
Application Level Explanations for
Argumentation-based Decision Making
Nikolaos I. Spanoudakis1, Antonis C. Kakas2 and Adamos Koumi2

1School of Production Engineering and Management, Technical University of Crete, University Campus, Chania, 73100,
Greece
2Department of Computer Science, University of Cyprus, 75 Kallipoleos Str., P.O. Box 537, Nicosia, CY-1678, Cyprus

Abstract
In this paper we explore the explainability of the Gorgias argumentation framework. Gorgias is being
used for automated decision-making or decision-support in real-world systems development. The dialec-
tical argumentation reasoning within the Gorgias framework gives, besides an admissibly supported
Position, an internal representation of the argumentative reasoning that leads to this. This representa-
tion, can be manipulated by applications to produce case-based human readable explanations. It is also
employed by the Gorgias Cloud web-based integrated application development environment that facili-
tates the development of argumentation-based systems over the internet for providing human-readable
explanations. These explanations can assist both in the development and in the validation of the theory
capturing the knowledge of an application.

Keywords
Explainable AI, Argumentation-based Decision Making, Software as a Service, Decision Support Systems

1. Introduction

Explainable Artificial Intelligence (xAI) has become a major trend with numerous approaches
for generating useful explanations of decisions taken by AI systems. The field concerns both the
task of explaining the predictions of black box machine learning systems [1] or, more generally,
the task of providing the key reasons for the decision of a system [2]. Systems need not only to
perform well in the accuracy of their output but also in the interpretability and understandability
of their results. Explanations of systems facilitate their usability by other systems (artificial or
human) and contribute significantly towards building a high level of trust towards information
systems. They have a role to play both at the level of developing a system and at the level of
acceptance of the system in its application environment.

In comparison with explanations in Expert Systems of the early era of AI, the emphasis
now is on explanations that are cognitively compatible with the users (and developers) of
systems, providing useful information for the further deployment of the system’s decisions. The
“human in the loop” paradigm of modern AI means that humans want, need and are entitled to

1st International Workshop on Argumentation for eXplainable AI (ArgXAI, co-located with COMMA ’22), September 12,
2022, Cardiff, UK
$ nispanoudakis@tuc.gr (N. I. Spanoudakis); antonis@ucy.ac.cy (A. C. Kakas); akoumi01@cs.ucy.ac.cy (A. Koumi)
� https://users.isc.tuc.gr/~nispanoudakis (N. I. Spanoudakis); http://www.cs.ucy.ac.cy/~antonis/ (A. C. Kakas)
� 0000-0002-4957-9194 (N. I. Spanoudakis)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:nispanoudakis@tuc.gr
mailto:antonis@ucy.ac.cy
mailto:akoumi01@cs.ucy.ac.cy
https://users.isc.tuc.gr/~nispanoudakis
http://www.cs.ucy.ac.cy/~antonis/
https://orcid.org/0000-0002-4957-9194
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

explanations, particularly when decisions can affect them significantly. Explanations are, thus,
aimed at rendering our systems transparent, accountable and contestable. According to the
General Data Protection Regulation (GDPR) of the European Parliament [3], a human should be
able to “contest such decisions decision”. Without an explanation at the cognitive level of the
user this right to contest cannot be exercised in any meaningful way.

Automated decision-making based on computational argumentation can benefit from the
latter’s natural approach to explaining the reasons behind the acceptance of an argument.
The result of argumentation is typically some coalition of arguments that together support
acceptably a desired conclusion or position. Irrespective of the particular notion of acceptability
that we adopt, these coalitions, or cases of support, can be unraveled to produce an explanation
that contains information both at the level of the basic support of the position, and at the level
of the relative strength of the position in contrast to other possible alternative positions. Recent
surveys on Explainable Argumentation [4, 5] analyze this link between argumentation and
explanation and explore its potential.

In this paper we study how argumentation-based explanations can be systematically con-
structed and adapted to the different needs of real-life applications within the structured
argumentation framework of Gorgias [6]. We consider the problem both at the general level, i.e.
independently from the particular application domain, but also at the local level where the spe-
cific needs and features of a particular domain need to be considered. Subsequently, we present
real-world applications showing how they can utilize the dialectic nature of argumentation-
based reasoning to come up with explanations aimed at assisting human decision makers, e.g.
by explaining a system’s position as a peer expert assistant, for the human expert to take a final,
more informed, decision.

