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Abstract
Gradual argumentation frameworks represent arguments and their relationships in a weighted graph.
Their mechanics are closely related to neural networks, which are considered as black-box models due to
their dense structure with millions of neurons. Recent work tried making them human-understandable
by trying to learn parameters that can be well approximated by decision trees. However, the tree remains
just an approximation, which leaves the question how faithful it really captures the actual mechanics of
the neural network. To circumvent the problem, structure learning ideas can be tailored to the discrete
structure of gradual argumentation frameworks to learn sparse neural networks that can be directly
interpreted as gradual argumentation frameworks. We discuss the learning problem, sketch a genetic
and a particle swarm optimization algorithm to solve the problem and show first results on data sets
from the UCI machine learning repository.
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1. Introduction

As black-box neural networks are increasingly applied in intelligent systems, questions about
their fairness, reliability and safety become louder. Various proposals have been made to make
their mechanics more transparent. This includes model-agnostic approaches [1, 2] as well as
approaches tailored to the structure of neural networks [3, 4]. However, it remains somewhat
unclear how faithful these explanation approaches capture the actual mechanics of the network
and how robust and reliable the explanations methods themselves are [5]. An interesting idea
to facilitate faithful explanations is to regularize the training procedure of neural networks
such that it can be well approximated by interpretable machine learning models [6]. It has been
demonstrated that this can be done for decision trees without significant performance loss of
the network [6]. However, as the decision tree remains an approximation of the network, there
remain some doubts about its faithfulness. Furthermore, decision trees themselves can quickly
become complex and difficult to interpret due to a large number of branches.

As it turns out, there is a family of argumentation frameworks that can faithfully capture the
mechanics of multilayer perceptrons (MLPs). This the family of gradual abstract argumentation
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frameworks (GAFs) that has been studied extensively in recent years [7, 8, 9, 10, 11, 12, 13].
In fact, every MLP corresponds to a GAF under a particular semantics, and conversely, every
acyclic GAF under this semantics corresponds to a MLP [14]. Therefore, a neural network
can obviously be represented faithfully by a GAF. However, since a gradual argumentation
framework with millions of arguments is not easier to interpret than a MLP with millions of
arguments, this connection is not immediately helpful. In order to use GAFs for interpretable
machine learning, we have to learn a sparse network structure. We explicitly highlight two
questions that have been raised before about this idea.

1. How does learning GAFs differ from learning neural networks? The short answer
is that learning GAFs is a special case of learning neural networks. However, this does not
mean that we could simply apply existing algorithms. This is because we have to take account
of the special structure that characterizes the special case. We explain the main differences in
more detail in the next three paragraphs. In short, when learning GAFs, we can apply standard
algorithms for learning the parameters of a fixed network structure, but need specialized
algorithms for structure learning (exploring the space of GAF structures).

Let us first note that the mainstream research in learning neural networks does not consider
structure learning at all because of its computational complexity. The major architectures are
based on a fixed and often densely connected graphical structure [15]. The user can typically
define hyperparameters like the number of nodes per layer, but the nodes are always connected
in a uniform way (e.g., fully connected dense layers or convolutional layers defined by kernels).

Learning sparse neural networks has become a more active area in recent years, but existing
work does not focus on learning an interpretable network, but on decreasing the risk for
overfitting, the memory and runtime complexity and the associated power consumption. Ideas
include regularization to encourage neurons with weight 0 that can be deleted [16], pruning of
edges [17], compression [18] and low rank approximation [19]. The idea is usually to make the
network as small as possible (secondary goal), while keeping the performance high (primary
goal). For us, the priorities are reversed: we want to achieve good learning performance
(secondary goal) while keeping the network structure comprehensible (primary goal). We
therefore focus on the structure learning problem, where we try to find the best performing
structure in a space of interpretable network structures.

The argumentation view results in another model bias that differs from learning neural
networks. The input for neural networks is typically numerical and discrete features have to be
vectorized by one-hot-encoding or embedding functions. For us, the picture is again reversed.
Our natural inputs are discrete arguments. While discrete features can naturally be represented
by arguments, numerical features have to be discretized as we explain in more detail later.

