
Logic Tensor Networks for Top-N Recommendation
Tommaso Carraro1,2,∗, Alessandro Daniele2, Fabio Aiolli1 and Luciano Serafini2

1Department of Mathematics, University of Padova, Via Trieste, 63, 35131 Padova, Italy
2Data and Knowledge Management, Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo, Italy

Abstract
Despite being studied for more than twenty years, state-of-the-art recommendation systems still suffer
from important drawbacks which limit their usage in real-world scenarios. Among the well-known
issues of recommender systems, there are data sparsity and the cold-start problem. These limitations can
be addressed by providing some background knowledge to the model to compensate for the scarcity of
data. Following this intuition, we propose to use Logic Tensor Networks (LTNs) to tackle the top-n item
recommendation problem. In particular, we show how LTNs can be used to easily and effectively inject
commonsense recommendation knowledge inside a recommender system. We evaluate our method
on MindReader, a knowledge graph-based movie recommendation dataset containing plentiful side
information. In particular, we perform an experiment to show how the benefits of the knowledge increase
with the sparsity of the dataset. Eventually, a comparison with a standard Matrix Factorization approach
reveals that our model is able to reach and, in many cases, outperform state-of-the-art performance.

Keywords
recommender systems, top-n recommendation, logic tensor networks, neural-symbolic integration

1. Introduction

Recommender system (RS) technologies are nowadays an essential component for e-services
(e.g., Amazon, Netflix, Spotify). Generally speaking, an RS aims at providing suggestions for
items (e.g., movies, songs, news) that are most likely of interest to a particular user [1]. Since the
first appearance of RSs in early 2000, Collaborative Filtering (CF) [2, 3, 4] has affirmed of being
the standard recommendation approach. In particular, Latent Factor models, and especially
Matrix Factorization (MF), have dominated the CF scene [5, 6, 7] for years, and this has been
further emphasized with the deep learning rise [8, 9, 10, 11, 12].
Despite their success, state-of-the-art models still suffer from important drawbacks, which

limit their applicability in real-world scenarios. Among the most crucial problems, there are data
sparsity and the cold-start problem [13, 1]. Data sparsity leads to datasets where the density of
ratings is usually less than 1%, while cold-start makes the recommendation challenging for new
users and items. One way to address these limitations is to provide additional information to the
models to compensate for the scarcity of data. Following this intuition, methods based on Tensor

NeSy 2022: 16th International Workshop on Neural-Symbolic Learning and Reasoning, Cumberland Lodge, Windsor, UK
∗Corresponding author.
Envelope-Open tcarraro@fbk.eu (T. Carraro); daniele@fbk.eu (A. Daniele); aiolli@math.unipd.it (F. Aiolli); serafini@fbk.eu
(L. Serafini)
Orcid 0000-0002-3043-1456 (T. Carraro); 0000-0001-9441-0729 (A. Daniele); 0000-0002-5823-7540 (F. Aiolli);
0000-0003-4812-1031 (L. Serafini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:tcarraro@fbk.eu
mailto:daniele@fbk.eu
mailto:aiolli@math.unipd.it
mailto:serafini@fbk.eu
https://orcid.org/0000-0002-3043-1456
https://orcid.org/0000-0001-9441-0729
https://orcid.org/0000-0002-5823-7540
https://orcid.org/0000-0003-4812-1031
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Factorization [14] and Factorization Machines [15, 16] have been proposed recently. These
models allow to effectively extend the user-item matrix by adding new dimensions containing
content (e.g., movie genres, demographic information) and/or contextual side information (e.g.,
location, time). Though these techniques have been shown to improve the recommendation
performance, they are usually specifically designed for one type of side information (e.g., the
user or item content) and lack explainability [17, 18]. Novel recommendation datasets (e.g.,
[19]) provide manifold side information (e.g., ratings on movie genres, actors, directors), and
hence models which can exploit all the available information are required.

Neural-Symbolic Integration (NeSy) [20] and Statistical Relational Learning (SRL) [21] repre-
sent good candidates to incorporate knowledge with learning. These two branches of Artificial
Intelligence study approaches for the integration of some form of prior knowledge, usually
expressed through First-Order Logic (FOL), with statistical models. The integration has been
shown beneficial to address data scarcity [22].

In this paper, we propose to use a Logic Tensor Network (LTN) [23] to inject commonsense
knowledge into a standard Matrix Factorization model for the top-n item recommendation task.
LTN is a NeSy framework that allows using logical formulas to instruct the learning of a neural
model. We propose to use the MindReader dataset [19] to test our model. This dataset includes
a variety of information, such as users’ tastes across movie genres, actors, and directors. In
this work, we show how LTN can naturally and effectively exploit all this various information
to improve the generalization capabilities of the MF model. In addition, an experiment that
drastically reduces the density of the training ratings reveals that our model can effectively
mitigate the sparsity of data, outperforming the standard MF model, especially in the most
challenging scenarios.

2. Related works

The integration of logical reasoning and learning in RSs is still in its early stages. Among the
NeSy approaches for RSs, the most prominent is NCR [24]. In this work, the recommendation
problem is formalized into a logical reasoning problem. In particular, the user’s ratings are
represented using logical variables, then, logical operators are used to construct formulas
that express facts about them. Afterward, NCR maps the variables to logical embeddings and
the operators to neural networks which act on those embeddings. By doing so, each logical
expression can be equivalently organized as a neural network, so that logical reasoning and
prediction can be conducted in a continuous space. In [25], the idea of NCR is applied to
knowledge graphs for RSs, while [26] uses a NeSy approach to tackle the explainability of RSs.
The seminal approach that successfully applied SRL to RSs has been HyPER [27], which is

based on Probabilistic Soft Logic (PSL) [28]. In particular, HyPER exploits the expressiveness of
FOL to encode knowledge from a wide range of information sources, such as multiple user and
item similarity measures, content, and social information. Then, Hinge-Loss Markov Random
Fields are used to learn how to balance the different information types. HyPER is highly related
to our work since the logical formulas that we use resemble the ones used in HyPER. After
HyPER, other SRL approaches have been proposed for RSs [29, 30].

3. Background

This section provides useful notation and terminology used in the remainder of the paper.

