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Abstract
Explainable Artificial Intelligence (XAI) aims to train data-driven, machine learning (ML) models possess-
ing both high predictive accuracy and a high degree of explainability for humans. Comprehending and
explaining the inferences of a model can be seen as a defeasible reasoning process which is expected to
be non-monotonic meaning that a conclusion, linked to a set of premises, can be withdrawn when new
information becomes available. Computational argumentation, a paradigm within Artificial Intelligence
(AI), focuses on modeling defeasible reasoning. This research study explored a new way for the automatic
formation of an argument-based representation of the inference process of a data-driven ML model to
enhance its explainability by employing principles and techniques from computational argumentation,
including weighted attacks within its argumentation process. An experiment was conducted on five datasets
to test, in an objective manner, if the explanations of the proposed XAI method are more comprehensible
than decision trees, which are considered naturally transparent. Findings demonstrate that usually the
argument-based method can represent the logic of the model with fewer rules than a decision tree, but
further work is required to achieve the same performances in terms of other characteristics, such as fidelity
to the model.

Keywords
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1. Introduction

XAI, a sub-field of AI, aims to develop a unified approach to learning data-driven models that are
both highly accurate in their predictions and explainable to experts and laypeople. The explosion
in the quantity of available data and the success of ML, especially Deep Learning, have led to the
development of new models with outstanding predictive performances. However, most of these
models have complex, non-linear structures that are hard to understand and explain. Researchers
have proposed numerous XAI methods generating explanations in different formats (numerical,
rules, textual, visual or mixed) [1, 2]. The XAI methods returning rule-based explanations extract
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a set of rules mimicking the inferential process of a complex ML model [3]. However, these
methods do not necessarily capture and describe the actual inferential process. They just report
the relationships between inputs and outputs as learned by the model without verifying if they
are consistent with the background knowledge of the application field or are instead based on
spurious correlations of the data. Understanding the inferential process of a model should be
seen as a non-monotonic reasoning process [4]. This requires a mechanism replicating the way
human reasons to support humans in the comprehension of the inherent inferential process learnt
by a model. Argumentation is a multidisciplinary subfield of AI that studies how arguments
can be presented, supported or discarded in a defeasible reasoning process. It also investigates
formal approaches to evaluate the validity of the conclusions reached at the end of the reasoning
process[5, 6]. Argumentation Theory (AT) provides the basis for implementing these processes
computationally [6] and it is inspired by how humans reason. This research experiment shows that
AT can be a viable solution for building novel global model-agnostic XAI methods generating
argument-based explanations. The quality of these explanations was preliminarily tested via
an objective study based on eight quantitative metrics that assess distinct aspects of rule-based
explanations, thus providing vital insights on the inferential process of a ML model [7], and
compared to another rule-extraction XAI method generating Decision Trees (DTs), which are
considered as naturally transparent [8, 3].

The remainder of this manuscript is organised as follows. Section 2 summarises the strategies
used by scholars to generate rule-based explanations of ML models and how to assess the quality
of these explanations. Section 3 describes the design of a primary research experiment. Section
4 discusses the findings of this experiment and its limitations. Lastly, Section 5 highlights the
contribution to the existing body of knowledge and suggests future directions.

2. Related work

Rule-based explanations are a structured but still intuitive format for reporting information to
humans in a compact way. They represent the logic of a ML model as a ruleset that can be
easily read, interpreted and visualised. Therefore, scholars consider rulesets and DTs as naturally
transparent and intelligible [8, 3]. However, current rule-extraction XAI methods merely produce
a rulesets mimicking the inferential process of an underlying complex model. The rules can
also be in conflict with the expert domain knowledge, thus perplexing the users of such models.
It must remember that such rules aim at faithfully representing the relationships captured by
the model during its training process between the independent variables of the input data with
its target variable. Thus, this conflict can be an essential signal of an issue occurring during
training. Similarly, the XAI methods do not provide any tool to handle potential inconsistencies
among the extracted rules, should they arise. Thus, these rules are not suitable to support a richer
reasoning process [9]. AT provides formal approaches to model non-monotonic logic and assess
the validity of the conclusions reached by a set of arguments to be considered as acceptable
[5, 6]. Non-monotonic logic consists of a family of formal frameworks devised to capture and
represent defeasible inferences. In formal logic, a defeasible concept consists of a set of pieces
of information or arguments that can be rebutted by additional information or arguments [10].
Generally, arguments are designed by domain experts to create a knowledge-base in single or
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multi-agent environments [11]. In a single-agent environment, arguments are constructed by
an autonomous reasoner, thus conflictual information tends to be minimal. In a multi-agent
environment, multiple reasoners participate in argument construction, so more conflicts among
them usually arise, enabling in practice non-monotonic reasoning [12]. Defeasible argumentation
supplies a sound formalisation for reasoning with uncertain and incomplete information from a
defeasible knowledge-base [13]. The process of defeasible argumentation frequently requires the
recursive analysis of conflicting arguments in a dialectical setting to determine which arguments
should be accepted or discarded [14]. Abstract AT (AAT) is the dominant paradigm, whereby
arguments are abstractly considered in a dialogical structure. Formal semantics are habitually
adopted to identify conflict-free sets of arguments that can subsequently support decision-making,
explanations and justification [14, 6]. Existing AAT-based frameworks have common features:
[13, 15, 16]:

• a defeasible knowledge-base in the form of interactive arguments, usually formalised with
a first-order logical language;

• a set of attacks that are modelled whenever two arguments are in conflict;
• a semantic which consists of mechanism for conflict resolution. It implements in practice

non-monotonicity and provides a dialectical status to the arguments.

The integration between AT and ML is still a young field. Minimal work exists on automatic
argument and attack mining from data-driven ML models, how the interpretation of these models
can be augmented via argumentation to, in turn, improve their explainability. [17, 13, 15].
In relation to this, the first issue is the automatic extraction of rules and their conflicts from
these models. The second issue is their automatic integration into an argumentation framework
that can serve as a mechanism for interpreting and explaining the inferential process of such
models without any explicit human declarative knowledge. A two-step approach for AT-ML
integration was proposed in [18]. In the first step, rules are extracted from a given dataset with
the Apriori algorithm for mining association rules. In the second step, the rules are fed into
structured argumentation approaches, such as ASPIC+ [19]. Using their argumentative inferential
procedures, new observations are classified by constructing arguments on top of these rules and
determining their justification status. Another study exploits argumentative graphs to depict the
structure of argument-based frameworks [20]. Arguments are the nodes connected by directed
edges representing attacks. The status of the arguments is provided by a label (accepted or
rejected) and is determined by using argumentation semantics [21].

3. Design

The informal research hypothesis of this study is that a ruleset extracted by an XAI method from
data-driven ML models supports the automatic formation of an argumentation framework. The
expectation is that this framework possesses a higher degree of explainability when compared
to other formats of explanations considered naturally interpretable and transparent in Computer
Science, like a DT. The difference in the degree of explainability of the two methods was tested
in an objective and quantitative manner with eight metrics that measure different aspects of a
ruleset, such as number and length of its rules. The research hypothesis was tested by carrying
out a set of phases described in the following paragraphs and depicted in the diagram of Fig. 1.
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Figure 1: High-level representation of the process to build the envisioned argument-based XAI method.

3.1. Phase 1: Dataset preparation

The first step was to select a few training datasets containing multi-dimensional data built by
domain experts, so they cannot contain data produced by an algorithm. The datasets must
not present issues that can impede the successful training of a model, such as the course of
dimensionality or a significant portion of missing data. The labeled target variable, represented
by block YT in Fig. 1, must be categorical, ideally with more than two target classes, whereas the
independent features should be a mix of continuous and categorical predictors. In this study, the
experiment was carried out on five public datasets downloaded from Kaggleor the UCI Machine
Learning Repository (see Tab. 1).The Adult database, based on the 1994 US Census, was designed
to train ML models to predict if a person earns or not over $50K on annual basis. Avila contains
data about 800 images of a Latin copy of the Bible, called the Avila Bible, manufactured during
the XII century by 12 Italian and Spanish copyists who were individuated from a paleographic
analysis of the manuscript. The model must associate each image with the copyist who drew
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it. The Credit Card Default dataset was created to train ML models that predict if Taiwanese
clients will fail to repay their credit card debts. The Hotel Bookings dataset includes booking
information for a city hotel and a resort hotel such as the booking date, length of stay, and the
number of adult and child guests, among other things. The target variable represents the final
status of the reservation, whether it was cancelled, checked-out or the client did not show up.
Online Shopper Intention records thousands of sessions on e-commerce websites. The negative
target class represents customers who did not buy anything, whilst the positive class are sessions
that ended with a purchase.