2. Are the learnt GAFs really argumentation frameworks?
As GAFs have been studied extensively in the community, we assume that the reader accepts

that they are argumentation frameworks. However, as we focus on learning acyclic GAF
structures, one may criticize that acyclic graphical structures are not particularly interesting
from an argumentation perspective. While this is true from a reasoning perspective, our
position is that there is no need to consider more complicated structures if the acyclic structure
already solves the problem. In particular, this simplicity should not be seen as a bug, but as a
feature because it allows evaluating the argumentation graph in linear time, which is highly
desirable when applying the learnt GAFs. Let us note that many applications of argumentation



like the analysis of online discussions or online reviews naturally result in acyclic graphs
[20, 21, 22]. Artificially introducing complexity will make the solution less comprehensible and
computationally more demanding. We acknowledge that more structure may be necessary to
solve more complicated problems, but we demonstrate that the structure that we consider here
already suffices to solve many interesting problems.

Overview: We explain the necessary basics of gradual argumentation frameworks in the next
section. In Section 3, we discuss the learning problem in more detail and sketch a genetic and a
particle swarm optimization algorithm for structure learning. Section 4 shows first experimental
results and some examples of learnt GAFs.

2. Background

We consider gradual argumentation frameworks (GAFs) represented as graphs. Nodes represent
arguments and edges represent attack and support relationships. Here, an argument is just
an abstract entity that can be accepted to a certain degree based on the state of its attackers
and supporters. Every argument is associated with a base score that can be seen as its apriori
strength when ignoring its attackers and supporters. We consider edge-weighted GAFs similar
to [12].

Definition 1 (Gradual Argumentation Framework (GAF)). A GAF is a tuple (𝒜, 𝐸, 𝛽, 𝑤) that
consists of

• a set of arguments 𝒜 and a set of edges 𝐸 ⊆ 𝒜×𝒜 between the arguments,
• a function 𝛽 : 𝒜 → [0, 1] that assigns a base score to every argument and
• a function 𝑤 : 𝐸 → [−1, 1] that assigns a weight to every edge.

Edges with negative weights are called attack and edges with positive weights are called support
edges and denoted by Att and Sup, respectively.

Figure 1 shows on the left the graphical structure of a GAF that formalizes a simple decision
problem. We assume that we want to decide if we should buy or sell stocks of a company and
that we consider three arguments put forward by different experts. Attack relationships are
denoted by solid and support relationships by dashed edges. We can define the semantics of
GAFs by interpretations that assign a strength value to every argument.

Definition 2 (GAF interpretation). Let 𝐺 = (𝒜, 𝐸, 𝛽, 𝑤) be a GAF. An interpretation of 𝐺 is a
function 𝜎 : 𝒜 → [0, 1] ∪ {⊥} and 𝜎(𝑎) is called the strength of 𝑎 for all 𝑎 ∈ 𝒜. If 𝜎(𝑎) = ⊥
for some 𝑎 ∈ 𝒜, 𝜎 is called partial. Otherwise, it is called fully defined.

Interpretations are often defined by an iterative procedure that initializes the strength values
of arguments with their base scores and repeatedly updates the values based on the strength of
their attackers and supporters. Interpretations are partial when the procedure fails to converge,
which can happen in cyclic graphs [12]. However, we will only consider acyclic graphs here and
all interpretations are guaranteed to be fully defined [13]. The strength update of an argument
can often be divided into two main steps [12]: first, an aggregation function 𝛼 aggregates the
strength values of attackers and supporters. Then, an influence function 𝜄 adapts the base



Figure 1: Example of a GAF (left), illustration of update mechanics under modular semantics (middle)
and evolution of strength values under MLP-based semantics (right), where the x-axis shows the number
of iterations and the y-axis the current strength value of Buy (yellow), Sell (violet), A1 (blue), A2 (green)
and A3(red).

score based on the aggregate as illustrated in Figure 1 in the middle. Examples of aggregation
functions include product [8, 9], addition [23, 11] and maximum [12] and the influence function
is defined accordingly to guarantee that strength values fall in the desired range.

