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Abstract
Extracting causality from scientific literature is crucial for many knowledge-driven downstream tasks. This paper proposes a
novel causality extraction framework for scientific literature, 2SCE-4SL(2-Stage Causality Extraction for Scientific Literature).
In this work, the process of causality extraction is divided into two stages: (1) In the first stage, terms and causal trigger words
are parsed from causal sentences and form noisy causal triplets. (2) In the second stage, we design a Denoising AutoEncoder
based on Transformer architecture to represent the causal sentences, which is used to learn the causal dependency and
contextual information of sentences through causal trigger word tagging and noise elimination, as well as inject domain-
specific knowledge. Finally, combining the causality structure of stage 1 and the causality representation model of stage 2,
the true causal pairs are identified from the noisy causal triplets. We selected open access scientific literature dataset for
experiments, and compared the effects of different disciplines, training data volume, document length, whether causality
representation on results, and analyzed the reasons for such differences. The results of this study indicate that the average
precision of 2SCE-4SL reaches 0.8146 and the average F1 is 0.8308, among which the full-text performance is the best and
the average precision reaches 0.9420. We also verify the effectiveness of the causality representation in stage-2, two tasks
demonstrate the architecture can capture the causal dependency of sentences, showing good performance. In summary,
detailed contrast experiments and ablation experiments indicate that the 2SCE-4SL only needs a small amount of annotated
data to have better performance and good domain adaptability.
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1. Introduction
Scientific literature is the main form of expressing inno-
vative ideas. Nowadays, the growing number of academic
papers provides rich materials for scientific research[1].
Mining useful elements from literature, such as entities,
concepts, and terms, is of great significance for promot-
ing scientific innovation. Therefore, Scientific Literature
Mining(SLM) has become a field of concern for many
interdisciplinary researchers[2, 3, 4].

Causality is the expression of the relationship be-
tween cause and effect. The Nobel Prize in Economics
in 2021 was awarded to David Card, Joshua D. Angrist,
and Guido W. Imbens for their outstanding contribu-
tions in causal inference[5]. In recent years, more and
more articles about causality have emerged in comput-
ing and information science community, some research
applies causality to recommendation system[6] and opin-
ion mining[7], some used in the interpretability[8] and
stability[9], some applied in causality extraction[10, 11]
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and NLP augmentation[12]. It indicates that the study of
causality is an area worthy of further exploration.

Because causality can express higher-order logical re-
lations between linguistics, discovering causality in sci-
entific literature plays an important role in academic
recommendation, knowledge discovery, intelligent rea-
soning, event abduction, causal inference, future sce-
nario generation and so on. For example, two sentences
shown in Fig. 1, "<colorectal cancer, leads to, colonic ob-
struction>,<prognostic model, thus, predicting colorectal
cancer>" can be obtained by extracting causal pairs in the
literature. These triplets can be constructed as Knowl-
edge Graphs about causality (e.g., Event Logic Graph
[13]), thereby improving the performance of automatic
question answering systems. The triplets can also predict
potential connections between nodes by link prediction
on the network, thereby facilitating knowledge discovery
and future scenario generation.

To the best of our knowledge, although the existing
research on causality extraction has made good progress
[14], most of them revolve around commonsense knowl-
edge, and most of the corpus comes from general fields,
such as news[15], web[16], social media[17], etc. At the
same time, many existing methods rely on supervised ex-
traction methods[10, 14], which is difficult to implement
in large-scale unlabeled literature data. After reviewing
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following three aspects:

• Most of the current study focuses on common-
sense causality, there is few research on causality
extraction for scientific literature;

• Due to long length, intricate linguistic features
and lack of domain-specific knowledge in scien-
tific literature, causality extraction is still difficult;

• Due to lack of large quantities of readily available
annotation data, the performance of supervised
causality extraction of scientific literature needs
to be improved.

To solve these problems, we propose a novel
framework, 2SCE-4SL(2-Stage Causality Extraction for
Scientific Literature), to extract causality from scien-
tific publications. The framework consists of four
parts:causality detection, causality collocation(stage 1),
causality representation(stage 2), causality classification.
In the first stage, causal trigger words and entities of
sentences are identified and form to noisy causal triplets.
In the second stage, a Denoising AutoEncoder based on
Transformer architecture is designed for learning causal
dependency and contextual information through causal
trigger word tagging and noise elimination, while inject-
ing domain-specific knowledge. Finally, actual causal
pairs were identified from noise causal triplets in com-
bination with causal expression structure of stage 1 and
causal sentences representation model of stage 2.