Medica [7], for example, is an argumentation system built using the Gorgias framework, that
allows for deciding if a specific person can have access to sensitive medical files, based on a)
who is the requester, e.g. the owner, a medical doctor, etc, b) what is the reason for requesting
access (research, treatment, etc), and, c) what additional support is available, e.g. order from the
medical association, written consent from the owner and other similar requests. Argumentation
allows such decisions to be explainable to humans [7] and assist them by citing the particular
parts of the legislation that justifies the system’s decision. The system also provides actionable
explanations showing what extra information is needed for a desired level of access to be
granted. The Gynecological AI Diagnostic Assistant (GAID) [8] provides appropriate explanations
for its medical diagnosis that aim to assist obstetricians in a medical clinic.

The above systems are based on the Gorgias framework, which was introduced in 1994 [9],
extended in 2003 [6] and has since been applied to a variety of real-life application problems [10].
Recently, Gorgias Cloud [11] was developed as a web-based Integrated Development Envi-
ronment (IDE) for applications of argumentation, offering an argumentation-based reasoning
Application Programming Interface (API). This allows us to build systems that use argumen-
tation as a service in the context of decision making applications. Moreover, Gorgias Cloud
provides an explanation capability that facilitates experts to judge whether a decision theory
functions as it should, and application developers to produce human-readable explanations for
their users.

In what follows, we outline the Gorgias framework and provide some useful background
definitions and notions of explainable AI. Then, we show how Gorgias captures composite

2

http://www.cs.ucy.ac.cy/~nkd/gorgias/
http://gorgiasb.tuc.gr/GorgiasCloud.html

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

(object-level as well as priority) arguments in its internal representation together with a human-
readable format, which we call Application-level Explanations. In section 4, we discuss some
examples of explanations for real-world application. Section five concludes.

2. Background

2.1. The Gorgias Argumentation Framework

Gorgias is a structured argumentation framework where arguments are constructed using a
basic (content independent) argument scheme that associates a set of premises with the claim,
or position, of the argument. In this framework we can represent argument rules, denoted by
Premises▷ Position linking the Premises, a set of literals, to a literal Position: we say that the
argument rule supports the Position. The Premises are typically given by a set of conditions
describing a scenario. Some of these conditions can be defeasible, called beliefs, and they can
be argued for or against.

An argument, 𝐴, is a set of argument rules. In an argument, 𝐴, through the successive
application of its constituent argument rules, several claims, including a “final or desired” claim
(or position), are reached and, hence, supported by 𝐴. Argument rules have the syntax of
Extended Logic Programming, i.e. rules whose conditions and conclusion (claim) are positive
or explicit negative atomic statements, but where negation as failure is excluded from the
language1. The conclusion of an argument rule can be a positive or negative atomic statement.
The conflict relation in Gorgias can be expressed either through explicit negation, or through
a complementarity relation between statements in the application language, or through an
explicit statement of conflict between argument rules, or, finally, through any combination of
the previous three ways.

Two types of arguments are constructed within a Gorgias argumentation theory: a) object-
level arguments and b) priority arguments, the latter expressing a preference, or relative
strength, between other arguments. The dialectic argumentation process of Gorgias to determine
the acceptability/admissibility of an argument supporting a desirable claim typically occurs
between composite arguments where priority arguments are included into the composite
argument in order to strengthen the arguments currently committed to. Priority arguments
have the same syntactic form with other arguments rules, however, the Position they support
is a statement of priority between two other individual argument rules. These arguments rules
for which a priority is expressed can themselves be priority argument rules, in which case we
say that the priority argument is a higher-order priority argument expressing the fact that we
prefer one priority over another, in the context of the premises of this higher-order priority.

Consider, for example, the rules in Listing 1. They are given in the form:

rule(label , claim, defeasiblePremises):-nonDefeasiblePremises.

The object-level arguments are those with labels 𝑟1(𝑋) and 𝑟2(𝑋). Rule 𝑟1(𝑋) supports
the claim to buy X, expressed with the predicate buy(X), with the non-defeasible premise that

1Initially, the framework of Gorgias had the name 𝐿𝑃𝑤𝑁𝐹 : Logic Programming without Negation as failure.