We will only look at the MLP-based semantics from [14] here. Under this semantics, layered
acyclic GAFs correspond to multilayer perceptrons (MLPs) with logistic activation functions
and vice versa. This connection can be preserved for other activation functions of the MLP by
changing the influence function of the GAF. However, bounded activation functions like the
logistic function are most intuitive because they always result in finite strength values. The
strength values of arguments are computed by the following iterative procedure: For every
argument 𝑎 ∈ 𝒜, we let 𝑠(0)𝑎 := 𝛽(𝑎) be the initial strength value. The strength values are then
updated by doing the following two steps repeatedly for all 𝑎 ∈ 𝒜 (we use an auxiliary variable
𝛼𝑖
𝑎 that carries the aggregate at iteration 𝑖):

Aggregation: We let 𝛼(𝑖+1)
𝑎 :=

∑︀
(𝑏,𝑎)∈𝐸 𝑤(𝑏, 𝑎) · 𝑠(𝑖)𝑏 .

Influence: We let 𝑠(𝑖+1)
𝑎 := 𝜙𝑙

(︀
ln( 𝛽(𝑎)

1−𝛽(𝑎)) + 𝛼
(𝑖+1)
𝑎

)︀
, where 𝜙𝑙(𝑧) =

1
1+exp(−𝑧) is the logistic

function.

Figure 1 shows on the right how the MLP-based strength values of our running example evolve.
The weight of all attack (support) edges was set to −1 (1) and the base scores correspond to the
strength values (y-axis) at iteration 0 (x-axis).

As shown in [14], the MLP-based semantics satisfies almost all semantical properties from the
literature perfectly. A comparison to the earlier semantics DF-QuAD [9], Euler-based semantics
[23] and the quadratic energy model [11] are shown in Figure 2. Only the Open-Mindedness
property can be violated, and this can only happen when arguments have base scores 0 or
1. This case can actually not occur in our setting because base scores 0 or 1 correspond to
infinite weights of the corresponding MLP that cannot be taken in practice. Roughly speaking,



Figure 2: Desirable properties for gradual argumentation semantics from [14]. ✓ indicates full satis-
faction, (✓) satisfaction if base scores 0 and 1 are excluded and x indicates that the property can be
violated even when excluding base scores 0 or 1.

Open-Mindedness demands that continuously adding attackers/supporters to an argument will
eventually bring the strength to 0/1 [24]. For readers familiar with some, but not all of the
properties, let us note that Open-Mindedness is similar to some "monotonicity"-properties
that demand that an attacker/supporter must decrease/increase the strength of an argument.
However, these properties are not sufficient to guarantee that the strength converges to 0/1
in the limit. For example, the Euler-based semantics from [23] satisfies these monotonicity
properties in most cases, but the lower limit is not 0, but 𝛽(𝑎)2 (base score squared) [24]. The
different semantics shown in Table 2 can be compared experimentally with the Java library
Attractor1 [25].

3. Meta-Heuristics for Learning GAFs

Our goal is to learn an interpretable MLP/GAF that can solve classification problems with
sufficient accuracy. The abstract goal of classification is to map inputs x to outputs 𝑦. A typical
example is classifying a customer as credit-worthy or not (output) based on personal data like
age and income (input). The inputs are feature tuples x = (𝑥1, . . . , 𝑥𝑘), where the i-th value
is taken from some domain 𝐷𝑖. The output 𝑦 is taken from a finite set of class labels 𝐿. A
classification problem 𝑃 = ((𝐷1, . . . , 𝐷𝑘), 𝐿,𝐸) consists of the domains, the class labels and a
set of training examples 𝐸 = {(x𝑖, 𝑦𝑖) | 1 ≤ 𝑖 ≤ 𝑁}.