The remainder of this paper is organized as follows:
Section 2 introduces the related algorithms, datasets and
applications of causality extraction. Section 3 introduces
the framework structure and method design of 2SCE-4SL
in detail. Section 4 introduces the dataset and empiri-
cal research, which mainly includes two parts of experi-
ments: one is to verify the effectiveness of the causality
representation architecture from 2 tasks; the other is to
conduct comparative experiments and ablation experi-
ments on 2SCE-4SL from 4 aspects; Finally, in the section
5, we summarize the findings, theoretical and practical
implications, as well as discuss limitations and future
directions.

2. Literature review
Causality Extraction (CE) is a sub-field of natural lan-
guage processing. Although there have been many stud-
ies on this field, most of the algorithms and datasets of
CE focus on commonsense, and their application scenar-
ios include future scenario generation, event prediction,
knowledge discovery, causal inference and so on. In
this section, we reviewed exist CE methods, datasets and
application scenarios, focusing on the research closely
related to this work.

"As one of the malignant tumors, colorectal
cancer leads to colonic obstruction, which
requires colonoscopy."

Paper1

"We applied a machine-learning algorithm to
develop a prognostic model thus predicting
colorectal cancer."
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Figure 1: Application scenarios of causality extraction for
scientific literature. Causal triplets can be extracted from sci-
entific papers to construct knowledge graph about causality
(e.g., Event Logic Graph), which can facilitate academic recom-
mendation, future scenario generation, knowledge discovery,
intelligent reasoning, event abduction, causal inference and
other downstream tasks.

2.1. Causality extraction methods
Causality can be defined as the action of one event (cause)
on another event (effect), where the latter is considered to
be the effect of the former. Causality can be divided into
explicit and implicit causality[14]. Causality extraction
in this paper is limited to explicit causality. In natural lan-
guage processing, CE can be implemented in a variety of
ways, that is, through a variety of algorithms to automat-
ically identify causality from text. According to different
types of tasks,CE can be divided into : rule-based and
machine learning-based.

CE methods based on manual rules (such as expert
knowledge and pattern matching) identify causal relation-
ships in texts by defining causal clues in advance or tem-
plates expressing causal structures[18]. This method built
a large knowledge base and achieved good performance
in CE. [19] proposed causal relationship extraction using
cue phrase and word pairing probability. [20] proposed a
method to mine the causal relationship of biomedical lit-
erature texts, they constructed two schemes: lexic-based
causal term strength recognition, frequency-based causal
strength and direction recognition. [21] used word vector
mapping to extract causal relationships from literature.
They used four types of verbs as candidates to form CE
rules, and the results of causal extraction in Alzheimer’s
disease showed effectiveness. [22] developed COATIS for
searching causal links in texts; [23] used pattern match-
ing to identify causality explicitly expressed in a single
sentence. In addition, dependency parsing and syntax
tree parsing can effectively identify causal relationships
in text. [15] proposed that the causal sentence pattern
template < Pattern, Constraint, Priority> was constructed
by rule constraint and syntactic parsing. This method ex-
tracted headlines of news articles in 150 years, the recall
rate is 10% and the Precision is 70%.

Although the CE method of rule-based has high ac-
curacy, the significant disadvantage is that it relies on
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external rules, which requires a lot of manpower and
time, and it is difficult to achieve multi-scenario general-
ization.

CE method based on machine learning makes up for
the shortage of manual, with the deepening of neural net-
work and deep learning greatly improve efficiency. CE
methods based on machine learning can be divided into
three types: text classification, relation extraction and
sequence labeling. (1) Text classification method refers
to classifying sentences according to whether the text
contains causality or not[24, 25]. This method does not
need to extract entities or events, but only needs to de-
termine whether the text contains causality. It is suitable
for those causal data that are difficult to extract events
or entities from sentences. For example, [17] proposed
a method based on text classification to detect causal-
ity from tweets. (2) Relationship extraction method is
to judge whether the causal pair given in the text has
a causal relationship, which is applicable to the data
that is easy to identify the causal entity. This method
is currently popular, and there are many available mod-
els, such as causality detection based on Bayesian algo-
rithm [26], causality recognition driven by background
knowledge[27], knowledy-driven CNN[28], etc. [29] pro-
posed the extraction of time relationship and causality
based on event network. They proposed an unsupervised
event network representation structure, generated the
causal relationship of triples, and then constructed a net-
work to connect the relationship of events. (3) Sequence
labeling method refers to mark the causal relationship
label of each word in the text and then train the model
to carry out generative extraction. These methods are
basically end2end pipelines without too much manual
intervention. [10] proposed a CE algorithm based on
self-Attentive BilstM-CRF, which can achieve a high ac-
curacy. [11] proposed a linguistically opposed approach
to inform Bi-LSTM, which can also achieve good results.

On the one hand, although machine learning-based
methods are efficient, they require a large amount of an-
notation data. On the other hand, although there are
some standard datasets for CE, such as SemEval[30],
Altlex[24], CEC[31], there are very few datasets about
CE in scientific literature. It is urgent to establish perfect
evaluation and datasets.