3

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

Listing 1: The “buying.pl” code.
1 r u l e (r1 (X) , buy (X) , []) : − need (X) .
2 r u l e (r2 (X) , neg (buy (X)) , [neg (urgentNeed (X))]) .
3 r u l e (pr1 (X) , p r e f e r (r2 (X) , r1 (X)) , []) : − lowOnFunds .
4 r u l e (pr2 (X) , p r e f e r (r1 (X) , r2 (X)) , []) .
5 a b d u c i b l e (neg (urgentNeed (X)) , []) .
6 a b d u c i b l e (urgentNeed (X) , []) .

the user needs X, expressed with the predicate need(X). Respectively, rule 𝑟2(𝑋) supports the
claim to not buy X, expressed with predicate neg(buy(X)), with the defeasible premise that the
need for X is not urgent, expressed with the predicate neg(urgentNeed(X)). Note that defeasible
premises could be themselves the claims of other object-level arguments, or can be hypothesised
as abducibles. For example, the urgentNeed(X) and its negation neg(urgentNeed(X)) are defined
as hypothesis in lines 5-6. This approach is usually followed when a premise (e.g. urgent need
of X) is not always explicitely available to the system and, hence, is designated as abducible.
The rules with labels 𝑝𝑟1(𝑋) and 𝑝𝑟2(𝑋) define priority arguments. The claim of these rules
is the prefer/2 predicate and its arguments are rule labels, where the first has priority over the
second. These rules can also have (non) defeasible premises.

The strength that arguments receive by priority arguments determines whether they can
attack or defend against another argument. Informally, an argument is allowed to attack another
argument only if it is at least as strong as the argument that it is attacking. The strength relation
between two composite arguments is induced from the local strength relation that the priority
rules, contained in the respective composite arguments, give to the other arguments contained
in them. Informally, a composite argument, ∆1, attacks another composite argument, ∆2,
whenever they are in conflict, and the arguments in ∆1 are rendered by the priority arguments
that it contains at least as strong as the arguments in ∆2. In other words, if the priority
arguments in ∆2 render an argument in it stronger than an individual argument in ∆1 then
so do the priority arguments in ∆1: a relative weak argument in ∆1 is balanced by a weak
argument in ∆2.

In the example in Listing 1, let’s consider that the user asks whether she should buy a bag
when she knows that she needs it and that she is low on funds. Thus, need(bag) and lowOnFunds
are non-defeasible facts. Argument rule r1(bag) (X instantiates to bag) supports the claim
to buy(bag). However, this is is potentially attacked by r2(bag) when 𝑛𝑒𝑔(𝑢𝑟𝑔𝑒𝑛𝑡𝑁𝑒𝑒𝑑(𝑏𝑎𝑔))
holds. This is not a problem, as they attack each other, however, if r2(bag) is joined with pr1(bag),
which gives more relative strength to r2(bag), then r1(bag) can only be admissible if it is joined
with pr2(bag) to balance the relative strength. Thus, the argument ∆ = [𝑝𝑟2(𝑏𝑎𝑔), 𝑟1(𝑏𝑎𝑔)]
admissibly supports the claim to buy(bag). Note that another way to defend against the potential
attack by r2(bag) is to simply assume that 𝑛𝑒𝑔(𝑢𝑟𝑔𝑒𝑛𝑡𝑁𝑒𝑒𝑑(𝑏𝑎𝑔)) does not hold i.e. there is
another admissible set, namely ∆′ = [𝑎𝑠𝑠(𝑢𝑟𝑔𝑒𝑛𝑡𝑁𝑒𝑒𝑑(𝑏𝑎𝑔)), 𝑟1(𝑏𝑎𝑔)], supporting buy(bag).

4

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

2.2. Explainable AI

The central challenge facing Explainable AI is the generation of explanations that are both
interpretable and complete (i.e. true to the computational model underlying the system). De-
pending on the complexity of the system, this trade-off between precision and interpretability
of explanation becomes harder. Nevertheless, there are several properties of good quality expla-
nations that we can follow, stemming mainly from the need for explanations to be cognitively
compatible with the users and to be “socially useful” in clarifying the reasons underlying the
results of the system that they are explaining [12]. Explanations need to be sensitive to the level
of the user and to the purpose that the user needs the result of the system that is explained.

In general, there are three main cognitive and social requirements that form a good quality
explanation. An explanation must be attributive, i.e. must give the basic and important reasons
justifying why the result that it is explaining holds and could be chosen. Equally important is
for the explanation to explain why the particular result is a good choice in relation to other
possible results, i.e. the explanation must also be contrastive. Finally, a good explanation is
also one that is actionable, i.e. where it is appropriate, it helps us understand what further
actions we can take to confirm and to further build or utilize the result.