A numerical classifier is a function 𝑐 :
(︀×𝑘

𝑖=1𝐷𝑖

)︀
× 𝐿→ R that assigns to every pair (x, 𝑦)

a numerical value. An important special case is a probabilistic classifier 𝑝 :
(︀×𝑘

𝑖=1𝐷𝑖

)︀
× 𝐿→

[0, 1] where
∑︀|𝐿|

𝑗=1 𝑝(x, 𝑦𝑖) = 1. Then 𝑝(x, 𝑦) ∈ [0, 1] can be understood as the confidence of
the classifier that an example with features x belongs to the class 𝑦. Note that every numerical
classifier 𝑐 can be turned into a probabilistic classifier 𝑝𝑐 by normalizing the label outputs by a
softmax function. That is, 𝑝𝑐(x, 𝑦) =

exp(𝑐(x,𝑦𝑖))∑︀|𝐿|
𝑗=1 exp(𝑐(x,𝑦𝑗))

.

1https://sourceforge.net/projects/attractorproject/

https://sourceforge.net/projects/attractorproject/


As we explained in the previous section, MLPs can be seen as special cases of GAFs [14].
Hence, when we train an MLP, the resulting network can be understood as a classification GAF
that is defined as follows.

Definition 3 (Classification GAF [26]). A Classification GAF with 𝑘 layers for a classifica-
tion problem 𝑃 = ((𝐷1, . . . , 𝐷𝑘), 𝐿,𝐸) is a GAF (𝒜, 𝐸, 𝛽, 𝑤) such that 𝒜 =

⋃︀𝑘+1
𝑖=0 𝒜⟨𝑖⟩

consists of the input arguments 𝒜⟨0⟩ = 𝒜in and output arguments 𝒜⟨𝑘+1⟩ = 𝒜out for 𝑃
and additional layers of arguments 𝒜⟨𝑖⟩ such that 𝒜⟨𝑖⟩ ∩ 𝒜⟨𝑗⟩ = ∅ for 𝑖 ̸= 𝑗. Furthermore,
𝐸 ⊆

⋃︀𝑘
𝑖=0

⋃︀𝑘+1
𝑗=𝑖+1

(︀
𝒜⟨𝑖⟩ ×𝒜⟨𝑗⟩

)︀
, that is, edges can only be directed towards deeper layers.

Classification GAFs under MLP-based semantics are always MLPs. However, while MLPs
are usually dense and use continuous inputs, we want to learn sparse and well interpretable
network structures with binarized inputs that can be understood as (propositonal) abstract
arguments.

3.1. The Structure Learning Problem

Given the graphical structure of a classification GAF, we can train the weights using the usual
backpropagation procedure for neural networks. However, we also need a way to identify good
candidates in the space of all structures. As we are interested in learning sparse networks, we
will restrict the depth (number of layers), width (number of arguments per layer) and outdegree
(number of outgoing edges from an argument) of the network.

Our hypothesis space ℋ is a set of graphical candidate structures. Here, the candidates are
classification GAFs and we define the space by fixing a set of arguments 𝒜 =

⋃︀𝑘+1
𝑖=0 𝒜⟨𝑖⟩ that

can occur in GAFs. The hypothesis spaceℋ(𝒜, 𝑛𝑒) then consists of all possible subgraphs of the
fully connected GAF over 𝒜 with at most 𝑛𝑒 outgoing edges per argument, where subgraphs
are defined by removing nodes from 𝒜 ∖ 𝒜⟨𝑘+1⟩ (only the output arguments are fixed) and
removing arbitrary edges. Even though the depth 𝑘, the size of the layers 𝒜⟨𝑖⟩ and the outdgree
𝑛𝑒 can be chosen arbitrarily, they should be kept small in order to find an easily interpretable
GAF.