2.2. Application of causality extraction on
scientific research

Application of CE in scientific research is mainly to pro-
mote knowledge discovery, academic recommendation,
future scenario generation, event abduction and causal
inference.

Extracting causal structure of triplets cloud facilitates
discovery of new knowledge. [32] proposed CausalTriad,
a framework for causal relationship discovery and hy-

pothesis generation based on medical text data. In order
to model the rules of causality transfer in medical texts,
they divided the network composed of candidate pairs
of causality into a large number of triadic structures,
and then used the connection of text information and
structural knowledge to mine medical causality. The
experiment showd that CausalTraid is very efficient in
discovering causality between sentences. Meanwhile,
their team also proposed a fact-condition joint extraction
pipeline[33] for scientific literature to identify scientific
observations and research assumptions in scientific lit-
erature. In previous work, we conducted a preliminary
study on causal discovery and knowledge linkage in the
biomedicine[34]. We constructed causal knowledge net-
work by extracting the causal triplets in the scientific
literature, so as to analysis of scientific knowledge com-
munity and the prediction of potential medical knowl-
edge.

In addition, the discovery of causal relationships in
scientific research is beneficial to future scene generation
as well as scientific event detection and prediction. [35]
proposed a pretraining language model, EGE -RoBERTa,
based on variational autoencoder to enhance the knowl-
edge of the problem atlas, which utilizes an additional
implicit variable to capture the necessary problem atlas
knowledge. Experimental results showed that this model
can improve the performance of abductive reasoning ef-
fectively compared with baseline method. [7] proposed to
discover the causal background from political tweets and
reveal the context of political opinions and news reports.
They integrated OpenIE, open knowledge repository and
deep neural network to extract meaningful tweet clauses
and analyzed causal correlation,which show good results.

More importantly, with the development of causal in-
ference in the field of artificial intelligence, the deep in-
tegration of causality and NLP can promote the inter-
pretability and stability of scientific research. [12] and
other 13 scholars reviewed the current direction of the
combination of causality and NLP. One is that NLP in-
tegrates causal inference, and the other is that causal
inference enhances NLP. In addition, the excavation of
causal relationships in scientific literature plays an im-
portant role in promoting the understanding of academic
activities. For example, [36] explored what makes sci-
ence paper acceptable for publication, and they provided
a method for detecting the confounding effects of scien-
tific literature in order to generate causal explanations for
the dynamic activities of academic research in a scientific
collaboration model.
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Figure 2: Framework of 2SCE-4SL. It consists of four parts:
Causality Detection(A), Causality Collocation(B1, stage 1),
Causality Representation(B2, stage 2), and Causality Classifi-
cation(C).

3. Methodology

3.1. Overview
Given literature set D,D =
{𝑑1, 𝑑2, 𝑑3, ..., 𝑑𝑖|(1 ≤ 𝑖 ≤ 𝑁)}, the goal of this
paper is to identify triplets (𝑐, 𝑣, 𝑒) that express explicit
causality, with 𝑐 representing cause, 𝑒 representing
effect, and 𝑣 representing causal verb. We will solve this
problem in a classification framework.

The framework of 2SCE-SL is shown in Fig. 2, which
consists of four parts: Causality Detection (Fig. 2. A),
Causality Collocation (Fig. 2. B1), Causality Representa-
tion (Fig. 2. B2) and Causality Classification (Fig. 2. C). In
causality detection, detecting set S expressing causality
from D, S = {𝑠1, 𝑠2, 𝑠3, ..., 𝑠𝑛|∃𝑠𝑛 ∈ D}. In causality
collocation(stage 1), parsing each causal sentence 𝑠𝑛, col-
locating the terms and the causal trigger word to noisy
causal tripletsC(∃(𝑐, 𝑣, 𝑒) ∈ C), then manually annotate
a small amount of data. In causality representation (stage
2), S is represented by the AutoEncoder architecture to
learn the causal dependency and semantic structure of
sentences, then output the causal representation model
𝑀 . Finally, in the causality classification, combined with
the causal expression structure (𝑐, 𝑣, 𝑒) of stage 1 and the
causal sentence model 𝑀 of stage 2, the true causal pairs
will be identified from the noisy causal triplets, which
can be defined as follow:

𝑓((𝑐, 𝑣, 𝑒)) =

{︂
𝑦 = 1 , causality
𝑦 = 0 , not causality (1)

Given an arbitrary causal triplet (𝑐, 𝑣, 𝑒) ,if label is 1,
indicating true causality; otherwise false causality. Each
section will described in detail below.