3.1. Notation

Bold notation is used to differentiate between vectors, e.g., x = [3.2, 2.1], and scalars, e.g., 𝑥 = 5.
Matrices and tensors are denoted with upper case bold notation, e.g., X. Then, X𝑖 is used to
denote the 𝑖-th row of X, while X𝑖,𝑗 to denote the position at row 𝑖 and column 𝑗. We refer to the
set of users of a RS with 𝒰, where |𝒰| = 𝑛. Similarly, the set of items is referred to as ℐ such
that |ℐ | = 𝑚. We use𝒟 to denote a dataset. 𝒟 is defined as a set of 𝑁 triples𝒟 = {(𝑢, 𝑖, 𝑟)(𝑗)}𝑁𝑗=1,
where 𝑢 ∈ 𝒰, 𝑖 ∈ ℐ, and 𝑟 ∈ ℕ is a rating. We assume that a user 𝑢 cannot give more than one
rating to an item 𝑖, namely ∄𝑟1, 𝑟2 ∈ ℕ, 𝑟1 ≠ 𝑟2 ∶ {(𝑢, 𝑖, 𝑟1)} ∪ {(𝑢, 𝑖, 𝑟2)} ⊆ 𝒟. 𝒟 can be reorganized
in the so-called user-item matrix R ∈ ℕ𝑛×𝑚, where users are on the rows and items on the
columns, such that R𝑢,𝑖 = 𝑟 if (𝑢, 𝑖, 𝑟) ∈ 𝒟, 0 otherwise.

3.2. Matrix Factorization

Matrix Factorization (MF) is a Latent Factor Model that aims at factorizing the user-item matrix
R into the product of two lower-dimensional rectangular matrices, denoted asU and I. U ∈ ℝ𝑛×𝑘
and I ∈ ℝ𝑚×𝑘 are matrices containing the users’ and items’ latent factors, respectively, where 𝑘
is the number of latent factors. The objective of MF is to find U and I such that R ≈ U ⋅ I⊤. An
effective way to learn the latent factors is by using gradient-descent optimization. Given the
dataset 𝒟, a MF model seeks to minimize the following loss function:

L(𝜃) = 1
𝑁

∑
(𝑢,𝑖,𝑟)∈𝒟

|| ̃𝑟 − 𝑟 ||2 + 𝜆||𝜃||2 (1)

where ̃𝑟 = U𝑢 ⋅ I⊤𝑖 and 𝜃 = {U, I}. The first term of Equation (1) is the Mean Squared Error (MSE)
between the predicted and target ratings, while the second one is an 𝐿2 regularization term. 𝜆
is an hyper-parameter to set strength of the regularization.

3.3. Logic Tensor Networks

Logic Tensor Networks [23] (LTNs) are a Neural-Symbolic framework that enables effective
integration of deep learning and logical reasoning. It allows to define a knowledge base
composed of a set of logical axioms and to use them as the objective of a neural model. To
define the knowledge base, LTN uses a specific first-order language, called Real Logic, which
forms the basis of the framework. It is fully differentiable and has a concrete semantics that
allows mapping every symbolic expression into the domain of real numbers. Thanks to Real
Logic, LTN can convert logical formulas into computational graphs that enable gradient-based
optimization based on fuzzy logic semantics.
Real Logic is defined on a first-order language ℒ with a signature that contains a set 𝒞

of constant symbols, a set 𝒳 of variable symbols, a set ℱ of functional symbols, and a set
𝒫 of predicate symbols. A term is constructed recursively from constants, variables, and
functional symbols. An expression formed by applying a predicate symbol to some term(s) is

called an atomic formula. Complex formulas are constructed recursively using connectives (i.e.,
¬, ∧, ∨, ⟹ ,↔) and quantifiers (i.e., ∀, ∃).

To emphasize the fact that symbols are grounded onto real-valued features, we use the term
grounding1, denoted by 𝒢. In particular, each individual is grounded as a tensor of real features,
functions as real functions, and predicates as real functions that specifically project onto a
value in the interval [0, 1]. A variable 𝑥 is grounded to a sequence of 𝑛𝑥 individuals from a
domain, with 𝑛𝑥 ∈ ℕ+, 𝑛𝑥 > 0. As a consequence, a term 𝑡(𝑥) or a formula P(𝑥), constructed
recursively with a free variable 𝑥, will be grounded to a sequence of 𝑛𝑥 values too. Afterward,
connectives are grounded using fuzzy semantics, while quantifiers using special aggregation
functions. In this paper, we use the product configuration, which is better suited for gradient-
based optimization [31]. Specifically, conjunctions are grounded using the product t-norm T𝑝𝑟𝑜𝑑,
negations using the standard fuzzy negation N𝑆, implications using the Reichenbach implication
I𝑅, and the universal quantifier using the generalized mean w.r.t the error values ME𝑝. The
other connectives and quantifiers are not used in this paper, hence not reported.

T𝑝𝑟𝑜𝑑(𝑢, 𝑣) = 𝑢 ∗ 𝑣, 𝑢, 𝑣 ∈ [0, 1]

I𝑅(𝑢, 𝑣) = 1 − 𝑢 + 𝑢 ∗ 𝑣, 𝑢, 𝑣 ∈ [0, 1]
N𝑆(𝑢) = 1 − 𝑢, 𝑢 ∈ [0, 1]

ME𝑝(𝑢1, … , 𝑢𝑛) = 1 − (1
𝑛

𝑛
∑
𝑖=1

(1 − 𝑢𝑖)𝑝)
1
𝑝 , 𝑝 ≥ 1, 𝑢1, … , 𝑢𝑛 ∈ [0, 1]

Connective operators are applied element-wise to the tensors in input, while aggregators
aggregate the dimension of the tensor in input that corresponds to the quantified variable. Real
Logic provides also a special type of quantification, called diagonal quantification, denoted
as Diag(𝑥1, … , 𝑥𝑛). It applies only to variables that have the same number of individuals (i.e.,
𝑛𝑥1 = 𝑛𝑥2 = ⋯ = 𝑛𝑥𝑛) and allows to quantify over specific tuples of individuals, such that the 𝑖-th
tuple contains the 𝑖-th individual of each of the variables in the argument of Diag. An intuition
about how these operations work in practice is given in Appendix D.
Given a Real Logic knowledge base 𝒦 = {𝜙1, … , 𝜙𝑛}, where 𝜙1, … , 𝜙𝑛 are closed formulas,

LTN allows to learn the grounding of constants, functions, and predicates appearing in them.
In particular, if constants are grounded as embeddings, and functions/predicates onto neural
networks, their grounding 𝒢 depends on some learnable parameters 𝜃. We denote a parametric
grounding as 𝒢(⋅|𝜃). In LTN, the learning of parametric groundings is obtained by finding
parameters 𝜃∗ that maximize the satisfaction of𝒦:

𝜃∗ = argmax𝜃 SatAgg𝜙∈𝒦 𝒢(𝜙|𝜃) (2)

where, SatAgg ∶ [0, 1]∗ ↦ [0, 1] is a formula aggregating operator, often defined usingME𝑝.
Because Real Logic grounds expressions in real and continuous domains, LTN attaches gradi-

ents to every sub-expression and consequently learns through gradient-descent optimization.