The datasets were preprocessed to avoid data-related issues in the model’s training process.
None of the selected datasets have missing data, so no action was required. However, the input
features “fnlwgt” of the Adult dataset, which is the statistical weights measuring how many
US citizens are represented by each subject, and the Client ID from the Credit Card Default
dataset had to be discarded because they did not represent discriminative attributes. All the data
in the independent features were scaled into the range [0,1]. Features with very large values
might dominate over other in the training process of the model. Then, a correlation analysis
was performed on each dataset to detect pairs of highly correlated features and discard one of
the two to reduce the risk of multicollinearity. There is no consensus on the thresholds between
strong, moderate and weak correlations. In this study, the absolute Spearman’s rank correlation
coefficients were grouped into three segments: values in the range (0, 0.33) were considered
weak, (0.33, 0.66) moderate, and (0.66, 1) strong correlations. The best subset selection analysis
was carried out to chose which variable from a strongly-correlated pair had to be discarded [22].
A linear regression model was built over each combination of the independent features excluding
one from each strongly correlated pairs. These models were then sorted in descending order
according to their R2 values and the first one was selected. The best subset selection approach was
chosen for its simplicity and because it requires little computational time and resources. Some of
the chosen datasets are unbalanced, meaning that one specific class contains more instances than
the others. This disparity can lead some learning algorithms to classify all the instances into the
majority class and ignore the minority one. To avoid this, each dataset was split into a training
and a validation subsets with the stratified five-fold cross-validation technique to ensure that
each class was represented with the same proportion as in the original dataset. Furthermore, the
Synthetic Minority Over-Sampling Technique (SMOTE) [23] was applied to the training datasets
to up-sample the minority classes.

Table 1
Properties of the five datasets selected for the experiment.

Dataset
Total

instances
No. of input

features
No. of continuous

(categorical) features
No. of
classes

Adult 48,842 14 6 (8) 2
Avila 20,867 10 10 (0) 12
Credit Card Default 30,000 23 20 (3) 2
Hotel Bookings 119,385 23 16 (7) 3
Online Shopper Intention 12,330 17 14 (3) 2
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3.2. Phase 2: Model training

A feed-forward neural network with two fully-connected hidden layers was trained on each
datasets to fit YT . The block YM in Fig. 1 represents the predictions obtained from the trained
model (represented by block f (x)) over the evaluation dataset (test data) whose original labelled
target variable is depicted by block YE . YE is compared with YM to assess the model’s prediction
accuracy. The number of hidden nodes and the value of other model’s hyperparameters, reported
in Tab. 2, were determined with a grid search to reach the highest feasible prediction accuracy.
To avoid overfitting, the training process was early stopped when the validation accuracy did not
improve for five epochs in a row. The networks were trained five times over the five training
subsets extracted from the datasets with the five-fold cross-validation technique. The models
with the highest validation accuracy were chosen. Lastly, the not relevant input features were
pruned by recursively removing one at a time, retraining the selected model and checking if its
prediction accuracy decreased. If this was not the case, the pruned variable was removed.

Table 2
Optimal hyperparameters of neural networks obtained through grid search procedure, grouped by
dataset, and their resulting accuracies.

Dataset list

Model parameters Adult Avila
Credit
Card

Default

Hotel
Bookings

Online
Shop.

Intention
Optimizer Adam RMSprop Adamax SGD SGD

Weight initialisa-
tion

Uniform He-Unif. Normal
Lecun-
Unif.

He-Unif.

Activation function Tanh Relu Softplus Softplus Softmax
Dropout rate 0% 0% 10% 0% 0%
Batch size 128 16 16 8 8
Hidden neurons 16 32 32 24 8
Accuracy (valida-
tion)

83% (79%) 98% (91%) 68% (79%) 65% (59%) 84% (87%)

3.3. Phase 3: Formation of the explainable argumentation framework

The trained models were translated into an explainable argument-based representation which can
be easily embedded into an online interactive platform where the argumentation framework is
represented as a graph (an example can be found in [4], page 10). The process of argumentation
towards the achievement of a justifiable conclusion, as emerged from theoretical works of AT, can
be broken down into five layers [6], as depicted in Fig. 2 and detailed in the following subsections.

Layer 1: definition of the internal structure of arguments. In standard logic, an argument
consists of a set premises leading to a conclusion, or more formally:

Definition 3.1 (Argument). An argument Ar is a tentative inference → that links one or more
premises Pi to a conclusion C and can be written as Ar : P1, . . . ,Pn →C.
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Figure 2: Five layers upon which argumentation systems are generally built, retrieved from [6].

