto/Tohoku heavy rainfall.

detection in the experiments using the Kinugawa (9.12)
and Saga datasets, respectively. Compared to thresh-
olding the difference images of different off-nadir angle
images, the investigated methods provide superior detec-
tion results in the six experiments. More detailed results
and discussion on flood detection and landslide detection
are presented below.

3.3.1. Flood detection

For flood detection, the F-scores of around 0.35 to 0.65
were achieved, which can be considered to be of practical
accuracy considering that the simplest change detection
method of thresholding is used. For the Kurashiki and
Kinugawa (9.12) datasets, the F-scores are comparable to

Thresholding
(same off-nadir angle)

CAA-FT

CAA

Post-disaster
50.5 degree

Pre-disaster
32.8 degree

■ TN    □ TP    ■ FN    ■ FP

0.1341

0.2065 0.3037

0.3463cGAN

Figure 6: Flood detection results in Saga during the July 2020 heavy rainfall.



that of using the same off-nadir angle images, indicating
that our objective is achieved. For the Saga dataset, the F-
scores of the investigatedmethods exceeded the reference
value, which may be due to the fact that the seasonal
difference for the same off-nadir angle images is larger
than that for different off-nadir angles. A comparison of
the performance among the methods under investigation
in this paper reveals the following trends.

• When the difference in off-nadir angles is about
5°to 10°, as in Kurashiki and Kinugawa (9.12), the
cGAN-based image translation that does not con-
sider the presence of change is effective.

• When the difference of off-nadir angles is about
10°to 25°, as in Kinugawa (9.13), Kinugawa (9.16),
and Saga, the CAA-based image translation fo-
cusing on the unchanged area is effective.

• If the difference in off-nadir angles is not large,
image modulation based on the Fourier transform
is not necessary for CAA.

The above trends are consistent with the conditions
and design principles assumed by each method, suggest-
ing that reasonable experimental results were obtained.
The cGAN-based method assumes that image differences
due to differences in off-nadir angles are relatively easier
to transform using a CNN than image differences due
to changes in the ground surface, and this condition is
considered to be satisfied when the differences in off-
nadir angles are relatively small. If this assumption is not
satisfied, i.e., the differences in images due to differences
in off-nadir angles are relatively large, then the CAA-
based methods, which perform image translation while
taking into account the presence or absence of changes
in the ground surface, is effective. Furthermore, it was
shown experimentally that the pre-processing based on
the Fourier transform contributed to the improvement
of accuracy by reducing the difficulty of the problem.

3.3.2. Landslide detection

In the experiment for detecting landslides using the Hi-
roshima dataset, the CAA-based method showed a clear
improvement in accuracy. In the Hokkaido experiment,
the thresholding results for the difference images of dif-
ferent off-nadir angle images were almost the same as the
reference value using the same off-nadir angle images,
and no further improvement could be obtained by the
investigated methods. This may be due to the fact that
the difference in off-nadir angles is so small (4.5°) that
its effect on the observed image is negligible. Although
the presented methods did not improve the accuracy of
change detection, this is a reasonable result.

In the experiment for detecting landslides, the F-score
was generally low. This is because the detection of land-
slide areas is more difficult than the detection of inunda-
tion areas, and the simple thresholding process cannot

Table 3
Off-nadir angle conditions and the effectiveness of the meth-
ods under investigation. One, two, or three • signs mean low,
mideum, and high.

Angle diff. cGAN CAA CAA-FT

5–10° ••• •• •
10–25° • •• •••

achieve sufficient detection accuracy even when using
the same off-nadir angle images. In [12], F-scores of 0.33
and 0.58 were achieved for Hiroshima and Hokkaido, re-
spectively, using an algorithm specialized for landslides
detection. In this paper, the simplest thresholding was
used as a basis to evaluate the effectiveness of change
detection based on image translation. However, it is ex-
pected that the combination of landslide detection algo-
rithms that take land cover and topography into account
and the image translation methods investigated in this
paper will improve the detection accuracy of landslide
areas to a practical level.

4. Conclusion and Future Outlook
We studied the potential of image translation via unsu-
pervised deep learning to detect flood and landslide areas
using SAR images with different off-nadir angles. We
investigated a cGAN-based method that does not con-
sider changes and a CAA-based method that focuses on
unchanged areas of the ground surface during image
translation. Experiments on seven cases of flood and
landslides disasters demonstrate the effectiveness of the
development methods.

Table 3 summarizes the relationship between off-nadir
angle conditions and the effectiveness of the methods un-
der investigation for flood detection. When the difference
in off-nadir angle is about 5°to 10°, cGAN-based image
translation without considering change is effective, and
when the difference in off-nadir angle is about 10°to 25°,
CAA-based image translation focusing unchanged areas
can significantly improve the accuracy of flood detection.
Cases with larger differences in off-nadir angles (greater
than 25°) are not included in the experiments and require
further verification.

The overall accuracy in detecting landslide areas was
low because the simplest method of change detection,
thresholding of difference images, was used. Combin-
ing landslide detection algorithms that take land cover
and topography into account with image translation is a
future challenge.
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