1Notice that this is different from the common use of the term grounding in logic, which indicates the operation of
replacing the variables of a term or formula with constants or terms containing no variables. To avoid confusion,
we use the synonym instantiation for this purpose.

4. Method

Our approach uses a Logic Tensor Network to train a basic Matrix Factorization (MF) model
for the top-n item recommendation task. The LTN is trained using a Real Logic knowledge
base containing commonsense knowledge facts about the movie recommendation domain. This
section formalizes the knowledge base used by our model, how the symbols appearing in it are
grounded in the real field, and how the learning of the LTN takes place.

4.1. Knowledge base

The Real Logic knowledge base that our model seeks to maximally satisfy is composed of the
following axioms.

𝜙1 ∶ ∀Diag(𝑢𝑠𝑒𝑟 , 𝑚𝑜𝑣 𝑖𝑒, 𝑟𝑎𝑡𝑖𝑛𝑔)(Sim(Likes(𝑢𝑠𝑒𝑟 , 𝑚𝑜𝑣 𝑖𝑒), 𝑟𝑎𝑡𝑖𝑛𝑔)) (3)

𝜙2 ∶ ∀(𝑢𝑠𝑒𝑟 , 𝑚𝑜𝑣 𝑖𝑒, 𝑔𝑒𝑛𝑟𝑒)(¬ LikesGenre(𝑢𝑠𝑒𝑟 , 𝑔𝑒𝑛𝑟𝑒) ∧ HasGenre(𝑚𝑜𝑣𝑖𝑒, 𝑔𝑒𝑛𝑟𝑒)
⟹ Sim(Likes(𝑢𝑠𝑒𝑟 , 𝑚𝑜𝑣 𝑖𝑒), 𝑟𝑎𝑡𝑖𝑛𝑔−))

(4)

where 𝑢𝑠𝑒𝑟, 𝑚𝑜𝑣𝑖𝑒, 𝑟𝑎𝑡𝑖𝑛𝑔, and 𝑔𝑒𝑛𝑟𝑒 are variable symbols to denote the users of the system,
the items of the system, the ratings given by the users to the items, and the genres of the
movies, respectively. 𝑟𝑎𝑡𝑖𝑛𝑔− is a constant symbol denoting the negative rating. Likes(𝑢, 𝑚) is a
functional symbol returning the prediction for the rating given by user 𝑢 to movie 𝑚. Sim(𝑟1, 𝑟2)
is a predicate symbol measuring the similarity between two ratings, 𝑟1 and 𝑟2. LikesGenre(𝑢, 𝑔) is
a predicate symbol denoting whether the user 𝑢 likes the genre 𝑔. HasGenre(𝑚, 𝑔) is a predicate
symbol denoting whether the movie 𝑚 belongs to the genre 𝑔.

Notice the use of the diagonal quantification on Axiom (3). When 𝑢𝑠𝑒𝑟, 𝑚𝑜𝑣𝑖𝑒, and 𝑟𝑎𝑡𝑖𝑛𝑔 are
grounded with three sequences of values, the 𝑖-th value of each variable matches with the values
of the other variables. This is useful in this case since the dataset 𝒟 comes as a set of triples.
Diagonal quantification allows forcing the satisfaction of Axiom (3) for these triples only, rather
than any combination of users, items, and ratings in 𝒟.

4.2. Grounding of the knowledge base

The grounding allows to define how the symbols of the language are mapped onto the real field,
and hence how they can be used to construct the architecture of the LTN. In particular, given
𝒟 = {(𝑢, 𝑚, 𝑟)}𝑁𝑗=1, 𝒢(𝑢𝑠𝑒𝑟) = ⟨𝑢(𝑗)⟩𝑁𝑗=1, namely 𝑢𝑠𝑒𝑟 is grounded as a sequence of the 𝑁 user
indexes in 𝒟. 𝒢(𝑚𝑜𝑣𝑖𝑒) = ⟨𝑚(𝑗)⟩𝑁𝑗=1, namely 𝑚𝑜𝑣𝑖𝑒 is grounded as a sequence of the 𝑁 movie
indexes in 𝒟. 𝒢(𝑟𝑎𝑡𝑖𝑛𝑔) = ⟨𝑟 (𝑗)⟩𝑁𝑗=1 with 𝑟 (𝑗) ∈ {0, 1} ∀𝑗, namely 𝑟𝑎𝑡𝑖𝑛𝑔 is grounded as a sequence
of the 𝑁 ratings in 𝒟, where 0 denotes a negative rating and 1 a positive one. 𝒢(𝑟𝑎𝑡𝑖𝑛𝑔−) = 0,
namely 𝑟𝑎𝑡𝑖𝑛𝑔− is grounded as the negative rating. 𝒢(𝑔𝑒𝑛𝑟𝑒) = ⟨1, … , 𝑁𝑔⟩, namely 𝑔𝑒𝑛𝑟𝑒 is
grounded as a sequence of 𝑁𝑔 genre indexes, where 𝑁𝑔 is the number of genres appearing in
the movies of𝒟. 𝒢(Likes |U, I) ∶ 𝑢, 𝑚 ↦ U𝑢 ⋅ I⊤𝑚, namely Likes is grounded onto a function that
takes as input a user index 𝑢 and a movie index 𝑚 and returns the prediction of the MF model
for user at index 𝑢 and movie at index 𝑚, where U ∈ ℝ𝑛×𝑘 and I𝑚×𝑘 are the matrices of the users’

and items’ latent factors, respectively. 𝒢(LikesGenre) ∶ 𝑢, 𝑔 ↦ {0, 1}, namely LikesGenre is
grounded onto a function that takes as input a user index 𝑢 and a genre index 𝑔 and returns 1 if
the user 𝑢 likes the genre 𝑔 in the dataset, 0 otherwise. Similarly, 𝒢(𝐻𝑎𝑠𝐺𝑒𝑛𝑟𝑒) ∶ 𝑚, 𝑔 ↦ {0, 1},
namely HasGenre is grounded onto a function that takes as input a movie index 𝑚 and a genre
index 𝑔 and returns 1 if the movie 𝑚 belongs to genre 𝑔 in the dataset, 0 otherwise. Finally,
𝒢(Sim) ∶ ̃𝑟 , 𝑟 ↦ exp(−𝛼|| ̃𝑟 − 𝑟 ||2), namely Sim is grounded onto a function that computes the
similarity between a predicted rating ̃𝑟 and a target rating 𝑟. The use of the exponential allows to
treat Sim as a predicate since the output is restricted in the interval [0, 1]. The squared is used
to give more penalty to larger errors in the optimization. 𝛼 is an hyper-parameter to change the
smoothness of the function.
Intuitively, Axiom (3) states that for each user-movie-rating triple in the dataset 𝒟 =