In this study, an argument corresponds to an IF-THEN rule, thus the premises and conclusion
of an argument correspond to the rule’s antecedents and conclusion. The ML models and the
evaluation datasets were fed into a bespoke rule-extraction method that generates a set of IF-
THEN rules by using a two-step algorithm. First, each dataset was divided into groups according
to the target class as predicted by the model. In other words, all the instances assigned by the
model to the same class were grouped together. Second, the Ordering Points To Identify the
Clustering Structure (OPTICS) [24] algorithm was exploited to further split the groups into
clusters that coincide with areas of the input space having a high density of samples. Then, each
cluster was translated into a rule by finding, for each relevant feature, the minimum and maximum
values that include all the samples in the cluster. These ranges determine the rule’s antecedents,
whereas the conclusion corresponds to the predicted class of the cluster’s samples. A typical rule
is:

IF m1 ≤ X1 ≤ M1 AND . . . AND mN ≤ XN ≤ MN T HEN ClassX (1)

where Xi, i= 1, . . . ,N are the N independent relevant features, mi and Mi, i= 1, . . . ,N are the mini-
mum and maximum values w.r.t the i-th independent feature of the samples included in the cluster.

Layer 2: definition of the attacks between arguments. The inconsistencies between the formed
arguments were modelled via the notion of attack. Generally, attacks are binary relations between
two conflicting arguments. They can be of different kinds [6], but only the following two types
were considered in this study.

Definition 3.2 (Rebutting attack). Given two distinct arguments A,B ∈ AR, where AR represents
the set of all the arguments, with A : P1, . . . ,Pn →C1, B : P1, . . . ,Pm →C2, A is rebuttal of B and
is denoted as (A,B) if C1 logically contradicts C2. A rebuttal attack is symmetrical, so it holds
that iff (A,B), then ∃(B,A).

Definition 3.3 (Undercutting attack). Given an argument A ∈ AR that challenges some or all of
the premises used to construct another argument B ∈ AR, A undercuts B and is denoted as (A,B)
when A claims there is a special case that does not allow the application of the inference rule
(→) of argument B.

Attacks are usually specified by domain experts, but in this study they can be automatically
extracting by identifying conflicting rules. Two rules are conflictual if they are overlapping
and reach different conclusions. Two rules overlap if their covers intersect. The cover of a rule
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corresponds to the set of input instances whose attribute values satisfy the rule’s antecedents [25].
As depicted in Fig. 3, two rules can be 1) fully overlapping, with one rule including the second
one (part a), 2) partially overlapping (part b) or 3) sharing the same cover (part c). The first case
could be seen as an undercutting attack because the internal rule represents an exception of the
external one. The remaining two cases could be equivalent to a rebutting attack as two rules start
from the same premises, at least in part, but reach different conclusions.

(a) Undercutting attack (b) Rebutting attack (c) Rebutting attack

Figure 3: Relative positions of two conflicting rules that can be a) fully overlapping, with one rule
including the other, b) partially overlapping or c) covering the same area of the input space (retrieved
from [4]).

Layer 3: evaluation and definition of valid attacks. Once arguments and attacks are embodied in
a dialogical structure, the formalised knowledge-base, a fundamental characteristics of argument-
based systems is their ability to determine the success of an attack. Different approaches can be
found in the literature to decide if an attack is successful, thus valid, including a) binary attacks,
b) strengths of arguments, and c) strengths of attacks [6]. In this study, a weighted notion of
attack is considered; weights represent the strength of the attacks. There are various ways to
compute these weights [26]. Here, they are computed as the percentage of instances belonging to
the intersection of the covers of two conflictual rules that are assigned by the model to the same
target class of the conclusion of the attacking rule:

w(A,B) =
|{x ∈ cover(A)∩ cover(B) : f (x) =CA}|

|{x ∈ cover(A)∩ cover(B)}|
(2)

where x represents an input instance of the training dataset, CA is the conclusion of the attacking
rule (argument) A, and | • | is the cardinality function. For example, two conflicting rules have
respectively target classes Q and S as conclusion and there are in their cover intersection 20
instances classified by the model in class Q and 30 in class S. In this case, the attack from the
second rule with conclusion S is stronger than the attack from the first rule and has a weight
equal to 30

50 . The weight of the reciprocal attack is 20
50 . It might happen that the difference in the

number of instances per class is small, like 20 versus 21. In this case, is it fair to say that the rule
with conclusion S is actually stronger than the other rule? As a consequence, the concept of
inconsistency budget [26] was used to set a threshold on the fraction of supporting instances
of the attacking rules. In this study, it was set equal to 0.55, meaning that an attack must be
supported by at least 55% of the samples in the cover intersection. Future work will involve a
study to fine-tune it. It is important to underline that all the arguments formed in layer one have
the same importance and the notion of weight of argument is not used in this study. Not all the
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arguments are activated by each training instance since not all their premises might be satisfied.
The activated portion of the knowledge-base is considered for the next computations.

