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Abstract  
With the development of scientific communities, the amount of papers increases quickly. It’s 

important to convert the unstructured scientific papers into structured knowledge base, which 

relies on Information Extraction (IE) to extract entities and their relationships. Most existing IE 

methods require abundant annotated data, which is time-consuming and expensive to obtain, 

especially in scientific domain because it requires annotators with domain knowledge. Recently, 

several works have been proposed to solve the problem by semi-supervised learning. However, 

these methods require the input sentence to contain only two entities and simply classify the 

relationship between these two entities. Obviously, it is far from the realistic application 

scenarios that both entities and relations need to be extracted from raw text. In this paper, we 

propose a Semi-supervised Transfer Learning (STL) framework to tackle joint entity and 

relation extraction problem in a low resource situation. Specifically, STL adopts two main 

strategies: a rebalancing strategy for alleviating the bias to the majority class during semi-

supervised learning, and a transfer learning strategy for transferring knowledge from domains 

with relatively rich annotation to domains that lack annotated data. Experiment results on two 

public scientific IE datasets show the effectiveness of the proposed method.  
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1. Introduction 

With the development of scientific 

communities, the amount of papers increases 

quickly. It’s important to convert the unstructured 

scientific papers into structured knowledge base, 

which relies on Information Extraction (IE) to 

extract entities and their relationships. Two key 

tasks in IE are Named Entity Recognition (NER) 

and Relation Extraction (RE). NER aims to 

identify and classify entities from raw text, while 

RE aims to decide the relations between entities 

and generate triplets (ℎ, 𝑟, 𝑡)  where ℎ , 𝑟 , 𝑡  are 

head entity, relationship and tail entity 

respectively. They are crucial to constructing 

high-quality knowledge base which can be used 

for many other downstream tasks in Natural 

Language Process (NLP), such as question 

answering, text summarization, dialog system and 
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so on. To build a knowledge base, entities and 

relations need to be extracted jointly. Most 

existing joint entity and relation extraction 

methods require abundant annotated data which is 

expensive to obtain, especially in scientific 

domain because of the high requirements for 

annotators. 

Previous works attempt to solve the problem 

by semi-supervised learning (SSL). Most existing 

methods focus on generating high-quality pseudo 

labels by introducing extra information such as 

template information from labeled data [19] or 

gradient information [8]. DualRE [12] designs an 

auxiliary task for unlabeled data. MetaSRE [7] 

adopts meta-learning to reduce noise in pseudo 

labels. But these methods simplify the joint entity 

and relation extraction task to a sentence 

classification task, i.e. the input sentences contain 

only two entities and the output is a single relation 

type. A model trained under such idealized 
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settings won’t meet the requirements for realistic 

application which needs to extract both entities 

and relations. 

To solve the problem above, we proposed a 

novel Semi-supervised Transfer Learning (STL) 

framework for joint entity and relation extraction 

under a low resource condition in scientific 

domains. The proposed STL framework utilizes a 

rebalancing strategy and a transfer learning 

strategy to improve performance. The rebalancing 

strategy is used to alleviate the influence of data 

imbalance which is a serious problem in scientific 

domains. For example, in SciERC [13], a widely 

used information extraction dataset in artificial 

intelligence domain, relation “Used-for” accounts 

for more than half, while relation “compare” only 

takes up about 5%. The rebalancing strategy 

makes the data distribution more balanced by 

selecting unlabeled data predicted as minority 

class at a higher probability when expanding 

training set. The transfer learning strategy is 

designed for transferring common knowledge 

between domains. For example, most natural 

science and engineering domains contain entities 

with types “Method” and “Problem”, and relation 

“Used for” between them. A model is first trained 

on domains with relatively rich annotated data, e.g. 

computer science, then its encoder is used to 

initialize the model to be trained on a new domain. 

We don’t transfer the whole model for two 

reasons. On the one hand, the type and number of 

labels between source domain and target domain 

are different. On the other hand, the classification 

network may differ depending on the domain and 

training corpus. 

The contributions of the proposed work are as 

follows: 

• We proposed a semi-supervised transfer 

learning framework for low resource joint 

entity and relation extraction in scientific 

domains, which utilize unlabeled data and 

cross-domain knowledge at the same time. 