{(𝑢, 𝑚, 𝑟)(𝑗)}𝑁𝑗=1, the prediction computed by the MF model for the user 𝑢 and movie 𝑚 should be
similar to the target rating 𝑟 provided by the user 𝑢 for the movie 𝑚. Instead, Axiom (4) states
that for each possible combination of users, movies, and genres, taken from the dataset, if the
user 𝑢 does not like a genre of the movie 𝑚, then the prediction computed by the MF model for
the user 𝑢 and movie 𝑚 should be similar to the negative rating 𝑟𝑎𝑡𝑖𝑛𝑔−, namely the user should
not like the movie 𝑚. By forcing the satisfaction of Axiom (3), the model learns to factorize the
user-item matrix using the ground truth, while Axiom (4) acts as a kind of regularization for
the latent factors of the MF model.

4.3. Learning of the LTN

The objective of our LTN is to learn the latent factors in U and I such that
the axioms in the knowledge base 𝒦 = {𝜙1, 𝜙2} are maximally satisfied, namely
argmax𝜃 SatAgg𝜙∈𝒦 𝒢(𝑢𝑠𝑒𝑟 ,𝑚𝑜𝑣 𝑖𝑒,𝑟𝑎𝑡𝑖𝑛𝑔)←𝒟(𝜙|𝜃)2, where 𝜃 = {U, I}. In practice, this objective cor-
responds to the following loss function:

L(𝜃) = (1 − SatAgg𝜙∈𝒦 𝒢(𝑢𝑠𝑒𝑟 ,𝑚𝑜𝑣 𝑖𝑒,𝑟𝑎𝑡𝑖𝑛𝑔)←ℬ(𝜙|𝜃)) + 𝜆||𝜃||2 (5)

whereℬ denotes a batch of training triples randomly sampled from 𝒟. An 𝐿2 regularization
term has been added to the loss to prevent overfitting. Hyper-parameter 𝜆 is used to define the
strength of the regularization. Notice that the loss does not specify how the variable 𝑔𝑒𝑛𝑟𝑒 is
grounded. Its grounding depends on the sampled batch ℬ. In our experiments, we grounded it
with the sequence of genres of the movies in the batch.

It is worth highlighting that the loss function depends on the semantics used to approximate
the logical connectives, quantifiers, and formula aggregating operator. In our experiments, we
used the stable product configuration, a stable version of the product configuration introduced
in [23]. Then, we selected ME𝑝 as formula aggregating operator, with 𝑝 = 2.

2In the notation, (𝑢𝑠𝑒𝑟 , 𝑚𝑜𝑣 𝑖𝑒, 𝑟𝑎𝑡𝑖𝑛𝑔) ← 𝒟 means that variables 𝑢𝑠𝑒𝑟, 𝑚𝑜𝑣𝑖𝑒, and 𝑟𝑎𝑡𝑖𝑛𝑔 are grounded with the triples
taken from the dataset𝒟, namely 𝑢𝑠𝑒𝑟 takes the sequence of user indexes, 𝑚𝑜𝑣𝑖𝑒 the sequence of movie indexes, and
𝑟𝑎𝑡𝑖𝑛𝑔 the sequence of ratings.

5. Experiments

This section presents the experiments we have performed with our method. They have been
executed on an Apple MacBook Pro (2019) with a 2,6 GHz 6-Core Intel Core i7. The model has
been implemented in Python using PyTorch. In particular, we used the LTNtorch3 library. Our
source code is available at URL4.

5.1. Dataset

In our experiments, we used the MindReader [19] dataset. It contains 102,160 explicit ratings
collected from 1,174 real users on 10,030 entities (e.g., movies, actors, movie genres) taken
from a knowledge graph in the movie domain. The explicit ratings in the dataset can be of
three types: like (1), dislike (−1), or unknown (0). The dataset is subdivided in 10 splits. In our
experiments, we used split 0. Each split has a training set, a validation set, and a test set. The
training set contains both ratings given on movies and on the other entities, while validation
and test sets contain only ratings given on movies. The validation and test sets are built in
such a way to perform a leave-one-out evaluation. In particular, for each user of the training
set, one random positive movie rating is held out for the validation set, and one for the test
set. The validation/test example of the user is completed by adding 100 randomly sampled
negative movie ratings from the dataset. To improve the quality of the dataset, we removed the
unknown ratings. Moreover, we removed the top 2% of popular movies from the test set to see
how the model performs on non-trivial recommendations, as suggested in [19]. Afterward, we
considered only the training ratings given on movies and movie genres since our model uses
only this information. After these steps, we converted the negative ratings from -1 to 0. Our
final dataset contains 962 users, 3,034 movies, 164 genres, 16,351 ratings on movies, and 10,889
ratings on movie genres. The density of the user-movie ratings is 0.37%.

5.2. Experimental setting

In our experiments, we compared the performance of three models: (1) a standard MF model
trained on the movie ratings of MindReader using Equation (1), denoted asMF, (2) a LTN model
trained on the movie ratings of MindReader using Equation (5) with𝒦 = {𝜙1}, denoted as LTN,
and (3) a LTN model trained on the movie and genre ratings of MindReader using Equation (5)
with 𝒦 = {𝜙1, 𝜙2}, denoted as LTNgenres. To compare the performance of the models, we used
two widely used ranking-based metrics, namely hit@k and ndcg@k, explained in Appendix A. In
our experiments, we used the following procedure: (1) we generated additional training sets by
randomly sampling the 80%, 60%, 40%, and 20% of the movie ratings of each user from the entire
training set, referred to as 100%. Then, (2) for each training set 𝑇 𝑟 ∈ {100%, 80%, 60%, 40%, 20%}
and for each model 𝑚 ∈ {MF, LTN, LTNgenres}: (2𝑎) we performed a grid search of model 𝑚 on
training set 𝑇 𝑟 to find the best hyper-parameters on the validation set using hit@10 as validation
metric; then, (2𝑏)we tested the performance of the best model on the test set in terms of hit@10
and ndcg@10. We repeated this procedure 30 times using seeds from 0 to 29. The test metrics

3https://github.com/logictensornetworks/LTNtorch
4https://github.com/tommasocarraro/LTNrec

https://github.com/logictensornetworks/LTNtorch
https://github.com/tommasocarraro/LTNrec

have been averaged across these runs and reported in Table 1. Due to computational time, the
grid search has been computed only for the first run. Starting from the second run, step (2𝑎) is
replaced with the training of model 𝑚 on the training set 𝑇 𝑟 with the best hyper-parameters
found during the first run. A description of the hyper-parameters tested in the grid searches as
well as the training details of the models is explained in Appendix B.