The candidate input arguments 𝒜⟨0⟩ can be created automatically from a given dataset 𝒟.
For every boolean feature 𝐵, we introduce a corresponding argument 𝐴𝐵 . For every categorical
feature 𝑋 with domain {𝑣1, . . . , 𝑣𝑙}, we introduce 𝑙 arguments 𝐴𝑋=𝑣1 , . . . , 𝐴𝑋=𝑣𝑙 . For every
continuous feature 𝑋 with domain [𝑙, 𝑢] we can partition [𝑙, 𝑢] into bins 𝑏1, . . . , 𝑏𝑙 and introduce
𝑙 input arguments 𝐴𝑋=𝑏1 , . . . , 𝐴𝑋=𝑏𝑙 . The bins can be created using statistics like quantiles as
bin boundaries or using values that actually occur in 𝒟.

In order to evaluate candidates, we consider a scoring function 𝑠 : ℋ → [0, 1] that assigns to
every candidate a score between 0 and 1. In the following, we will consider the scoring function

𝑠𝜆(𝐶) = (1− 𝜆) · Accuracy(𝐶,𝒟train) + 𝜆 · 𝑛𝑚𝑎𝑥 − 𝑛𝐶

𝑛𝑚𝑎𝑥
, (1)

where 𝐶 ∈ ℋ is a candidate network structure. Accuracy(𝐶,𝒟train) is computed by training 𝐶
on the training set 𝒟train using standard neural network parameter learning algorithms and
computing and returning the accuracy (the percentage of correctly classified instances). 𝑛𝑐 is the
number of edges in 𝐶 and 𝑛𝑚𝑎𝑥 the number of edges in the fully connected GAF corresponding



𝐺𝑒𝑛𝑒𝑡𝑖𝑐𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 :

pop← initialize(N)

do
mating_pool← select(pop)

offspring← recombine(mating_pool)

offspring← mutate(offspring)

population← replace(pop, offspring)

until termination condition reached

return best(pop)

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑆𝑤𝑎𝑟𝑚𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :

pop← initialize(N)

do
evaluate(pop)

move_particle(pop)

until termination condition reached

return best(pop)

Figure 3: Genetic algorithm and particle swarm optimization templates.

to 𝐶 (that is, the GAF that contains the same arguments like 𝐶 in the same layers and connects
every argument to every argument in the next layer). The hyperparameter 𝜆 ∈ [0, 1] indicates
the relative importance of an individual’s sparsity in relation to its accuracy on the training
data. Since both accuracy and the regularization term yield values between 0 and 1, we have
𝑠(𝐶) ∈ [0, 1] for every choice of 𝜆.

Formally, our structure learning problem corresponds to the following optimization problem:
find a candidate 𝐶* ∈ ℋ such that

𝐶* = argmax
𝐶∈ℋ

𝑠𝜆(𝐶). (2)

Let us note thatℋ is exponentially large even if we fix the nodes in the network. To see this,
assume that we consider 𝑛 nodes and allow only 2 edges per node. Then every node can have 1
or 0 outgoing edges, which results in 2𝑛 possible structures. Therefore, we will not attempt to
find an optimal solution 𝐶*, but consider meta-heuristics in order to find a good solution.

3.2. Genetic Algorithm Implementation

The first meta-heuristic that we consider is a genetic algorithm. Genetic algorithms maintain a
set 𝑃 of candidate solutions fromℋ during the search process. The candidate solutions 𝑐 ∈ 𝑃
are called chromosomes and the set 𝑃 the population. Given the hypothesis spaceℋ(𝒜, 𝑛𝑒) over
𝒜 =

⋃︀𝑘+1
𝑖=0 𝒜⟨𝑖⟩, a chromosome is given by a vector of length

∑︀𝑘
𝑖=0 |𝒜⟨𝑖⟩| · |𝒜⟨𝑖+1⟩|. The entries

can be 0 or 1 and indicate which neuron in layer 𝑖 is connected to which neuron in layer 𝑖+ 1.
When creating the GAF from the chromosome representation, we only consider neurons that
are either output neurons or have at least one outgoing edge.