• We adopt a class rebalancing strategy 

when expanding training set with pseudo 

labels to prevent bias to majority classes. 

• To the best of our knowledge, we are the 

first ones to adopt semi-supervised learning 

and transfer learning simultaneously for low 

resource scientific information extraction. 

Experiment results show the effectiveness of 

our method. 

The remainder of this paper proceeds as 

follows. Section 2 introduces related work in 

detail. Section 3 describes the proposed STL 

framework. Section 4 presents experiment results 

and analysis. In Section 5, we summarize the main 

conclusions. 

2. Related work 

In this section, we will introduce semi-

supervised learning and transfer learning for 

relation extraction respectively. 

Semi-supervised learning for relation 

extraction. Several semi-supervised learning 

methods for relation extraction have been 

proposed. DualRE [12] proposes a 

complementary dual task of relation extraction, i.e. 

retrieving sentences expressing a certain relation. 

NERO [19] combines template method with semi-

supervised learning. It generates pseudo labels by 

calculating the similarity between unlabeled data 

and relation templates. To reduce the influence of 

noisy pseudo labels, MetaSRE [7] proposed a 

label generation network trained only on labeled 

data. It also adopts a label selection and 

exploitation scheme to guarantee the quality of 

selected pseudo labels. GradLRE [8] supposes 

that labeled data and unlabeled should share 

gradient direction for updating. It uses 

reinforcement learning to guide the gradient of 

unlabeled data to approximate the gradient of 

labeled data. However, the methods above assume 

the input sentences only contain two entities and 

the two entities have been given, which is much 

simpler than the realistic condition. 

Transfer learning for relation extraction. 

Transfer learning in NLP can be classified into 4 

categories: domain adaptation, cross-lingual 

learning, multi-task learning, and sequential 

transfer learning [14]. Several sequential transfer 

learning methods for relation extraction have been 

proposed. [6] fine-tunes domain-specific pre-

trained language model [2, 10] in domain-related 

dataset. ReTrans [3] generates relation vectors 

from existing knowledge bases. These methods 

transfer knowledge from a source domain to a 

specific domain, which is expensive due to the 

high cost of building domain-specific language 

model or knowledge base. [11] trains model on 

two datasets from the same domain under a multi-

task learning framework. However, no previous 

work explores transfer learning between two 

different domains with limited data. 

3. The proposed STL framework 
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We propose a semi-supervised transfer 

learning framework for low resource information 

extraction in scientific domains. In this section, 

we will give the notions first. Then we will 

introduce the transfer learning strategy, semi-

supervised learning strategy and base model in 

turn. 

3.1. Notions 

Let ℰ and ℛ denote the entities and relations 

label set respectively. An input instance includes 

three parts: a sentence 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, entity 

set 𝐸 = {(𝑒𝑖 , 𝑦𝑖
𝑒): 𝑦𝑖

𝑒 ∈ ℰ, 𝑖 ∈ {1,2, … , 𝑁𝐸}} 
where NE is the number of entities, and relation 

set 𝑅 = {(ℎ𝑖 , 𝑡𝑖 , 𝑦𝑖
𝑟): ℎ𝑖 , 𝑡𝑖 ∈ 𝐸, 𝑦𝑖

𝑟 ∈ ℛ} . Each 

entity 𝑒𝑖  is a span denoted by start position 

𝑠𝑡𝑎𝑟𝑡(𝑖) and end position 𝑒𝑛𝑑(𝑖). The complete 

input includes the labeled data 𝐿 =
{(𝑋𝑖 , 𝐸𝑖 , 𝑅𝑖): 𝑖 ∈ {1,2, … , 𝑁𝐿}} and unlabeled data 

𝑈 = {𝑋𝑖: 𝑖 ∈ {1,2, … , 𝑁𝑈}}  where 𝑁𝐿  and 𝑁𝑈  are 

the numbers of labeled data and unlabeled data 

respectively. 

3.2. STL framework 

The STL framework is shown in Figure 1. As 

noted in introduction, it combines transfer 

learning and semi-supervised learning. We will 

describe each of them in detail. 