Layer 4: definition of the dialectal status of arguments. Dung-style acceptability semantics
investigate the inconsistencies that might emerge from the interaction of arguments [14]. Given a
set of arguments where some attack others, it must be decided which arguments can be accepted.
In Dung’s theory, the internal structure of arguments is not considered. This leads to an abstract
argumentation framework (AAF) which is a finite set of arguments and attacks. In Dung’s terms,
usually, an argument defeats another argument if and only if it represents a reason against the
second argument. It is also essential to assess whether the defeaters are defeated themselves to
determine the acceptability status of an argument. This is known as acceptability semantics:
given an AAF, it specifies zero or more conflict-free sets of acceptable arguments. However,
other semantics have been proposed in the literature, not necessarily based on the notion of
acceptability, such as the ranking-base categoriser semantic, introduced by [27] and employed in
this experiment, which consists of a recursive function that rank-orders a set of arguments from
the most to the list acceptable. The rank of an argument is inversely proportional to the number
of its attacks and the rank of the attacking arguments. This semantic deems as acceptable the
argument(s) with the lowest number of attacks and/or attacks coming from the weakest arguments.

Layer 5: Accrual of acceptable arguments. The previous layer produces a rank of activated
arguments, and a final conclusion should be brought forward as the most rational conclusion
associable to a single input instance. The highest-ranked argument is selected as the most
representative, and its conclusion is deemed the most rationale. In the case of ties (multiple
arguments with the highest rank), these are grouped into sets according to the conclusion they
support. The set with the highest cardinality is deemed the most representative of an input record
of the dataset, and the conclusion supported by its argument(s) is deemed the most rationale. In
the case of ties with respect to cardinality, the input case is treated as undecided, as not enough
information is available to associate a possible conclusion.

3.4. Phase 4: Objective evaluation analysis

The evaluation of the degree of explainability of the two XAI methods, the argument-based one
developed in this study and the DT created with the C4.5 learning algorithm, followed the same
process proposed in [7]. Eight metrics were selected to assess, objectively and quantitatively, the
degree of explainability of their rulesets (see Tab. 3). The objectivity is achieved by excluding
any human intervention in this evaluation process. Two metrics, number of rules and average rule
length, measure the syntactic simplicity of the rules and should be minimised as short rulesets are
deemed more interpretable [25]. Fraction of classes and fraction of overlap enhance the clarity
and coherence of the extracted rules. Whilst the fraction overlap should be minimised to avoid
conflicts between the rules, the fraction of classes should be maximised to guarantee that all the
target classes, even the minor ones, are considered. A ruleset must also be complete, correct,
faithful to the model’s predictions, and robust to small perturbations of the inputs. To assure that
the C4.5 algorithm returned the most compact and accurate DT, a grid search was carried out on
the following hyperparameters: 1) the criterion function to measure the quality of a split (Gini,
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Entropy, Log-Loss), 2) the maximum depth of the DT (from 6 to 48), and the minimum number
of instances required to 3) split an internal node (from 2 to 16) and 4) be at a leaf node (from 1 to
8).

Table 3
Objective metrics to assess the explainability of rulesets.

Factor Definition Formula

Completeness
Ratio of input instances covered by rules (c) over
total input instances (N)

c
N

Correctness
Ratio of input instances correctly classified by
rules (r) over total input instances

r
N

Fidelity
Ratio of input instances on which the predictions
of model and rules agree ( f ) over total instances

f
N

Robustness
The persistence of methods to withstand small
perturbations of the input (δ ) that do not change
the prediction of the model ( f (xn))

∑
N
n=1 f (xn)− f (xn+δ )

N

Number of
rules

The cardinality of the ruleset (A) generated by the
two XAI methods under analysis

|A|

Average
rule length

The average number of antecedents, connected
with the AND operator, of the rules. ai represents
the number of antecedents of the ith rule and
R = |A| the number of rules