3.2. Causality detection
As the premise of causality extraction, the purpose of
causality detection is to identify sentences that express

explicit causality in the literature. Taking sentences as
a unit can not only retain the complete semantics to
facilitate the feature representation of causal structures,
but also provides rich conditions for further fine-grained
parsing.

Here, we divide the causality detection of scientific
literature into three steps:

• Firstly, preprocess the literature corpus;
• Then, define trigger words that express causality;
• Finally, the sentences containing causal trigger

words are identified.

In the selection of causal trigger words, we referred
to the previous work[17, 37, 38], defining 81 causal cues
such as "lead to, result in, because". Part of the causal
trigger words are shown in table1.

3.3. Causality collocation
As the first stage of 2SCE-4SL, causality collocation aims
to identify candidate causal triplets from causal sentences,
which is one of the targets extracted in this paper. The
method based on deep learning requires a lot of annotated
data, so we construct a large number of causal pairs in
the way of terms collocation, and then identify the true
causal pairs in the causality classification part, which can
be regarded as a part of few-shot learning.

We preliminarily define the structure of causality,
which is represented by the triple form of (𝑐, 𝑣, 𝑒), where
𝑐 stands for cause,𝑒 stands for effect, and 𝑣 stands for
causal trigger word. This triplet structure of causality
could facilitate direct application in many downstream
tasks such as Fig. 1. Firstly, the causal trigger word 𝑣𝑖 is
identified from the causal sentence. Then, 𝑣𝑖 is used as
the boundary to identify the entities 𝑐𝑖 and 𝑒𝑖 on both
sides. For any ∀𝑐𝑖 and 𝑒𝑖(𝑐𝑖 ̸= 𝑒𝑖), ergodic combina-
tion is carried out and Cartesian product is calculated to
construct the triplets set C, which can be expressed as
follows:

C = {𝑐1, . . . , 𝑐𝑖} × {𝑣𝑖} × {𝑒1, . . . , 𝑒𝑖}
= {(𝑐1, 𝑣𝑖, 𝑒1) , (𝑐1, 𝑣𝑖, 𝑒𝑖) , . . . | 𝑐𝑖 ̸= ei, ci&ei ∈ S}

(2)
As shown in Fig. 3, input a sentence "As one of the ma-
lignant tumors, colorectal cancer leads to colonic obstruc-
tion, which requires colonoscopy.", using ScispaCy [39] to
perform dependency parsing, and identify the concepts,
terms or phrases. Taking the trigger word "leads to" as the
boundary, causal triplets "<the malignant tumors, leads to,
colonic obstruction>, <colorectal cancer, leads to, colonic ob-
struction>, <the malignant tumors, leads to, colonoscopy>,
<colorectal cancer, leads to, colonoscopy>" can be parsed
from sentence.

Obviously, these triplets contain lots of noise. "<col-
orectal cancer, lead to, colonoscopy>", for example, does
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Table 1
Part of the causal trigger words.

arouse caused by give rise to inasmuch as owing to stem from
beacuse coz of have effect on induce provoke that’s why

beacuse of elicit hence lead result from therefore
bring about engender if, then lead to result in thus

by reason that evoked in consequence of on account of so that ...

As one of the malignant tumors, colorectal cancer leads to colonic obstruction which requires colonoscopy.
ADP NUM ADP NOUN NOUN VERB NOUN DET VERB NOUN

the malignant tumors, colorectal cancer colonic obstruction colonoscopy.leads to

<the malignant tumors, leads to, colonic obstruction>

<the malignant tumors, leads to, colonoscopy>

<colorectal cancer, leads to, colonic obstruction>

<colorectal cancer, leads to, colonoscopy>

Figure 3: Example of causality collocation. Input a sen-
tence,"As one of the malignant tumors, colorectal cancer leads
to colonic obstruction, which requires colonoscopy.", using Scis-
paCy to perform dependency parsing, and identify the con-
cepts, terms or phrases.Taking the trigger word "leads to" as
the boundary, causal triplets "<the malignant tumors, leads to,
colonic obstruction>, <colorectal cancer, leads to, colonic obstruc-
tion>, <the malignant tumors, leads to, colonoscopy>, <colorectal
cancer, leads to, colonoscopy>" can be parsed from sentence.

not express causality in the paper. The goal of the fol-
lowing processes are to filter these noisy triplets. We
manually annotated part of the data as training data to
identify true causal pairs in classification section.

3.4. Causality representation
As the second stage of 2SCE-4SL, causality representation
is a very important component of this paper, which aims
at characteristic representation of causality sentences
so as to learn causal dependency inside sentences and
contextual knowledge of specific domain.