6. Results

A comparison between MF, LTN, and LTNgenres is reported in Table 1. The table reports the
performance of the three models on a variety of tasks with different sparsity.

Table 1
Test hit@10 and ndcg@10 averaged across 30 runs. Standard deviations are between brackets.

% of training ratings Metric MF LTN LTNgenres

100%
hit@10 0.4499(0.0067) 0.4636(0.0040) 0.4642(0.0054)
ndcg@10 0.1884(0.0028) 0.1899(0.0014) 0.1905(0.0022)

80%
hit@10 0.4459(0.0057) 0.4585(0.0066) 0.4616(0.0069)
ndcg@10 0.1864(0.0023) 0.1881(0.0023) 0.1894(0.0025)

60%
hit@10 0.4274(0.0107) 0.4475(0.0087) 0.4487(0.0080)
ndcg@10 0.1798(0.0039) 0.1853(0.0034) 0.1862(0.0031)

40%
hit@10 0.3983(0.0105) 0.4087(0.0117) 0.4322(0.0102)
ndcg@10 0.1692(0.0047) 0.1726(0.0052) 0.1807(0.0049)

20%
hit@10 0.2956(0.0196) 0.3764(0.0170) 0.3761(0.0160)
ndcg@10 0.1367(0.0093) 0.1594(0.0069) 0.1598(0.0068)

By looking at the table, it is possible to observe that LTN outperformsMF in all the five tasks.
In particular, for the dataset with 20% of training ratings, the improvement is drastic (27.33%
on hit@10). We want to emphasize that the two models only differ in the loss function. This
demonstrates that the loss based on fuzzy logic semantics of LTN is beneficial to deal with the
sparsity of data. Then, with the addition of knowledge regarding the users’ tastes across the
movie genres, it is possible to further improve the results, as shown in the last column of the
table. LTNgenres outperforms the other models on almost all the tasks. For the dataset with
the 20% of the ratings, the hit@10 of LTNgenres is slightly worse compared to LTN. This could
be related to the quality of the training ratings sampled from the original dataset. This is also
suggested by the higher standard deviation associated with the datasets with higher sparsity.
For considerations about the training times of the models refer to Appendix C.

7. Conclusions

In this paper, we proposed to use Logic Tensor Networks to tackle the top-n recommendation
task. We showed how, by design, LTN permits to easily integrate side information inside a
recommendation model. We compared our LTN models with a standard MF model, in a variety
of tasks with different sparsity, showing the benefits provided by the background knowledge,
especially when the task is challenging due to data scarcity.

References

[1] F. Ricci, L. Rokach, B. Shapira, Recommender Systems: Introduction and Challenges,
Springer US, Boston, MA, 2015, pp. 1–34. URL: https://doi.org/10.1007/978-1-4899-7637-6_1.
doi:10.1007/978-1-4899-7637-6_1.

[2] X. Su, T. M. Khoshgoftaar, A survey of collaborative filtering techniques, Adv. in Artif.
Intell. 2009 (2009). URL: https://doi.org/10.1155/2009/421425. doi:10.1155/2009/421425.

[3] Y. Koren, R. Bell, Advances in Collaborative Filtering, Springer, Boston, MA,
2011, pp. 145–186. URL: https://doi.org/10.1007/978-0-387-85820-3_5. doi:10.1007/
978-0-387-85820-3_5.

[4] F. Aiolli, Efficient top-n recommendation for very large scale binary rated datasets, in:
Proceedings of the 7th ACMConference on Recommender Systems, RecSys ’13, Association
for Computing Machinery, New York, NY, USA, 2013, p. 273–280. URL: https://doi.org/10.
1145/2507157.2507189. doi:10.1145/2507157.2507189.

[5] Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback datasets, in: 2008
Eighth IEEE International Conference on Data Mining, 2008, pp. 263–272. doi:10.1109/
ICDM.2008.22.

[6] X. Ning, G. Karypis, Slim: Sparse linear methods for top-n recommender systems, in:
2011 IEEE 11th International Conference on Data Mining, 2011, pp. 497–506. doi:10.1109/
ICDM.2011.134.

[7] M. Polato, F. Aiolli, Boolean kernels for collaborative filtering in top-n item recommenda-
tion, Neurocomput. 286 (2018) 214–225. URL: https://doi.org/10.1016/j.neucom.2018.01.057.
doi:10.1016/j.neucom.2018.01.057.

[8] D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, Variational autoencoders for col-
laborative filtering, in: Proceedings of the 2018 World Wide Web Conference, WWW
’18, International World Wide Web Conferences Steering Committee, Republic and Can-
ton of Geneva, CHE, 2018, p. 689–698. URL: https://doi.org/10.1145/3178876.3186150.
doi:10.1145/3178876.3186150.

[9] I. Shenbin, A. Alekseev, E. Tutubalina, V. Malykh, S. I. Nikolenko, RecVAE: A new varia-
tional autoencoder for top-n recommendations with implicit feedback, in: Proceedings
of the 13th International Conference on Web Search and Data Mining, ACM, 2020. URL:
https://doi.org/10.1145%2F3336191.3371831. doi:10.1145/3336191.3371831.

[10] H. Steck, Embarrassingly shallow autoencoders for sparse data, in: The World Wide
Web Conference, WWW ’19, Association for Computing Machinery, New York, NY, USA,
2019, p. 3251–3257. URL: https://doi.org/10.1145/3308558.3313710. doi:10.1145/3308558.
3313710.

[11] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering,
in: Proceedings of the 26th International Conference on World Wide Web, WWW ’17,
International World Wide Web Conferences Steering Committee, Republic and Can-
ton of Geneva, CHE, 2017, p. 173–182. URL: https://doi.org/10.1145/3038912.3052569.
doi:10.1145/3038912.3052569.