∑
R
i=1 ai
R

Fraction of
classes

Fraction of the output class labels in the data are
predicted by at least one rule in a ruleset R. A rule
r is represented by a tuple (s,c) where s is the set
of antecedents and c is a class label. |C| represents
the number of class labels

1
|C| ∑c′≤C1(∃r = (s,c)

∈ R|c = c′)

Fraction
overlap

The extent of overlap between every pair of rules.
Given two rules ri and r j , overlap is the set set of
instances that satisfy the conditions of both rules

2
R(R−1) ∑ri,r j ,i≤ j

overlap(ri,r j)
N

4. Results and discussion

The values of the metrics calculated over the two rulesets extracted with the C4.5 learning
algorithm and the proposed argument-based XAI method are summarised in Tab. 4. Both methods
generate complete rulesets, meaning that they cover the entire input space and all the output
classes. The only exception occurs in the Avila dataset where the ruleset of the argument-based
method does not consider one of the 12 output classes. This is due to the presence of several
attacks, some of which have high weights, towards the rules having this class in their conclusions.
Modifying the inconsistency budget might fix this issue. The C4.5 method scores higher in terms
of correctness, fidelity and robustness throughout the five datasets. It can also be considered
the most coherent method as its rulesets reach completeness without overlapping areas. On the
other hand, it generated rulesets that contains more and longer rules than the argument-based
method with only one exception represented by the Online Shopper Intention datasets where
the argument-based method extracted more rules than the C4.5. However, these rules contained
less antecedents, on average. In the other three datasets (Adult, Avila, and Hotel Bookings),
the C4.5 returns thousands of rules whereas the argument-based method never reaches the 500
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rules. Such big numbers of rules would hinder the explainability of these rulesets as struggle
with reading and retaining such a big amount of information. Overall, the argument-based XAI
method generates simpler ruleset that are potentially more comprehensible than the C4.5 DT,
but there is the need to identify a way to fine tune the inconsistency budget to reach the optimal
argumentation framework.

Table 4
Quantitative measures of the degree of explainability of the rulesets automatically generated by a novel
argument-based XAI method and the C4.5 decision tree learning algorithm over five datasets.

Metric Adult Avila
Credit
Card

Default

Hotel
Bookings

Online Shopper
Intention

Argument-based XAI method
Completeness 1.0 1.0 1.0 1.0 1.0
Correctness 0.7 0.55 0.65 0.64 0.89
Fidelity 0.81 0.52 0.8 0.52 1.0
Robustness 0.04 0.01 0.16 0.13 0.55
Number of rules 294 139 491 151 108
Average rule length 11.8 8.99 7.0 32.27 2.0
Fraction of overlap 0.9 0.64 0.87 0.99 0.15
Fraction of classes 1.0 0.92 1.0 1.0 1.0

C4.5 decision tree
Completeness 1.0 1.0 1.0 1.0 1.0
Correctness 0.81 0.12 0.6 0.71 0.89
Fidelity 0.99 0.59 0.99 0.97 1.0
Robustness 0.99 0.60 0.95 0.96 0.98
Number of rules 4064 1614 686 6041 52
Average rule length 13.61 11.41 12.1 15.8 6.25
Fraction of overlap 0.0 0.0 0.0 0.0 0.0
Fraction of classes 1.0 1.0 1.0 1.0 1.0

5. Conclusions

This study presented a novel XAI method to form an argumentation framework with weighted
attacks representing the inferential process of complex data-driven ML models. These models
were trained on five datasets with handcrafted features manually engineered by humans. Eight
quantitative and objective metrics were used to assess the degree of explainability of the rulesets
extracted by the proposed XAI method and a DT, used as baseline. The results suggested the
presence of a trade-off between completeness, number of rules and average length, measuring
the syntactic simplicity of the rulesets, and the other five metrics. The C4.5 algorithm usually
generate bigger rulesets, but it is more correct and faithful to the model than the argument-based
method. In conclusion, the proposed XAI method returns rulesets that are complete, simpler and
smaller in terms of rule cardinality and length, thus more comprehensible. However, they are not
as faithful to the model, correct and robust as the C4.5 DTs. Future work will extend this research
study by training deeper neural networks, employing datasets with additional types of input data,
like texts and images, fine tuning the inconsistency budget between weighted attacks to obtain
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the optimal set of arguments and attacks, and using semantics designed for handling weighted
argumentation frameworks. The evaluation of the argumentation frameworks will include a
human-centred study, as done in [4], to compare the outcome of the objective metrics with users’
perception of their explainability.
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