Systems built based on argumentation naturally lend themselves to being explainable due
to the very close and direct link between argumentation and explainable justification (see e.g.
[4, 5] for recent surveys on Argumentation and Explainable AI). Arguments supporting a claim,
or conclusion, can provide the attributive part of an explanation, while the defending arguments,
within an acceptable coalition of arguments resulting from the dialectic argumentation process
to defend the attributive arguments against their counter-arguments, can provide the contrastive
element of the explanation. These attributive and defending arguments also point towards
taking (further) actions to confirm or question their premises, particularly when these relate to
subjective beliefs or hypotheses.

For the particular case of the Gorgias argumentation framework, that we study here, this
process of extracting natural explanations is facilitated by the way the admissible subsets of
arguments that support a claim are constructed, and, eventually returned by the Gorgias system.
As we have seen above, an admissible set of Gorgias contains, in general, object level arguments
together with priority arguments at different levels. The object-level arguments would then
give us the basic reasons supporting the claim whereas the priority arguments would give the
reasons why to prefer this claim over the reasons that support alternative claims.

3. Explainable Gorgias Output

In this section we present in which way Gorgias Cloud aids the developer to validate or debug a
policy using Application Level Explanations. This process will also help the reader understand
how applications filter the ∆ in order to show appropriate messages to the user, explaining the
system’s results.

For illustration purposes, let us consider a social media assistant agent and a particular user
whose policy is the following:

Normally, give default priority to a post. If the topic of a post falls within the

5

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

user’s interests set the priority to important, unless the information of the post is
negative. Posts that come from the user’s manager are important regardless of
whether they are positive or negative. Hide, posts that are on politics, unless the
post is from the user’s manager. Hide politics posts from the user’s manager when
negative, but when positive they are important.

In Listing 2 we can see the Gorgias code encoding the above personal policy by the social
media assistant agent. Lines 1-6 define the three positions or options (default(Post), hide(Post)
and important(Post)) as mutually exclusive using the complement predicate of the Gorgias
framework.

The object-level rules in lines 7-9 state that all positions are possible for any new Post .
Then, lines 10-25 define the priority rules for the user’s policy. Specifically, lines 10-11 give
default preference to rule with label r1 (Post), i.e. the default priority for any given Post . The
Post variable will be grounded to any new post. If the post is in the user’s topics of interest
then the priority is important (this is achieved by priority rules 12-14), unless the information of
the post is negative (this is achieved in lines 15-16). If the post comes from the user’s manager
the priority is set to important, regardless if it is positive or negative (lines 17-19). Posts that
are on politics are hidden (lines 20-23), unless the post is from the user’s manager. In that case
the post must be hidden, if it is negative, or marked as important, if it is positive (lines 24-25).
Finally, each post can be assumed to be positive or negative if its status cannot be determined
(note the abducible Gorgias predicate in lines 26-27).

For our running example, we can have a number of scenarios to test. One of them, “Test1.pl”,
is presented in Listing 3. In line 4 the reader can see a defeasible knowledge item, i.e. that the
post with id p1 is negative. The method to characterize a post as positive or negative, or assign
a topic to it is out of the scope of this paper.

For the argumentation framework of Gorgias the correspondence between admissible coali-
tions of arguments and associated explanations at the cognitive level of the application
can be constructed naturally from the internal Explanation, 𝐸, returned by the Gorgias system.
We can automatically use the information (i.e. argument rule names) in 𝐸 to construct an
explanation, at the application level, that exhibits the desired characteristics of being attributive,
contrastive and actionable as follows:

• Attributive: Extracted from the object-level argument rules in 𝐸.
• Contrastive: Extracted from the priority argument rules in 𝐸.
• Actionable: Extracted from the hypothetical or abducible arguments in 𝐸.

These characteristics in the human-readable “Application Level Explanation” part of the
output of the Gorgias Cloud IDE can be seen, for our example, in Listing 4. The attributive part
of the explanation is in lines 8-9, while the contrastive part is in lines 10-12. In this example we
do not have an actionable part.