3.2.1. Transfer learning 

The intuition behind transfer learning is that 

different scientific domains share some common 

knowledge. We hope the knowledge learned from 

source domain can promote the model’s 

performance in target domain. In this work, the 

encoder is a pre-trained language model in 

scientific domain SciBERT [2] that consists of 12 

Transformer [17] layers, of which each layer 

encodes different linguistic information. The top 

layers capture semantic information [9] that is 

important for entity and relation extraction, so we 

transfer the top layers of SciBERT between 

source domain and target domain. Specifically, an 

entity and relation extraction model 𝑀𝑆 is trained 

on source domain first, then the top SciBERT 

encoder layers of 𝑀𝑆  are used to initialize 𝑀𝑇 

which is to be trained on target domain.  

3.2.2. Self-training 

Self-training is a widely used semi-supervised 

learning method, which trains a model in an 

iterative manner. Each iteration involves two 

steps. First, the model is trained on labeled dataset 

𝐿 . Second, the pre-trained model generates 

pseudo labels for unlabeled dataset 𝑈. For each 

unlabeled data, we can get a predicted entity set 

𝐸̂ = {(𝑒𝑖̂, 𝑦𝑖
𝑒̂): 𝑦𝑖

𝑒̂ ∈ ℰ, 𝑖 ∈ {1,2, … , 𝑁𝐸̂}  and 

relation set 𝑅̂ = {(ℎ𝑖̂, 𝑡𝑖̂, 𝑦𝑖
𝑟̂): ℎ𝑖̂, 𝑡𝑖̂ ∈ 𝐸̂, 𝑦𝑖

𝑟̂ ∈ ℛ} , 

then the pseudo-labeled dataset 𝑈̂ =

{(𝑋𝑖 , 𝐸𝑖̂, 𝑅𝑖̂), 𝑖 ∈ {1,2, … , 𝑁𝑈̂}}  is sorted by 

instances score which is the average of all entities 

and triplets scores. To reduce the noise in pseudo 

labels, we filter out entities and triplets whose 

score is under the given thresholds 𝜏𝑠𝑒𝑚𝑖
𝑒  and 

𝜏𝑠𝑒𝑚𝑖
𝑟  respectively. Finally, instances with a high 

score will be added to 𝐿 for next iteration.  

 

 
Figure 1: STL Framework. 

 

3.3. Rebalancing strategy 

To solve the class imbalance problem, we 

follow the rebalancing strategy proposed by [18]. 

Suppose the instance numbers of each class are 

sorted in descending order, i.e. 𝑁1 ≥ 𝑁2 ≥ 𝑁3 ≥
⋯ ≥ 𝑁𝐶  where 𝑁𝑐   denotes the number of 

instances belonging class 𝑐  and 𝐶  is the label 

space size, then unlabeled instances predicted as 

class 𝑐 are included into training set at the rate of  

𝑃𝑐 = (
𝑁𝐶+1−𝑐
𝑁1

)
𝛼

 (1) 

Where α  is a hyperparameter to control the 

number of instances added to training set. This 

distribution guarantees that the smaller portion of 

a class in the total dataset, the more likely it is to 

be added into the training set for unlabeled data 

predicted as this class. 

We assign a representative entity label and 

relation label to each instance. First, the class 

distribution in the dataset is counted. For NER, we 

select the pseudo entity label with the lowest 

portion as the representative label. So does RE. 
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Then we sample the unlabeled instances based on 

their representative entity label or relation label. 

3.4. Base model 

The proposed STL framework can be adapted 

to any entity and relation extraction model. In this 

work, we select SpERT [4], a powerful span-

based model for entity and relation extraction, as 

the base model. SpERT identifies all entities first, 

then assign relation to all entity pairs. Let 𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑁𝑆

} be the set of spans up to length 𝑙. 

For a given span 𝑠 = {𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑘}   whose 

length is k + 1, the representation of 𝑠 is made up 

of three parts: 

• Span Embedding: the semantic 

information of a span depends on the tokens, 

so the representation should incorporate the 

tokens representation 𝑓(𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑘) 
where 𝑓 is max-pooling function in SpERT. 

• Size Embedding: size is an auxiliary clue 

to decide whether a span is an entity. Each size 

embedding 𝑤𝑘+1 is a learnable vector. 