[12] T. Carraro, M. Polato, F. Aiolli, Conditioned variational autoencoder for top-n item rec-
ommendation, 2020. URL: https://arxiv.org/abs/2004.11141. doi:10.48550/ARXIV.2004.
11141.

https://doi.org/10.1007/978-1-4899-7637-6_1
http://dx.doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1155/2009/421425
http://dx.doi.org/10.1155/2009/421425
https://doi.org/10.1007/978-0-387-85820-3_5
http://dx.doi.org/10.1007/978-0-387-85820-3_5
http://dx.doi.org/10.1007/978-0-387-85820-3_5
https://doi.org/10.1145/2507157.2507189
https://doi.org/10.1145/2507157.2507189
http://dx.doi.org/10.1145/2507157.2507189
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2011.134
http://dx.doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1016/j.neucom.2018.01.057
http://dx.doi.org/10.1016/j.neucom.2018.01.057
https://doi.org/10.1145/3178876.3186150
http://dx.doi.org/10.1145/3178876.3186150
https://doi.org/10.1145%2F3336191.3371831
http://dx.doi.org/10.1145/3336191.3371831
https://doi.org/10.1145/3308558.3313710
http://dx.doi.org/10.1145/3308558.3313710
http://dx.doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1145/3038912.3052569
https://arxiv.org/abs/2004.11141
http://dx.doi.org/10.48550/ARXIV.2004.11141
http://dx.doi.org/10.48550/ARXIV.2004.11141

[13] M. Polato, F. Aiolli, Exploiting sparsity to build efficient kernel based collaborative
filtering for top-n item recommendation, Neurocomputing 268 (2017) 17–26. URL: https://
www.sciencedirect.com/science/article/pii/S0925231217307592. doi:https://doi.org/10.
1016/j.neucom.2016.12.090, advances in artificial neural networks, machine learning
and computational intelligence.

[14] P. Bhargava, T. Phan, J. Zhou, J. Lee, Who, what, when, and where: Multi-dimensional
collaborative recommendations using tensor factorization on sparse user-generated data,
in: Proceedings of the 24th International Conference on World Wide Web, WWW ’15,
International World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, CHE, 2015, p. 130–140. URL: https://doi.org/10.1145/2736277.2741077. doi:10.
1145/2736277.2741077.

[15] S. Rendle, Factorization machines, in: 2010 IEEE International Conference on Data Mining,
2010, pp. 995–1000. doi:10.1109/ICDM.2010.127.

[16] X. Xin, B. Chen, X. He, D. Wang, Y. Ding, J. Jose, Cfm: Convolutional factorization
machines for context-aware recommendation, in: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, International Joint
Conferences on Artificial Intelligence Organization, 2019, pp. 3926–3932. URL: https:
//doi.org/10.24963/ijcai.2019/545. doi:10.24963/ijcai.2019/545.

[17] Y. Zhang, X. Chen, Explainable recommendation: A survey and new perspectives, Founda-
tions and Trends® in Information Retrieval 14 (2020) 1–101. URL: https://doi.org/10.1561%
2F1500000066. doi:10.1561/1500000066.

[18] T. Carraro, M. Polato, F. Aiolli, A look inside the black-box: Towards the interpretability
of conditioned variational autoencoder for collaborative filtering, in: Adjunct Publication
of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP
’20 Adjunct, Association for Computing Machinery, New York, NY, USA, 2020, p. 233–236.
URL: https://doi.org/10.1145/3386392.3399305. doi:10.1145/3386392.3399305.

[19] A. H. Brams, A. L. Jakobsen, T. E. Jendal, M. Lissandrini, P. Dolog, K. Hose, Mindreader:
Recommendation over knowledge graph entities with explicit user ratings, CIKM ’20,
Association for Computing Machinery, New York, NY, USA, 2020, p. 2975–2982. URL:
https://doi.org/10.1145/3340531.3412759. doi:10.1145/3340531.3412759.

[20] T. R. Besold, A. d. Garcez, S. Bader, H. Bowman, P. Domingos, P. Hitzler, K.-U. Kuehnberger,
L. C. Lamb, D. Lowd, P. M. V. Lima, L. de Penning, G. Pinkas, H. Poon, G. Zaverucha,
Neural-symbolic learning and reasoning: A survey and interpretation, 2017. URL: https:
//arxiv.org/abs/1711.03902. doi:10.48550/ARXIV.1711.03902.

[21] L. D. Raedt, K. Kersting, Statistical Relational Learning, Springer US, Boston, MA,
2010, pp. 916–924. URL: https://doi.org/10.1007/978-0-387-30164-8_786. doi:10.1007/
978-0-387-30164-8_786.

[22] A. Daniele, L. Serafini, Neural networks enhancement with logical knowledge, 2020. URL:
https://arxiv.org/abs/2009.06087. doi:10.48550/ARXIV.2009.06087.

[23] S. Badreddine, A. d'Avila Garcez, L. Serafini, M. Spranger, Logic tensor networks, Artificial
Intelligence 303 (2022) 103649. URL: https://doi.org/10.1016%2Fj.artint.2021.103649. doi:10.
1016/j.artint.2021.103649.

[24] H. Chen, S. Shi, Y. Li, Y. Zhang, Neural collaborative reasoning, in: Proceedings of
the Web Conference 2021, ACM, 2021. URL: https://doi.org/10.1145%2F3442381.3449973.

https://www.sciencedirect.com/science/article/pii/S0925231217307592
https://www.sciencedirect.com/science/article/pii/S0925231217307592
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.12.090
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.12.090
https://doi.org/10.1145/2736277.2741077
http://dx.doi.org/10.1145/2736277.2741077
http://dx.doi.org/10.1145/2736277.2741077
http://dx.doi.org/10.1109/ICDM.2010.127
https://doi.org/10.24963/ijcai.2019/545
https://doi.org/10.24963/ijcai.2019/545
http://dx.doi.org/10.24963/ijcai.2019/545
https://doi.org/10.1561%2F1500000066
https://doi.org/10.1561%2F1500000066
http://dx.doi.org/10.1561/1500000066
https://doi.org/10.1145/3386392.3399305
http://dx.doi.org/10.1145/3386392.3399305
https://doi.org/10.1145/3340531.3412759
http://dx.doi.org/10.1145/3340531.3412759
https://arxiv.org/abs/1711.03902
https://arxiv.org/abs/1711.03902
http://dx.doi.org/10.48550/ARXIV.1711.03902
https://doi.org/10.1007/978-0-387-30164-8_786
http://dx.doi.org/10.1007/978-0-387-30164-8_786
http://dx.doi.org/10.1007/978-0-387-30164-8_786
https://arxiv.org/abs/2009.06087
http://dx.doi.org/10.48550/ARXIV.2009.06087
https://doi.org/10.1016%2Fj.artint.2021.103649
http://dx.doi.org/10.1016/j.artint.2021.103649
http://dx.doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1145%2F3442381.3449973

doi:10.1145/3442381.3449973.
[25] H. Chen, Y. Li, S. Shi, S. Liu, H. Zhu, Y. Zhang, Graph collaborative reasoning, in:

Proceedings of the Fifteenth ACM International Conference on Web Search and Data
Mining, WSDM ’22, Association for Computing Machinery, New York, NY, USA, 2022, p.
75–84. URL: https://doi.org/10.1145/3488560.3498410. doi:10.1145/3488560.3498410.