If we consider the test file shown in Listing 5, the results are the ones shown in Listing 6.
Here, besides the attributive (lines 8-9) and the contrastive (lines 10-13) parts we also find the
actionable part in line 14. The supporting condition negative(p2) is provided by the abducible in
line 28 of the theory (Listing 2). As the abducible represents an assumption, the action to verify
it is suggested by the “Application Level Explanation” result.

6

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

Listing 2: The “socialMediaAssistant.pl” code.
1 complement (h i d e (P o s t) , d e f a u l t (P o s t)) .
2 complement (d e f a u l t (P o s t) , h i d e (P o s t)) .
3 complement (h i d e (P o s t) , i m p o r t a n t (P o s t)) .
4 complement (i m p o r t a n t (P o s t) , h i d e (P o s t)) .
5 complement (d e f a u l t (P o s t) , i m p o r t a n t (P o s t)) .
6 complement (i m p o r t a n t (P o s t) , d e f a u l t (P o s t)) .
7 r u l e (r1 (P o s t) , d e f a u l t (P o s t) , []) : − newPost (P o s t) .
8 r u l e (r2 (P o s t) , i m p o r t a n t (P o s t) , []) : − newPost (P o s t) .
9 r u l e (r3 (P o s t) , h i d e (P o s t) , []) : − newPost (P o s t) .

10 r u l e (pr1 (P o s t) , p r e f e r (r1 (P o s t) , r 2 (P o s t)) , []) .
11 r u l e (pr2 (P o s t) , p r e f e r (r1 (P o s t) , r 3 (P o s t)) , []) .
12 r u l e (pr3 (P o s t) , p r e f e r (r2 (P o s t) , r 1 (P o s t)) , []) : − my_top ics (P o s t) .
13 r u l e (c1 (P o s t) , p r e f e r (pr3 (P o s t) , pr1 (P o s t)) , []) .
14 r u l e (pr4 (P o s t) , p r e f e r (r2 (P o s t) , r 3 (P o s t)) , []) : − my_top ics (P o s t) .
15 r u l e (c2 (P o s t) , p r e f e r (pr1 (P o s t) , pr3 (P o s t)) , [n e g a t i v e (P o s t)]) .
16 r u l e (d1 (P o s t) , p r e f e r (c2 (P o s t) , c1 (P o s t)) , []) .
17 r u l e (pr5 (P o s t) , p r e f e r (r2 (P o s t) , r 1 (P o s t)) , []) : −manager (P o s t) .
18 r u l e (c3 (P o s t) , p r e f e r (pr5 (P o s t) , pr1 (P o s t)) , []) .
19 r u l e (pr6 (P o s t) , p r e f e r (r2 (P o s t) , r 3 (P o s t)) , []) : −manager (P o s t) .
20 r u l e (pr7 (P o s t) , p r e f e r (r3 (P o s t) , r 1 (P o s t)) , []) : − p o l i t i c s (P o s t) .
21 r u l e (c4 (P o s t) , p r e f e r (pr7 (P o s t) , pr2 (P o s t)) , []) .
22 r u l e (pr8 (P o s t) , p r e f e r (r3 (P o s t) , r 2 (P o s t)) , []) : − p o l i t i c s (P o s t) .
23 r u l e (c5 (P o s t) , p r e f e r (pr8 (P o s t) , pr4 (P o s t)) , []) .
24 r u l e (c6 (P o s t) , p r e f e r (pr8 (P o s t) , pr6 (P o s t)) , [n e g a t i v e (P o s t)]) .
25 r u l e (c7 (P o s t) , p r e f e r (pr6 (P o s t) , pr8 (P o s t)) , [p o s i t i v e (P o s t)]) .
26 a b d u c i b l e (p o s i t i v e (_) , []) .
27 a b d u c i b l e (n e g a t i v e (_) , []) .

Listing 3: The “Test1.pl” testing file code.
1 newPost (p1) .
2 manager (p1) .
3 p o l i t i c s (p1) .
4 r u l e (f 1 (p1) , n e g a t i v e (p1) , []) .

Let us summarize informally the automatic process of extracting an Application Level Ex-
planation from the internal code Explanation that the Gorgias system returns. Such internal
explanations contain the rule labels that were used to admissibly support the conclusion. For
example, in Listing 4 the “Explanation” result is the 𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 = [c4 (p1), c6 (p1), f1 (p1),
pr7 (p1), pr8 (p1), r3 (p1)], representing the (composite) admissible argument for the given
Position.