• Sentence Embedding: the context 

information is also important for named entity 

recognition, so the [CLS] token embedding 

ℎ𝐶𝐿𝑆 of SciBERT encoder is added. 

The final span representation is: 

ℎ𝑠 = 𝑓(𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑘); 𝑤𝑘+1; ℎ𝐶𝐿𝑆 (2) 
where ; means concatenation operation. Then the 

representation is fed into a softmax classifier: 

𝑦𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑒 ⋅ ℎ𝑠 + 𝑏𝑒)  (3) 
where 𝑦𝑠 ∈ ℰ ∪ {𝜖} . 𝜖  means a span is not an 

entity. Then each entity pairs will be fed into a 

relation classifier. Given 2 entity spans 𝑠1 and 𝑠2, 

the input representation is made up by two parts: 

• Span Embedding: head entity 

embedding ℎ𝑠1  and tail entity embedding ℎ𝑠2 . 

• Context Embedding: context embedding 

for relation extraction is the representation of 

tokens between two entities. The context 

embedding 𝑐𝑠1,𝑠2  is also generated by max-

pooling.  

Since some relations are asymmetric, so two 

representations of an entity pairs are fed into the 

classifier: 

ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑟 = ℎ𝑠1; 𝑐𝑠1,𝑠2 ; ℎ

𝑠2  (4) 

ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑟 = ℎ𝑠2 ; 𝑐𝑠1,𝑠2 ; ℎ

𝑠1  (5) 

Different from NER, SpERT regards relation 

extraction as a multi-label classification. 

Classifier for a specific relation 𝑟𝑖 ∈ ℛ is: 

𝑦𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑟𝑖 = σ(𝑊𝑟𝑖 ⋅ ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝑟 + 𝑏𝑟𝑖)  (6) 

𝑦𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑟𝑖 = 𝜎(𝑊𝑟𝑖 ⋅ ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑟 + 𝑏𝑟𝑖)  (7) 

where 𝜎 is sigmod function. Only relations whose 

score is greater than a confidence threshold 𝜏𝑟 

will be assigned to entity pairs. 

4. Experiment 

In this section, baselines, datasets, experiment 

and evaluation settings will be introduced first. 

Then results on STL and baselines will be 

compared. Finally, an analysis of results will be 

presented. 

4.1. Baselines 

Since no existing methods are designed for our 

settings, we only select the representative semi-

supervised learning method self-training [15] as 

baseline. 

4.2. Datasets 

We evaluate the proposed STL framework and 

baselines on two widely used public datasets:  

• SciERC [13]: The SciERC dataset is 

constructed on 500 abstracts in artificial 

intelligence domain, which contains three 

subtasks: named entity recognition, relation 

extraction and coreference resolution. It 

annotates 6 entity types (Task, Method, Metric, 

Material, OtherScientificTerm, Generic) and 7 

relations types (Used-for, Feature-of, 

Hyponym-of, Part-of, Evaluate-for, Compare, 

Conjunction). 

• ADE [5]: The ADE dataset is an 

information extraction dataset in biomedicine 

domain, which consists of 4,722 sentences. It 

only annotated a single relation AdverseEffect 

and two entity types (AdverseEffect, Drug). 

4.3. Experiment settings 
4.3.1. Data split 

For SciERC, we follow the data split [13]. For 

ADE, it doesn’t provide an official split, so we 

divide the corpus into training set, validation set 

and test set in a ratio of 80/10/10%. For both 

SciERC and ADE datasets, we randomly sample 

half of the training set as unlabeled data by 

removing all labels and 20% of the rest as labeled 

training set. To eliminate the effect of randomness, 
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we repeat this process 5 times and report the 

average results.  

4.3.2. Implementation details 

𝜏𝑠𝑒𝑚𝑖
𝑒  and 𝜏𝑠𝑒𝑚𝑖

𝑟  are set to 0.2 and 0.6 

respectively. Only the last layer of SciBERT 

encoder is transferred to target domain. An adam 

optimizer with 2e − 5  peak learning rate is 

adopted. For fair comparison, only iterations for 

labeled data are considered when calculating 

warmup steps of learning rate. Other 

hyperparameters of SpERT follow the settings 

reported in [4].  