[26] Y. Xian, Z. Fu, H. Zhao, Y. Ge, X. Chen, Q. Huang, S. Geng, Z. Qin, G. de Melo, S. Muthukr-
ishnan, Y. Zhang, Cafe: Coarse-to-fine neural symbolic reasoning for explainable rec-
ommendation, in: Proceedings of the 29th ACM International Conference on Infor-
mation Knowledge Management, CIKM ’20, Association for Computing Machinery,
New York, NY, USA, 2020, p. 1645–1654. URL: https://doi.org/10.1145/3340531.3412038.
doi:10.1145/3340531.3412038.

[27] P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki, L. Getoor, Hyper: A flexible and extensible
probabilistic framework for hybrid recommender systems, RecSys ’15, Association for
Computing Machinery, New York, NY, USA, 2015, p. 99–106. URL: https://doi.org/10.1145/
2792838.2800175. doi:10.1145/2792838.2800175.

[28] A. Kimmig, S. Bach, M. Broecheler, B. Huang, L. Getoor, A short introduction to probabilistic
soft logic, Mansinghka, Vikash, 2012, pp. 1–4. URL: https://lirias.kuleuven.be/retrieve/
204697.

[29] R. Catherine, W. Cohen, Personalized recommendations using knowledge graphs: A
probabilistic logic programming approach, in: Proceedings of the 10th ACM Conference
on Recommender Systems, RecSys ’16, Association for Computing Machinery, New York,
NY, USA, 2016, p. 325–332. URL: https://doi.org/10.1145/2959100.2959131. doi:10.1145/
2959100.2959131.

[30] M. Gridach, Hybrid deep neural networks for recommender systems, Neurocomputing 413
(2020) 23–30. URL: https://www.sciencedirect.com/science/article/pii/S0925231220309966.
doi:https://doi.org/10.1016/j.neucom.2020.06.025.

[31] E. van Krieken, E. Acar, F. van Harmelen, Analyzing differentiable fuzzy logic operators, Ar-
tificial Intelligence 302 (2022) 103602. URL: https://doi.org/10.1016%2Fj.artint.2021.103602.
doi:10.1016/j.artint.2021.103602.

http://dx.doi.org/10.1145/3442381.3449973
https://doi.org/10.1145/3488560.3498410
http://dx.doi.org/10.1145/3488560.3498410
https://doi.org/10.1145/3340531.3412038
http://dx.doi.org/10.1145/3340531.3412038
https://doi.org/10.1145/2792838.2800175
https://doi.org/10.1145/2792838.2800175
http://dx.doi.org/10.1145/2792838.2800175
https://lirias.kuleuven.be/retrieve/204697
https://lirias.kuleuven.be/retrieve/204697
https://doi.org/10.1145/2959100.2959131
http://dx.doi.org/10.1145/2959100.2959131
http://dx.doi.org/10.1145/2959100.2959131
https://www.sciencedirect.com/science/article/pii/S0925231220309966
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.06.025
https://doi.org/10.1016%2Fj.artint.2021.103602
http://dx.doi.org/10.1016/j.artint.2021.103602

A. Metrics

To validate and test our models, we selected two widely used ranking-based metrics, namely
hit@k and ndcg@k. They are defined as follows:

• hit@k: Hit Ratio measures whether a testing item is placed in the top-k positions of the
ranking, considering the presence of an item as a hit;

• ndcg@k: Normalized Discounted Cumulative Gain measures the quality of the recom-
mendation based on the position of the target item in the ranking. In particular, it uses a
monotonically increasing discount to emphasize the importance of higher ranks versus
lower ones.

Formally, let us define 𝜔(𝑟) as the item at rank 𝑟, 𝕀[⋅] as the indicator function, and 𝐼𝑢 as the set
of held-out items for user 𝑢. hit@k for user 𝑢 is defined as

hit@𝑘(𝑢, 𝜔) ∶= 𝕀 [(
𝑘
∑
𝑟=1

𝕀 [𝜔(𝑟) ∈ 𝐼𝑢]) ≥ 1] .

Truncated discounted cumulative gain (dcg@k) for user 𝑢 is defined as

dcg@𝑘(𝑢, 𝜔) ∶=
𝑘
∑
𝑟=1

2𝕀[𝜔(𝑟)∈𝐼𝑢] − 1
log(𝑟 + 1)

.

ndcg@k is the dcg@k linearly normalized to [0, 1] after dividing by the best possible dcg@k, where
all the held-out items are ranked at the top. Notice that in this paper |𝐼𝑢| = 1.

B. Training details

The hyper-parameters tested during the grid searches explained in Section 5.2 vary depending on
the model. For all the models, we tried a number of latent factors 𝑘 ∈ {1, 5, 10, 25}, regularization
coefficient 𝜆 ∈ {0.001, 0.0001}, batch size in {32, 64}, and whether it was better to add users’ and
items’ biases to the model. For LTN and LTNgenres, we tried 𝛼 ∈ {0.05, 0.1, 0.2} for the predicate
Sim and used 𝑝 = 2 for the aggregator ME𝑝 of Axiom (3). For LTNgenres, we tried 𝑝 ∈ {2, 5}
for the aggregator ME𝑝 of Axiom (4). Notice that lim𝑝→∞ME𝑝(𝑢1, … , 𝑢𝑛) = min{𝑢1, … , 𝑢𝑛}.
Intuitively, 𝑝 offers flexibility to account for outliers in the data. The higher the 𝑝, the more
focus the model will have on the outliers.
For all the models, the latent factors U and I, for users and items, respectively, have been

randomly initialized using the Glorot initialization, while the biases with values sampled from a
normal distribution with 0 mean and unitary variance. All the models have been trained for
200 epochs by using the Adam optimizer with a learning rate of 0.001. For each training, we
used early stopping to stop the learning if after 20 epochs no improvements were found on the
validation metric (i.e., hit@10).