Initially, the priority rule labels, if any, are isolated in the 𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 list. Moreover,
for each priority rule of the list, the priority level is calculated. Next, the list is iterated and
overlapping rules are deleted. That is, the lower priority rules in the rule priority hierarchy are
deleted. Only high priority rules, from which object level arguments are derived, are kept in the
list.

7

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

Listing 4: The hide(Post) query execution results for “Test1.pl”.
1 prove ([h i d e (P o s t)] , E x p l a n a t i o n) .
2

3 S o l u t i o n 1
4

5 E x p l a n a t i o n =[c4 (p1) , c6 (p1) , f 1 (p1) , pr7 (p1) , pr8 (p1) , r 3 (p1)] , P o s t = p1
6

7 A p p l i c a t i o n L e v e l E x p l a n a t i o n
8 The s t a t e m e n t " h i d e (p1) " i s s u p p o r t e d by :
9 − " newPost (p1) " and " p o l i t i c s (p1) " and " n e g a t i v e (p1) "

10 This r e a s o n i s :
11 − S t r o n g e r than the r e a s o n o f " newPost (p1) " s u p p o r t i n g " d e f a u l t (p1) "
12 − S t r o n g e r than the r e a s o n o f " newPost (p1) " and " manager (p1) " s u p p o r t i n g "

i m p o r t a n t (p1) " when " n e g a t i v e (p1) "

Listing 5: The Test2.pl testing file code.
1 newPost (p2) .
2 my_top ics (p2) .
3 manager (p2) .
4 p o l i t i c s (p2) .

Listing 6: The hide(Post) query execution results for “Test2.pl”.
1 prove ([h i d e (P o s t)] , E x p l a n a t i o n) .
2

3 S o l u t i o n 1
4

5 E x p l a n a t i o n =[a s s (n e g a t i v e (p2)) , c4 (p2) , c5 (p2) , c6 (p2) , pr7 (p2) , pr8 (p2) , r 3 (p2)
] , P o s t = p2

6

7 A p p l i c a t i o n L e v e l E x p l a n a t i o n
8 The s t a t e m e n t " h i d e (p2) " i s s u p p o r t e d by :
9 − " newPost (p2) " and " p o l i t i c s (p2) " and " n e g a t i v e (p2) "

10 This r e a s o n i s :
11 − S t r o n g e r than the r e a s o n o f " newPost (p2) " s u p p o r t i n g " d e f a u l t (p2) "
12 − S t r o n g e r than the r e a s o n o f " newPost (p2) " and " my_top ics (p2) " s u p p o r t i n g

" i m p o r t a n t (p2) "
13 − S t r o n g e r than the r e a s o n o f " newPost (p2) " and " manager (p2) " s u p p o r t i n g "

i m p o r t a n t (p2) " when " n e g a t i v e (p2) "
14 The s u p p o r t i n g c o n d i t i o n : " n e g a t i v e (p2) " i s an assumpt ion and needs t o be

con f i rmed .

Then the list is sorted in an ascending order. For each high level priority rule that is in the
list: We recursively iterate the priority rules that lead to the weaker option, of the specific high
level priority rule. The recursive iteration ends when the weaker object level rule is reached.
During the recursive iteration of the high level priority list, a new list is created which contains:

8

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

Figure 1: An example of explanation of a social media assistant.

• The weaker option for each high level priority rule,
• The weaker claim supporting facts,
• The stronger conclusion/position supporting facts,
• The high level priority rule, supporting arguments, that hold against the weaker option,

Finally, the supported Position is presented, along with its supporting arguments. Further-
more, for each overridden Position, its supporting information is presented, along with the
information that caused the supported Position to be preferred over the overridden one.

4. Explanations customized to the Application

In this section we showcase how the application level explanations that we can generate from
the Gorgias internal explanation can be customized to the particular application at hand and
thus provide natural and informative explanations to the user. We first show in Figure 1, an
example of an explanation that a social media assistant, like the one we described in the previous
section, would give to justify it’s decision to hide a post. We then show examples from two
other domain applications, namely that of (a) compliant Data Access to patient records and (b)
Medical Decision support.

4.1. Explanations in compliant Data Access

An important recent field of application is that of data sharing. When different stakeholders
want to exchange and share data, they need to agree on a common policy, usually referred to
as a data sharing agreement (DSA). The Medica [7] system was developed for the purpose of
determining the level of access to patients’ data records, according to an EU country’s law on
medical data access.