A prominent feature of scientific literature that distin-
guishes it from commonsense corpus is that it contains
professional knowledge. For example, Computer Science
paper often contains professional concepts and terms. In
addition, the expressions of causal sentences also have
specific linguistic features. The entities on the same side
of the triggering word 𝑣𝑖 are more continuous sequence
structures, while the entities on the other side of 𝑣𝑖 are
not only more discrete in continuity, but also farther
apart in vector coordinates. In order to accurately iden-
tify positive causal pairs from noise, it is necessary to
learn the causal dependency and semantic information
inside these sentences.

Here, we constructed an encoder-decoder architecture
network based on Transformer model[40]. Its composi-
tion is shown in Fig. 4, which can be regarded as an Au-

toEncoder for learning causal structure. Inputting causal
sentence, the position information of 𝑣𝑖 is tagged in En-
coder based on Denoising AutoEncoder(DAE)[41], then
in Decoder, randomly add some noise to the sentence,
and encode the fixed length vector, as well as randomly
mask the words around 𝑣𝑖. The goal of training is to
recover the embeddeding representation of the original
causal sentence from the noise data and learn its semantic
structural information.

Specifically, tagging the position of trigger word dur-
ing input aims to distinguish the cause and effect of sen-
tences. Randomly added disturbances (delete, add, ex-
change, etc.) and masks aim to minimize the loss function,
restore the lost information compressed around 𝑣𝑖, and
improve the robustness of causality representation. Our
training objective function can be formalized as follows:

𝐽𝐷𝐴𝐸(𝜃) = E𝑠∼S

[︁
log𝑃𝜃(𝑠 | ̃︀𝑆)]︁

= E𝑠∼S

[︃
𝑙∑︁

𝑡=1

log𝑃𝜃

(︁
𝑠𝑡 | ̃︀𝑆)︁]︃

= E𝑠∼S

[︃
𝑙∑︁

𝑡=1

log
exp

(︀
ℎ𝑇
𝑡 𝑒𝑡

)︀∑︀𝑁
𝑖=1 exp (ℎ

𝑇
𝑡 𝑒𝑖)

]︃ (3)

Where S is the corpus set of all causality sentences,𝑠𝑙 is
the input sentence with length 𝑙, and ̃︀𝑆 is the sentence
with noise added to 𝑠. 𝑒𝑡 is the word embedding represen-
tation of 𝑠𝑡,𝑁 is vocabulary size, ℎ𝑡 is the hidden state
of the encoder’s 𝑡 step output. We use cross-attention as
part of Decoder, which can be formalized as follows:

𝐻(𝑘) = Attention
(︁
𝐻(𝑘−1),

[︀
𝑠𝑇

]︀
,
[︀
𝑠𝑇

]︀)︁
Attention (𝑄,𝐾, 𝑉 ) = softmax

(︁
𝑄𝐾𝑇
√
𝑑

)︁
𝑉

(4)

𝐻(𝑘) is the hidden state within 𝑡 steps of 𝑘 layer in De-
coder, and 𝑑 is the dimension of causal sentence vector;[︀
𝑠𝑇

]︀
∈ R𝑙×𝑑 is a sentence vector output by Encoder.

No matter which layer of cross-attention,𝐾 and 𝑉 will
always be

[︀
𝑠𝑇

]︀
. The purpose of this design is to manu-

ally add a bottleneck to the model, make Encoder more
accurate and increase the adaptability of the domain.
This unsupervised network structure does not require
annotation data, but only needs fine-tuning to encode
the structure of causality sentences, so as to learn causal
dependency and prior knowledge.
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Figure 4: Architecture of causality representation.The archi-
tecture is an AutoEncoder based on Transformer model, which
is composed of an Encoder and a Decoder.The Encoder tags
the trigger word of a causal sentence when input, and then
randomly adds disturbance information (deletion, addition, ex-
change, etc.), randomly masks some words before the Decoder.
The training object is to recover the embedding representation
of the original causal sentence from the noise data and learn
semantic structural information.

3.5. Causality classification
Causality classification is the last composition of 2SCE-
4SL, which combines the triplet structure of the stage 1
and the hidden state vector of the stage 2. The positive
causal pairs will be identified from noisy causal triplets
based on fine-tuning model 𝑀 .