For transfer learning module, ADE and 

SciERC is the source domain for each other, i.e. 

when ADE is the target domain, SciERC is 

regarded as the source domain, and vice versa. All 

labeled data is available when training model on 

source domain.  

Since the relation imbalance is more serious in 

SciERC, we sample pseudo labels according to 

relation type for SciERC. For ADE, we sample by 

entity type because there is only one relation type. 

Entities with type generic are removed from 

SciERC since extracting pronouns is not our 

target. 

4.4. Evaluation settings 

Following the evaluation settings in [16], a 

predicted entity will be regarded as correct if both 

the boundaries and type are correct. For relation 

extraction, there are two criteria: boundaries 

settings and strict settings [1]: 

• Boundaries Settings (denoted as RE): A 

predicted triplet will be regarded as correct if 

the relation type and the boundaries of two 

entities are correct. Whether the type of two 

entities is correct doesn’t matter. 

• Strict Settings (denoted as RE+): Based 

on boundaries setting, the entity type of two 

entities also must be correct. 

4.5. Main results 

Results of baselines and proposed STL 

framework are shown in Table 1. It can be 

observed that: 

• STL outperforms the self-training 

baseline and supervised learning on most 

metrics. Compared to supervised learning, it 

gains 1.1/1.2/1.2 F1 improvements in 

NER/RE/RE+ on ADE and 0.3/0.7 F1 

improvements in NER/RE on SciERC. 

• Self-training performs worse than 

supervised learning on almost all metrics. We 

argue it’s caused by the noise in pseudo labels. 

Unlike conventional classification tasks, one 

instance in joint entity and relation extraction 

contains multiple entities and triplets. 

Although we only add pseudo labels with a 

high average confidence score to training set, 

they still include wrong labels with a high 

probability. 

 
Table 1 
F1 in ADE and SciERC. “supervised” means the 
model is trained only on the labeled training set 
without any semi-supervised or transfer learning 
techniques. ST denotes Self-training. 

Model 
ADE SciERC 

NER RE RE+ NER RE RE+ 

Supervised 85.5 72.4 72.4 59.4 31.5 21.5 
ST 84.9 71.1 71.1 58.4 31.9 21.4 
STL 86.6 73.6 73.6 59.7 32.2 21.2 

4.6. Hyperparameter selection 

The main hyperparameters in STL are the 

thresholds to filter entities and triplets. We search 

thresholds from 0.1 to 0.9 to find the best 

threshold based on the average of three metrics 

mentioned in section 4.4. As shown in Figure 2, 

we get the same result when setting entity 

threshold to 0.1 and 0.2. 0.2 is selected as the 

optimal threshold to reduce noise. 

 
Figure 2: Average F1 of Three Metrics on SciERC 
with different entity and relation confidence 

threshold. 
 

To reduce the search cost, we search entity 

threshold first with a fixed relation threshold (set 
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to 0.4 in our experiments), then search relation 

threshold with the optimal entity threshold. 

4.7. Effectiveness of rebalancing 

The target of rebalancing is to promote the 

performance on minority classes. The results and 

ratios of different relation types are shown in 

Table 2. We choose classes whose proportion is 

less than 10% as minority classes. STL gains 1.0 

average improvement on minority classes after 

adopting rebalancing strategy. However, we find 

that not all minority classes can benefit from 

rebalancing, which is an interesting problem for 

future work. 

 

Table 2 
F1 of RE for Each Class in SciERC. 

Type 
Method 

Proportion 
w/o rebalancing STL 

Used-for 31.0 32.2 52.5% 
Feature-of 9.6 10.6 5.4% 

Hyponym-of 37.6 36.8 9.3% 
Evaluate-for 4.2 12.0 9.7% 

Part-of 7.2 4.0 5.6% 
Compare 3.8 3.8 5.2% 

Conjunction 53.7 55.9 12.4% 

 

5. Conclusion 

We proposed a semi-supervised transfer 

learning framework for low resource entity and 

relation extraction in scientific domains. A 

rebalancing strategy is adopted to solve the class 

imbalance problem. Extensive experiments prove 

the effectiveness of the proposed method. 
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