There are six different access levels, ranging from full access to various types of limited access
and to restricted or no access. The legislation recognized eight different persons’ roles that are
likely to request access ranging from the owner to his/her family members, to the family doctor,

9

http://medica.cs.ucy.ac.cy

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

Figure 2: Attributive explanation of a data access level request in Medica.

to medical personnel, to third parties. Then, the purpose of the use of the data played a role on
the access type and this, again, ranged from treatment to research, to processing, etc. Finally,
specific contexts such as the possible consent of the owner or the fact that he/she may be dead
decreed the access type.

All decisions on the level of access reached by the 𝑀𝐸𝐷𝐼𝐶𝐴 system are explained to the
user by reference to the relevant articles of legislation, which are, in fact, the basis for the object
and priority level arguments that support the reached decision. Thus, the user sees attributive
information for the proposed level of access. The system also supports requests from users
wanting to gain higher level of access by indicating the extra information (the actionable part)
that needs to hold, when indeed such higher level access is possible.

To illustrate the explanations in Medica let’s consider the example in Figure 2. This screen
comes after the request of a medical doctor for a patient’s blood test for the purpose of treating
the patient’s situation. The hospital clerk can see two explanations based on the signatures that
appeared in the ∆ returned by the system. There are two explanations per signature, one that
is free text so that the clerk understands clearly what is the suggested course of action. The
other is a reference to the competent law article and paragraph so that a requester who wants
to argue can have a basis for a rebuttal.

Medica allows the requester to ask for information, either how to get a better level of access
for the same reason, or for another reason. At this time the system works with another version
of the decision theory that has abducibles either the purposes of access or the specific contexts
that can arise. Then it provides the actionable information to validate abducibles that lead to
the desired outcome (see Figure 3).

4.2. Explanations in Medical Diagnostic Support

In this section we consider a medical decision support system and show how the same Gorgias
Internal Explanations are unravelled to provide appropriate explanations for the application at
hand. This is a medical diagnostic system for real-life clinical support in the field of Gynecology.

10

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

Figure 3: The actionable part in Medica comes after a user has expressed the desire to get another
result.

The overall requirement of this system, called GAID: Gynecological AI Diagnostic Assistant [8],
is to:

“Support clinicians to feel more confident in decision, helping to avoid over-diagnosis of common
diseases and to ensure that emergency cases are not missed out”.

It is evident from this, that explanations would need to have a central role in building such a
system. In effect, the approach taken is not to build a perfect or optimal diagnostic system (that
could replace the doctor at some point) but rather to build a “peer” system that can “expertly”
assist the doctors in their decisions. Hence, explanations are of paramount importance.

The system covers fully the area of Gynecology with 137 diseases (i.e. diagnostic decision
options) and over a thousand different parameters (current symptoms, patient record, clinical
examination findings and laboratory tests) that can affect the diagnosis. The knowledge on
which the system builds its diagnosis was gathered using the SoDA methodology [13] and then
captured within the Gorgias argumentation framework2.

When using the system, the clinician enters information and the system offers a set of
suspicious diseases as its diagnosis. When the clinician clicks on a suspicious disease, an
explanation appears of why the disease is suspected. A typical explanation as presented to the
user has the form shown in the example figure 4.

Hence the argumentative dialectic reasoning process is mapped onto “peer explanations” for
the medical practitioners to understand the justification for a diseases to be suspicious or not.
These explanations contain attributive reasons for a disease being suspicious, stemming from
the basic arguments supporting the disease, as well as contrastive reasons of why this suspected
disease may or may not be preferable over other diseases, stemming from the contextual strength
arguments in the acceptable case for the disease. Explanations can also contain an actionable
element, e.g. in the example above, it is suggested to investigate the information “Vaccinated
with HPV” in order to accept the suggested disease as suspicious or not.

2The details of this process is beyond the scope of this paper.

11

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

Figure 4: Example of Explanation of the 𝐺𝐴𝐼𝐷 Gynecology Assistant.

5. Conclusions

We have presented argumentation-based application level explanations for real-life domains
and how the Gorgias framework supports explanations that are: a) attributive (explain why
the Position is supported), b) contrastive (explain why the supported Position is preferred
over other positions possible in the same given situation), c) actionable (propose that some
information be further explored for its validity).