Given any causal pair ∀(𝑐, 𝑣, 𝑒), the purpose is to de-
termine whether causality, we convert this task into bi-
nary classification. In order to better solve the problems
of noise interference and insufficient labeled data, con-
trastive learning method[42] is adopted. Dividing the
training data into positive samples and negative sam-
ples, in which positive samples is any causal pair in the
same category while negative samples is different pair.
The constructed positive and negative samples are intro-
duced into the stage 2 for encoding. For each encoded
causal pair 𝑠𝑡, its objective is to identify the confidence
degree of 𝑠𝑡 according to model parameters and features
of causal sentences. The loss function during training
can be formalized as follows:

C𝑜𝑠𝑡 (ℎ𝜃 (𝑠𝑡) , 𝑦) =− 𝑦𝑖 log (ℎ𝜃 (𝑠𝑡))− (1− 𝑦𝑖)

log (1− (ℎ𝜃 (𝑠𝑡))
(5)

When 𝑦 = 1, that’s the positive sample, and if ℎ𝜃 (𝑠𝑡) =
1, then C𝑜𝑠𝑡 = 0 for this sample alone, that means that
this sample is completely accurate. If all samples are
correctly predicted, the total C𝑜𝑠𝑡 will approach 0. But
if the probability ℎ𝜃 (𝑠𝑡) = 0 is predicted at this time,
then C𝑜𝑠𝑡 → ∞. By iteratively learning the semantic
relationship between causal pairs, the parameter 𝜃 of
hidden ℎ𝑡 was updated to reduce the noise of pseudo
causal pairs and identify the true causal pairs.

4. Experiment

4.1. Dataset and evaluation
4.1.1. Dataset

We chose S2ORC[43] as our experimental data, which is a
common English corpus for NLP and text mining research
of scientific papers developed by Allen Institute for AI.
The S2ORC is collected from open access platforms such
as MAG,arXiv, PubMed and stored in a structured form.
The dataset contains 81 million papers in 20 disciplines
such as Computer Science, Material Science, Economics,
Medicine, etc.

In this work, we took Computer Science(CS) and
Medicine(Med) as examples to extract causality. These
two fields are the most popular subjects at present, both
of which belong to interdisciplinary subjects. Moreover,
choosing different disciplines can verify the robustness
of the 2SCE-4SL. Because the S2ORC is very large (over
12.7 million full-text papers), we randomly sampled some
papers and selected the title, abstract and full-text as ex-
traction objects respectively. CS and Med each collected
100,000 papers for a total of 200,000 papers.

4.1.2. Evaluation

We designed a architecture for representing causality sen-
tences in section 3.4, but how to measure the quality and
validity of causality representation? Two experiments
will be evaluated in section 4.2.2:

• Whether the architecture captures causal depen-
dency of sentences. Theoretically, if causal de-
pendency can be learned, the similarity of causal
pairs of same label will be higher, and that of the
dissimilar label will be lower. Therefore, we will
calculate the similarity between labeled causal
pairs to measure causal dependency.

• Whether the architecture learns the semantic in-
formation of causal sentences. We will use the
Semantic Textual Similarity (STS) task for evalu-
ation by randomly drawing sentences and calcu-
lating their similarity.

More importantly, the necessary contrast experiments
and ablation experiments are key to verify the effective-
ness of 2SCE-4SL. To compare the effect, SciBert[44], a
pre training model based on scientific papers, will be com-
pared with 2SCE-4SL as baseline method for CE. Specif-
ically, we will compare and analyze the four aspects in
4.2.3:

• Whether there are differences in causality extrac-
tion among different disciplines (CS, Med);

• Whether different amounts of training data affect
the results;
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Table 2
Causality sentences on CS and Med.

CS Med
Title 160 2526
Abstract 4130 9251
Full_Text 113063 134588
Sum 117353 146365

• The effect of whether causality representation
(stage 2) on the results;

• Whether there are differences in the performance
results of different document lengths (title, ab-
stract, full-text).

4.2. Results
4.2.1. Causality detection and collocation on

scientific literature

We parsed JSON-structured S2ORC, identify CS and Med
literature (including multi-label discipline literature), and
parse the title, abstract, and full-text. Then, causal sen-
tences were detected based on pre-defined causal trig-
ger words, including 117,353 in Computer Science and
146,365 in Medical Science, as shown in table 2.

There are differences in the distribution of different
types of documents. As shown in Fig. 5, it can be found
that compared with the distribution of abstract, the sen-
tence length distribution of titles is shorter, with the
overall distribution around 100. However, the causal sen-
tences in the whole text are longer and follow the typical
long-tail distribution. The distribution of sentence length
may produce different features in the representation of
causality, which will have different effects on the subse-
quent classification effect of the causal triplets.

In the stage 1, based on the detected causal sentences,
syntactic analysis and causality collocation were carried
out for these sentences. We parsed it in ScispaCy, load-
ing the en-core-sci-scibert model to parse out entities,
proper nouns, or combinations. After collocation, three
annotators in the professional field will search for the
corresponding statement from the article according to
the index. If true causal pair, it will be marked as 1; oth-
erwise, marked as 0. Only when at least two annotations
are consistent, it will be valid. In the titles, abstracts and
full -texts of the two disciplines, 400 are marked respec-
tively, and 2400 causal pairs are labeled in total. These
annotated data will be used for few-shot training.