C. Training time

A comparison of the training times required by the models on the different datasets is presented
in Table 2. The models have been trained for 200 epochs with a learning rate of 0.001, batch
size of 64, one latent factor (i.e., 𝑘 = 1), without bias terms, and without early stopping. The
other hyper-parameters do not affect training time. In particular, LTN𝑔𝑒𝑛𝑟𝑒𝑠 increases the time
complexity considerably. This is due to Axiom 4, which has to be evaluated for each possible
combination of users, items, and genres. This drawback can limit the application of LTN𝑔𝑒𝑛𝑟𝑒𝑠
in datasets with a higher number of users and items. However, it is possible to boost training
time using GPUs or by designing logical axioms which make use of diagonal quantification.

Table 2
Training time in seconds.

% of training ratings MF LTN LTN𝑔𝑒𝑛𝑟𝑒𝑠
100% 26.99 50.87 247.30
80% 22.52 37.79 213.62
60% 18.31 28.97 145.86
40% 15.60 20.09 97.43
20% 8.12 10.68 50.85

D. Intuition of Real Logic grounding

In Real Logic, differently from first-order logic, a variable 𝑥 is grounded as a sequence of 𝑛𝑥
individuals (i.e., tensors) from a domain, with 𝑛𝑥 ∈ ℕ+, 𝑛𝑥 > 0. As a direct consequence, a term
𝑡(𝑥) or a formula P(𝑥), with a free variable 𝑥, is grounded to a sequence of 𝑛𝑥 values too. For
example, P(𝑥) returns a vector in [0, 1]𝑛𝑥 , namely ⟨P(𝑥𝑖)⟩

𝑛𝑥
𝑖=1, where 𝑥𝑖 is the 𝑖-th individual of

𝑥. Similarly, 𝑡(𝑦) returns a matrix in ℝ𝑛𝑦×𝑧, assuming that 𝑡 maps to individuals in ℝ𝑧. This
formalization is intuitively extended to terms and formulas with arity greater than one. In
such cases, Real Logic organizes the output tensor in such a way that it has a dimension for
each free variable involved in the expression. For instance, 𝑡2(𝑥, 𝑦) returns a tensor in ℝ𝑛𝑥×𝑛𝑦×𝑧,
assuming that 𝑡2 maps to individuals in ℝ𝑧. In particular, at position (𝑖, 𝑗) there is the evaluation
of 𝑡2(𝑥𝑖, 𝑦𝑗), where 𝑥𝑖 denotes the 𝑖-th individual of 𝑥 and 𝑦𝑗 the 𝑗-th individual of 𝑦. Similarly,
P2(𝑥, 𝑦) returns a tensor in [0, 1]𝑛𝑥×𝑛𝑦 , where at position (𝑖, 𝑗) there is the evaluation of P(𝑥𝑖, 𝑦𝑗).
The connective operators are applied element-wise to the tensors in input. For instance,

¬ P2(𝑥, 𝑦) returns a tensor in [0, 1]𝑛𝑥×𝑛𝑦 , where at position (𝑖, 𝑗) there is the evaluation of
¬ P2(𝑥𝑖, 𝑦𝑗), namely N𝑆 (i.e., ¬) is applied to each truth value in the tensor P2(𝑥, 𝑦) ∈ [0, 1]𝑛𝑥×𝑛𝑦 .
For binary connectives, the behavior is similar. For instance, let Q be a predicate symbol and
𝑢 a variable. Then, P2(𝑥, 𝑦) ∧ Q(𝑥, 𝑢) returns a tensor in [0, 1]𝑛𝑥×𝑛𝑦×𝑛𝑢 , where at position (𝑖, 𝑗, 𝑘)
there is the evaluation of the formula on the 𝑖-th individual of 𝑥, 𝑗-th individual of 𝑦, and 𝑘-th
individual of 𝑢.
The quantifiers aggregate the dimension that corresponds to the quantified variable. For

instance, ∀𝑥 P2(𝑥, 𝑦) returns a tensor in [0, 1]𝑛𝑦 , namely the aggregation is performed across the
dimension of 𝑥. Since 𝑦 is the only free variable remaining in the expression, the output has

one single dimension, corresponding to the dimension of 𝑦. Specifically, the framework com-
putes P2(𝑥, 𝑦) ∈ [0, 1]𝑛𝑥×𝑛𝑦 first, then it aggregates the dimension corresponding to 𝑥. Similarly,
∀(𝑥, 𝑦) P2(𝑥, 𝑦) returns a scalar in [0, 1], namely the aggregation is performed across the dimen-
sions of both variables 𝑥 and 𝑦. In the case of diagonal quantification, the framework behaves
differently. For instance, ∀Diag(𝑤, 𝑣) P2(𝑤, 𝑣), where 𝑤 and 𝑣 are two variables with the same
number of individuals 𝑛𝑤 = 𝑛𝑣, returns a scalar in [0, 1], which is the result of the aggregation
of 𝑛𝑤 truth values, namely P2(𝑤1, 𝑣1), P2(𝑤2, 𝑣2), … , P2(𝑤𝑛𝑤 , 𝑣𝑛𝑣). Without diagonal quantifica-
tion (i.e., ∀(𝑤, 𝑣) P2(𝑤, 𝑣)), the framework performs an aggregation across the dimensions of
both variables, involving 𝑛2𝑤 values, namely P2(𝑤1, 𝑣1), P2(𝑤1, 𝑣2), … , P2(𝑤𝑛𝑤 , 𝑣𝑛𝑣−1), P2(𝑤𝑛𝑤 , 𝑣𝑛𝑣).
Intuitively, ∀(𝑤, 𝑣) aggregates all the values in [0, 1]𝑛𝑤×𝑛𝑣 , while ∀Diag(𝑤, 𝑣) aggregates only the
values in the diagonal.

	1 Introduction
	2 Related works
	3 Background
	3.1 Notation
	3.2 Matrix Factorization
	3.3 Logic Tensor Networks

	4 Method
	4.1 Knowledge base
	4.2 Grounding of the knowledge base
	4.3 Learning of the LTN

	5 Experiments
	5.1 Dataset
	5.2 Experimental setting

	6 Results
	7 Conclusions
	A Metrics
	B Training details
	C Training time
	D Intuition of Real Logic grounding