The emphasis is placed on the fact that these explanations are aimed to application developers
or end-users, not computational argumentation scientists. Recently, in the work of [14], further
tools have been developed that allow us to see in detail the dialectic argumentation process of
Gorgias. These operate at the level of the internal explanation of the Gorgias system and could
be used to further inform the application level explanations. In future we also plan to work on
generating automated explanations based on the structured natural language text provided by
the developers and/or the domain experts as requirements.

References

[1] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of
methods for explaining black box models, ACM Computing Surveys 51 (2018).

[2] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai, Information Fusion 58 (2020) 82–115. URL: https://www.sciencedirect.com/science/
article/pii/S1566253519308103. doi:https://doi.org/10.1016/j.inffus.2019.12.
012.

[3] European Commission, Regulation (EU) 2016/679 of the European Parliament and of the

12

https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2019.12.012

Nikolaos I. Spanoudakis et al. CEUR Workshop Proceedings 1–13

Council of 27 April 2016, and repealing Directive 95/46/EC (General Data Protection
Regulation) (Text with EEA relevance), 2016. URL: https://eur-lex.europa.eu/eli/reg/2016/
679/oj.

[4] K. Čyras, A. Rago, E. Albini, P. Baroni, F. Toni, Argumentative XAI: A survey, in: Z.-H. Zhou
(Ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, International Joint Conferences on Artificial Intelligence Organization, 2021, pp.
4392–4399. doi:10.24963/ijcai.2021/600.

[5] A. Vassiliades, N. Bassiliades, T. Patkos, Argumentation and explainable artificial intelli-
gence: a survey, The Knowledge Engineering Review 36 (2021).

[6] A. C. Kakas, P. Moraitis, Argumentation based decision making for autonomous agents, in:
The Second International Joint Conference on Autonomous Agents & Multiagent Systems,
AAMAS Proceedings, ACM, 2003, pp. 883–890. doi:10.1145/860575.860717.

[7] N. I. Spanoudakis, E. Constantinou, A. Koumi, A. C. Kakas, Modeling data access legis-
lation with gorgias, in: International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, Springer, 2017, pp. 317–327.

[8] P. Tanos, I. Yiangou, G. Prokopiou, A. Kakas, V. Tanos, Gynaecological artificial intelligence
diagnostics (gaid). a pilot study of gaid and its performance., in: 31st Annual Congress of
the European Society for Gynaecological Endoscopy, Lisbon, 2-5,October, 2022.

[9] A. C. Kakas, P. Mancarella, P. M. Dung, The acceptability semantics for logic programs, in:
Proc. of 11th Int. Conf. on Logic Programming, 1994, pp. 504–519.

[10] A. C. Kakas, P. Moraitis, N. I. Spanoudakis, GORGIAS: Applying argumentation, Argument
& Computation 10 (2019) 55–81. doi:10.3233/AAC-181006.

[11] N. I. Spanoudakis, G. Gligoris, A. C. Kakas, A. Koumi, Gorgias Cloud: On-line Explain-
able Argumentation, in: System demonstration at the 9th International Conference on
Computational Models of Argument (COMMA 2022), 2022.

[12] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artificial
Intelligence 267 (2019) 1–38. doi:10.1016/j.artint.2018.07.007.

[13] N. I. Spanoudakis, A. C. Kakas, P. Moraitis, Applications of Argumentation: The SoDA
Methodology, in: ECAI, 2016, pp. 1722–1723. doi:10.3233/978-1-61499-672-9-1722.

[14] A. Vassiliades, I. Papadimitriou, N. Bassiliades, T. Patkos, Visual Gorgias: A Mechanism
for the Visualization of an Argumentation Dialogue, in: 25th Pan-Hellenic Conference on
Informatics, PCI 2021, ACM, 2021, p. 149–154. doi:10.1145/3503823.3503852.

13

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://dx.doi.org/10.24963/ijcai.2021/600
http://dx.doi.org/10.1145/860575.860717
http://dx.doi.org/10.3233/AAC-181006
http://dx.doi.org/10.1016/j.artint.2018.07.007
http://dx.doi.org/10.3233/978-1-61499-672-9-1722
http://dx.doi.org/10.1145/3503823.3503852

	1 Introduction
	2 Background
	2.1 The Gorgias Argumentation Framework
	2.2 Explainable AI

	3 Explainable Gorgias Output
	4 Explanations customized to the Application
	4.1 Explanations in compliant Data Access
	4.2 Explanations in Medical Diagnostic Support

	5 Conclusions