4.2.2. Causality representation on scientific
literature

In the stage 2, the pre-training model was used for fine-
tuning. Unlabeled causality sentences were put into the
model, SciBERT[44] was used as the initial model, and
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Figure 5: Length distribution of causality sentences. The
length distribution of causal sentences varies with different
types of documents, with the title being the shortest and the
full text the longest, and gradually approaching the extreme
long-tail distribution with the increase of sentence length.

then the position information of the causal trigger words
was tagged. These input causality sentences are auto-
matically encoded by adding noise functions through the
DenoisingAutoEncoderLoss function. The added noise in-
cludes delete, add, swap, and mask. As the representation
training cost a lot of resources,we adopted the method of
parallel training. 10000 pieces of data were input for each
batch of different subjects, batch size set to 8, epochs set
10, weight decay 0 and learning-rate 3e-5.

(1) Evaluation for causal dependency
The similarity of the causal pairs of same label and

different label were calculated respectively, the results
are shown in Fig. 6.When label both 1, the similarity of
causal triplets is about 0.3(Fig. 6 (a)) and 0.55(Fig. 6 (b)),
and when labels are 0, the average similarity is 0.2. When
the positive and negative samples are mixed, the average
similarity is only less than 0.2. It can be found that the
similarity between positive samples is the highest, while
the similarity of mixed labels is not as good as that of
the same labels on the whole, and the dispersion degree
between their causal pairs is more significant, indicating
that the model can capture the structure between true
causal triplets. Learn about causal dependency from these
causal sentences. It is worth noting that the similarity
between the positive samples of CS is low, only about
0.3, and the upper and lower limits are further, which
may be due to the annotation quality of these samples
needs to be improved, and cannot be well distinguished
from negative samples, which need be further optimized
in the future.

(2) Evaluation for semantic information
To assess the ability of the causality representation

architecture to capture semantic information, we mea-
sured its performance on the STS task. Inputting a causal
sentence randomly "However, small perturbations of the
CiteSeer data lead to significant changes to most of the
clusters.", return the 5 sentences closest to it. The simi-
larity of the first sentence "Removing such large groups
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Table 3
Metrics on different subjects and training data

Subject→ CS Med
Size↓ / Metric→ P R F1 P R F1

300 0.6923 0.8780 0.7742 0.8367 0.7885 0.8119
600 0.8696 0.8163 0.8421 0.7927 0.8500 0.8204
1200 0.8811 0.9056 0.8932 0.8152 0.8721 0.8427

Figure 6: Evaluation for the causal dependency and semantic
information.(a) and (b) are the sample similarity of CS and
Med respectively. When both labels are 1, they have higher
similarity, indicating that causal dependency of sentences can
be captured. (c) is semantic search for causality representa-
tion. Input a paragraph to query the closest result, 5 returned
records indicate that semantic information of causal sentences
can be captured.

can result in significant changes to the model" is 0.9102,
which shows that it has a good performance. The other
returned causal sentences have certain semantic similar-
ity more or less, indicating that the structure can capture
the semantic features of sentences. Although there are
still some differences in semantic search, we believe that
the effect will be better when the corpus is increased.

4.2.3. Causality classification on scientific
literature

(1) Comparison of different data volumes
Firstly, the classification metrics of CS and Med causal

pairs were compared, training data of 300,600 and 1200
were set respectively and split 7:3,train-loss set as cosine
similarity loss, iterative set 10, results are shown in table
3.

Although belonging to few-shot training, it is similar
to supervised learning, the increase of training data will
improve the precision and F1 of the model accordingly.
Therefore, in the future semi-supervised learning can be
adopted to obtain more training data in subsequent stud-
ies, and then the model can be trained twice to improve
the capability of 2SCE-4SL by increasing the amount of
data.

(2) Ablation experiment: whether causality represen-

tation
Does the causality representation of the stage 2 con-

tribute to the outcome? To test this idea, we performed
ablation experiments to compare the classification perfor-
mance before and after stage 2. Without representation
means that manually annotated data are directly put into
pre-training models (such as BERT and SciBert) for train-
ing, and then classified after fine-tuning. Here, we take
the original SciBert as the baseline of ablation experiment,
and take the model after the representation of causality
sentences in SciBert as the comparison. Other parameters
are consistent with those before, and the training data is
set to 1200. After 10 iterations, The results on CS and Med
are shown in table 4. It can be found that the precision
before representation are 0.8481 and 0.7368 respectively;
After stage 2, precision were 0.8811 and 0.8152 respec-
tively, indicating that increasing causality representation
at stage 2 significantly improved the results.