Figure 3 shows on the left the template of our genetic algorithm. To begin with, a subset of
the population (mating pool) is selected for reproduction based on their fitness defined by our
scoring function 𝑠. The offspring is created by applying a recombination function that creates a
new chromosome by combining features of the parent chromosomes. The reproduction step is
followed by a mutation step that is supposed to move to interesting new regions of the search



space, e.g., by randomly perturbing chromosomes. Finally, a replacement function replaces part
of the current population with promising offspring. The algorithm continues until a termination
criterion is met. For details about the individual steps, we refer to the technical report [27]. The
implementation is available at

https://github.com/jspieler/QBAF-Learning.

3.3. Particle Swarm Optimization

The second meta-heuristic that we consider is particle swarm optimization. Figure 3 shows
on the right the template of our particle swarm optimization algorithm. Similar to genetic
algorithms, we maintain a population of individuals (the swarm). Individuals are represented
by vectors and we apply the same encoding like in our genetic algorithm. In every iteration, the
algorithm evaluates all individuals and stores the globally best found solution and, for every
individual, the individual best found solution. Each particle is then moved in a randomized
direction that depends on the previous direction (initialized randomly), the location of the
globally best solution found and the individual best solution found. For details about the
individual steps, we refer to the thesis [28]. The implementation is available at

https://github.com/bazomd/sparse-mlp-structure-learning.

4. Experiments

To illustrate our approach, we show some examples of learnt GAFs and compare them to other
interpretable models.

Data sets: We used three different data sets from the UCI Machine Learning Repository2,
namely the Iris (4 numerical features, 150 instances), the Mushroom (22 categorical features,
8,124 instances) and the Adult Income (14 mixed features, 48,842 instances) data sets.

Baselines: We compared our two meta-heuristics for learning GAFs to two other interpretable
classification models, namely logistic regression and decision trees with different depths.

Hypothesis space: The input arguments were generated using default discretization methods
from the scikit-learn library. We allowed one hidden layer and experimented with different
numbers of arguments and outgoing edges. We kept both numbers below 20 to find an easily
interpretable GAF.

Results: We split the datasets into training and test set (80/20 %). To take account of
randomness during training, we averaged the test results over 10 runs. For our baselines,
decision trees worked generally better than logistic regression. Overall, the performance of
GAFs is similar to decision trees. The interpretability is similar as well. However, we feel that
the flat GAFs (one hidden layer) that we learnt can be easier to interpret than deeper decision
trees as we explain later. We show some learning statistics in Table 1. More details about the
experiments can be found in the technical report [27] (baselines and genetic algorithm) and the
thesis [28] (particle swarm optimization).

2https://archive.ics.uci.edu

https://github.com/jspieler/QBAF-Learning
https://github.com/bazomd/sparse-mlp-structure-learning
https://archive.ics.uci.edu


Dataset Algorithm Test Accuracy (mean/std) Size (mean/std)
Iris DTree 95 (3.73) Depth 2-5

Genetic 97.34 (2) 8.2 (1.72) edges
PSO 94.33 (3) 6.4 (2.1) edges

Mushroom DTree 99.98 (0.05) Depth 7
Genetic 97.12 (1.63) 16.5 (5.02) edges
PSO 97.61 (0.59) 6.4 (1.27) edges

Adult DTree 82.44 (0.23) Depth 2
Genetic 81.72 (0.29) 13.6 (4.22) edges
PSO 81.29 (0.7) 9.1 (2.82) edges

Table 1
Performance and size of best baselines and GAFs learnt by the genetic and particle swarm optimization
(PSO) algorithm averaged over 10 learning trials.

Figure 4: Sparse GAF for Iris dataset with 93.33 % test accuracy.

Figure 5: Sparse GAF for Mushroom dataset with 98.33 % test accuracy.