When the causal sentences is represented, the posi-
tion information tagged with the trigger word can clearly
distinguish the cause and effect, and the position infor-
mation is added into the logical structure when encoding
to make the structure of the causal sentence clearer. The
test datasets of CS and Med are mapped to 2D coordi-
nates, as shown in Fig. 7, the results are consistent with
table 4. After stage 2, the true causal pair is more concen-
trated, the overall distribution shows good separability,
and the false causal pair is more discrete, which confirms
the help of causality representation to classification. Af-
ter encoder and decoder add noise, the causal sentence
can restore the information of the sentence itself, ob-
tain the implied parameters of the sentence, and obtain
the feature extraction ability even in the case of small
sample size. Compared with the deep learning model
with complex structure, only shallow network structure
is required. The generalization ability of a single field is
relatively strong, with good adaptability to the field.

(3) Comparison of different document lengths
We also compare the influence of different document

lengths on classification metrics. The training data of
the title, abstract and full-text in the two disciplines are
all 400, including 200 positive samples and 200 negative
samples. The parameters of causality, loss function and
optimization function are controlled unchanged. After
iterative training, the performances on CS and Med are
shown in table 5. It can be found that, on CS, the best per-
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Table 4
Ablation experiment: whether causality representation

Subject → CS Med
Ablation Experiment↓/Metric→ P R F1 P R F1
With Causality Representation 0.8811 0.9056 0.8932 0.8152 0.8721 0.8427

Without Causality Representation 0.8481 0.7791 0.8121 0.7368 0.7778 0.7568

Table 5
Metric on different document lengths

Subject→ CS Med
DifferentLength↓/Metric→ P R F1 P R F1

Title 0.8750 0.8167 0.8449 0.7857 0.7333 0.7586
Abstract 0.7778 0.8167 0.7967 0.7966 0.7833 0.7899
FullText 0.9322 0.9167 0.9244 0.9516 0.9833 0.9672
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Figure 7: Ablation experiment for causality representa-
tion.The labels of test data after causality representation have
better separability and clearer boundaries, especially CS, while
the boundaries between labels without causal representation
are fuzzy.

formance is in the full text, followed by the title. On Med,
full text is the best, followed by abstract. The average
precision of the two disciplines is 0.9420.

The relationship between length distribution and per-
formance of causal sentences is shown in Fig. 8. It can
be seen from the distribution that the precision of differ-
ent document lengths is positively correlated with the
length distribution of documents. The longer the overall
distribution of documents tends to be, the higher the ac-
curacy of documents will be. One possible reason is that
longer documents capture more information in stage 2,
thus releasing effective energy in classification. There-
fore, in the future extraction scene, the extraction of full
text content should become the main form, which can
not only obtain better precision, but also extract more
fine-grained knowledge information from the literature,
and provide more effective features for more downstream
tasks.
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Figure 8: Relationship between document length distribution
and classification performance. The longer the length, the
better the classification performance. For example, CS, the
full-text causal sentence has a longer distribution, with P,R
and F1 exceeding 0.9.

5. Conclusion
In this paper, we propose a novel framework for scientific
literature causality extraction, 2SCE-4SL, which consists
of two stages. In stage 1, causal trigger words and entities
are identified and collocate into noisy triplets. In stage
2, causality sentences are represented to learn semantic
information, this kind of representation can effectively
learn the causal dependency and domain-specific knowl-
edge of paper. We compared open scientific literature
data in four aspects of the experiments. Results show that
the average precision of the 2SCE-4SL is 0.8146, and the
F1 is 0.8308, which is the best in the full text with an av-
erage precision of 0.9420. And as the training data grows,
so does the precision, which makes future optimization
possible.

To the best of our knowledge, there are few studies on
causality extraction in scientific papers, although this is
a direction with great potential, we hope this work can
provide enlightenment for relevant research. The princi-
pal theoretical implication of this study is that promotes
scientific literature mining, especially scientific papers,
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to make progress towards deeper natural language in-
ference(NLI) and natural language understanding(NLU),
which provides more possibilities for many downstream
tasks driven by knowledge and provides a basic guaran-
tee for promoting multidisciplinary knowledge discovery.
The principal practical implementation of this study is
that 2SCE-4SL only needs a small amount of annotation
data to achieve good performance, which provides more
possibilities for future performance optimization. In ad-
dition, the use of classification framework for causality
extraction can reduce the labeling time and improve the
efficiency.

Despite these promising results, questions remain.
Firstly, 2SCE-4SL extracts only explicit causality and does
not include implicit causality. Due to the limitation of
causal trigger words, those implicit causalities (i.e. with-
out trigger words but expressing causality) are difficult to
be identified. Secondly, the second stage of 2SCE-4SL is
represented in sentences rather than paragraphs, which
means that those long-distance causality are difficult to
identify. Finally, because the framework involves many
processes, it remaines to be improved compared with
end2end methods, and tag generation requires the in-
tervention of professionals. In the future, we will solve
these questions and applications of more downstream
tasks.
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