Examples: We close the section with three hand-picked examples of sparse GAFs that have
been created in the experiments in Table 1. More examples can be found in the technical report
[27] (genetic algorithm) and the thesis [28] (particle swarm optimization or can be generated
with the corresponding code. Figures 4, 5 and 6 show one of the 10 GAFs learnt for the Iris,
Mushroom and Adult dataset, respectively. The picked examples are sparser than the mean



Figure 6: Sparse GAF for Adult dataset with 82.67 % test accuracy.

in Table 1. Notably, the examples for the Mushroom and Adult dataset even have a better test
accuracy than the mean in Table 1. This can be explained by the fact that sparser models are
less prone to overfit the data because they have fewer parameters.

When interpreting multiclass classification problems like the Iris dataset, one has to keep
in mind that a softmax function is applied on top. That is, when the strength values for the
classes virginica, versicolor and setosa are 𝑠𝑣𝑖, 𝑠𝑣𝑒, 𝑠𝑠𝑒, they are normalized to 𝑠𝑣𝑖

𝑁 , 𝑠𝑣𝑒𝑁 , 𝑠𝑠𝑒𝑁 ,
where 𝑁 = 𝑠𝑣𝑖 + 𝑠𝑣𝑒 + 𝑠𝑠𝑒. Hence, when 𝑠𝑣𝑖 is large, it will make 𝑠𝑣𝑒 and 𝑠𝑠𝑒 smaller. Hence,
the class arguments can actually be seen as mutual attackers. In future versions, we may take
account of this in the plotted graphs by printing special attack edges between them.

The GAFs should be interpreted recursively starting from the classes. For example, when
interpreting the GAF for the Mushroom dataset in Figure 5, poisonous is supported by the upper
hidden node. If it did not have any predecessors, the strength of its support would basically
be given by its base score. However, it is rather strongly attacked by both odor_n and odor_l.
Since both of them attack a supporter, they can be seen as indirect attackers of poisonous.
However, the intermediate hidden node is necessary to capture their joint effect (remember
that their effects are combined by the non-linear logistic function). The path from odor_a to
poisonous can be interpreted similarly. In this case, the path can actually be simplified in a
post-processing step to replace the supported attack with a simple attack. This is a simple, but
useful improvement for the next version.

5. Conclusions and Future Work

We discussed the problem of learning classification GAFs from data. While the parameter
learning problem can be solved using standard methods for neural networks, we focus on the
structure learning problem to learn easily interpretable GAFs. As opposed to regularization and
pruning techniques that are commonly used for learning sparse neural networks, the structure
learning problem allows restricting the space of possible structures, e.g., by defining upper



bounds for the maximum number of outgoing edges per argument.
Our meta-heuristics learnt classification GAFs that are competitive with other interpretable

models like logistic regression and decision trees. The main shortcoming of logistic regression
is that it can only distinguish linearly separable classes. In contrast, as our GAFs are MLPs, the
universal approximation theorem for MLPs implies that classification GAFs can approximate
every function with a single hidden layer that is sufficiently large. Decision trees are both
expressive and well interpretable. However, as the trees grow, it becomes increasingly difficult
to understand the various case differentiations. The quantitative semantics of GAFs sometimes
allows capturing the relationships in the data more succinctly. For example, while a decision tree
with depth 7 achieved almost perfect test accuracy in our experiments, such a deep tree is already
difficult to comprehend. The GAF in Figure 5 performed slightly worse, but is significantly
easier to understand.

We are planning several improvements. We will add a postprocessing step that replaces
paths between single arguments like in Figure 4 and the bottom path in Figure 5 with a single
attack/support edge by merging the base scores and edge weights along the path appropriately.
An interesting structural improvement is to replace interval arguments as 𝑝𝑙 ∈ [5.1, 6.9] in
Figure 4 with fuzzy arguments like 𝑝𝑙 ∼ 6 that are not simply 0 or 1, but can increase/decrease
gradually based on the degree to which they are satisfied. Another interesting structural
improvement is to consider joint attacks/supports that could capture joint effects of arguments
as in the upper path in Figure 5 without using hidden layers to make the GAF more interpretable.

Finally, let us note that [29] recently considered a similar problem of learning classical
classification argumentation frameworks. As the structure learning problems in both settings
are very similar, we will look at possible cross-fertilization in future work.
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